Stability of Columns

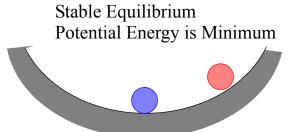
- Bending due to a compressive axial load is called Buckling.
- Structural members that support compressive axial loads are called Columns.
- Buckling is the study of stability of a structure's equilibrium.

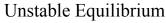
Learning objectives

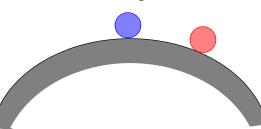
- Develop an appreciation of the phenomena of buckling and the various types of structure instabilities.
- Understand the development and use of buckling formulas in analysis and design of structures.

Buckling Phenomenon

Energy Approach

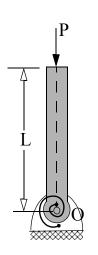


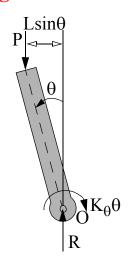




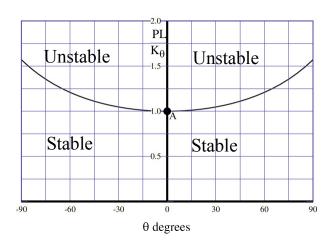
Neutral Equilibrium

Bifurcation/Eigenvalue Problem



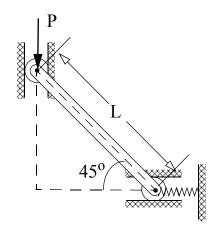


$$PL/K_{\theta} = \theta/\sin\theta$$

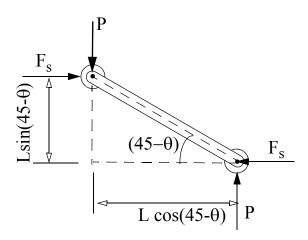


Snap Buckling Problem

$$\theta = 0$$



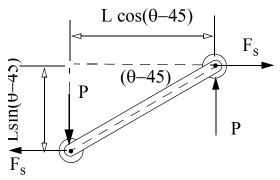
$$0 < \theta < 45^0$$

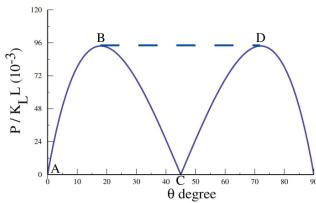


$$\frac{P}{K_L L} = (\cos(45 - \theta) - \cos 45)\tan(45 - \theta) \qquad 0 < \theta < 45^0$$

$$\frac{P}{K_L L} = (\cos(\theta - 45) - \cos 45)\tan(\theta - 45) \qquad \theta > 45^0$$

$$\theta > 45^0$$





August 2012 11-4

C11.1 Linear deflection springs and torsional springs are attached to rigid bars as shown. The springs can act in tension or compression and resist rotation in either direction. Determine P_{cr} , the critical load value.

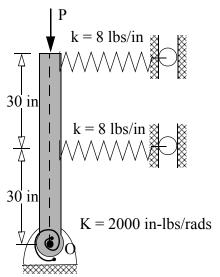
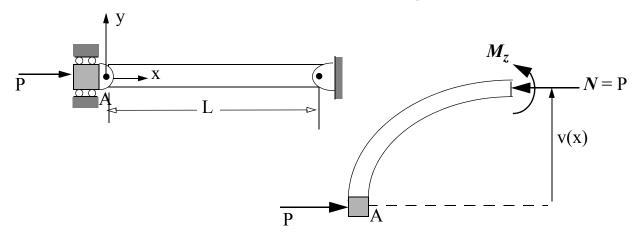


Fig. C11.1

August 2012

Euler Buckling



Boundary Value Problem

Differential Equation: $EI\frac{d^2v}{dx^2} + Pv = 0$

Boundary conditions: v(0) = 0 v(L) = 0

Solution

Trivial Solution: v = 0

Non-Trivial Solution: $v(x) = A\cos \lambda x + B\sin \lambda x$

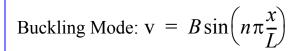
where: $\lambda = \sqrt{\frac{P}{FI}}$

Characteristic Equation: $\sin \lambda L = 0$

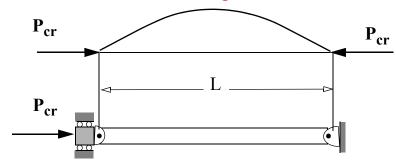
 $P_n = \frac{n^2 \pi^2 EI}{L^2}$ n = 1, 2, 3.

Euler Buckling Load: $P_{cr} = \frac{\pi^2 EI}{I^2}$

Buckling occurs about an axis that has a minimum value of I.

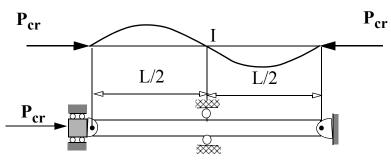


Mode shape 1



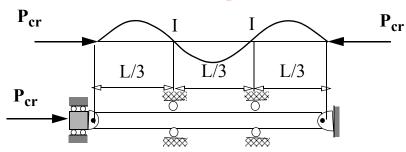
$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

Mode shape 2



$$P_{cr} = \frac{4\pi^2 EI}{L^2}$$

Mode shape 3



$$P_{cr} = \frac{9\pi^2 EI}{L^2}$$

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

Effects of End Conditions

Case	1. B P B A V A Pinned at both Ends	One end fixed, other end free	3. One end fixed, other end pinned	4. B P P A P A Fixed at both ends.
Differential Equation	$EI\frac{d^{2}v}{dx^{2}} + Pv$ $= 0$	$EI\frac{d^{2}v}{dx^{2}} + Pv$ $= Pv(L)$	$EI\frac{d^{2}v}{dx^{2}} + Pv$ $= R_{B}(L - x)$	$EI\frac{d^{2}v}{dx^{2}} + Pv$ $= R_{B}(L-x) + M_{B}$
Boundary Conditions	v(0) = 0 $v(L) = 0$	$v(0) = 0$ $\frac{dv}{dx}(0) = 0$	$v(0) = 0$ $\frac{dv}{dx}(0) = 0$ $v(L) = 0$	$v(0) = 0$ $\frac{dv}{dx}(0) = 0$ $v(L) = 0$ $\frac{dv}{dx}(L) = 0$
Characteristic Equation $\lambda = \sqrt{\frac{P}{EI}}$	$\sin \lambda L = 0$	$\cos \lambda L = 0$	$\tan \lambda L = \lambda L$	$2(1 - \cos \lambda L)$ $-\lambda L \sin \lambda L = 0$
Critical Load P _{cr}	$\frac{\pi^2 EI}{L^2}$	$\frac{\pi^2 EI}{4L^2} = \frac{\pi^2 EI}{(2L)^2}$	$\frac{20.13EI}{L^2} = \frac{\pi^2 EI}{(0.7L)^2}$	$\frac{4\pi^2 EI}{L^2} = \frac{\pi^2 EI}{(0.5L)^2}$
Effective Length— L _{eff}	L	2L	0.7L	0.5L

$$P_{cr} = \frac{\pi^2 EI}{L_{eff}^2}$$

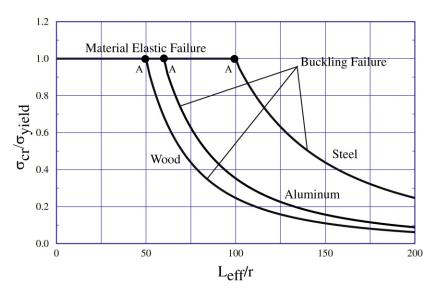
Axial Stress: $\sigma_{cr} = \frac{P_{cr}}{A}$

Radius of gyration: $r = \sqrt{\frac{I}{A}}$

$$\sigma_{cr} = \frac{P_{cr}}{A} = \frac{\pi^2 E}{(L_{eff}/r)^2}$$

Slenderness ratio: (L_{eff}/r).

Failure Envelopes



- Short columns: Designed to prevent material elastic failure.
- Long columns: Designed to prevent buckling failure.

C11.2 Columns made from an alloy will be used in a construction of a frame. The cross-section of the columns is a hollow-cylinder of thickness 10 mm and outer diameter of 'd' mm. The modulus of elasticity is E = 200 GPa and the yield stress is $\sigma_{yield} = 300$ MPa. Table below shows a list of the lengths 'L' and outer diameters 'd'. Identify the long and the short columns. Assume the ends of the column are built in

L (m)	d (mm)	
1	60	
2	80	
3	100	
4	150	
5	200	
6	225	
7	250	

C11.3 A force F= 750 lb is applied to the two bars structure as shown. Both bars have a diameter of d = 1/4 inch, modulus of elasticity E = 30,000 ksi, and yield stress $\sigma_{yield} = 30$ ksi. Bar AP and BP have lengths of L_{AP} = 8 inches and L_{BP} = 10 inches, respectively. Determine the factor of safety for the two-bar structures.

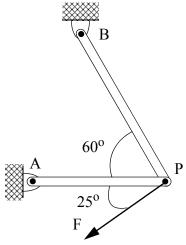
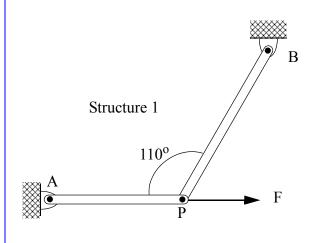


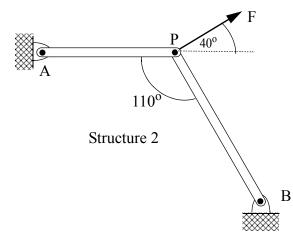
Fig. C11.3

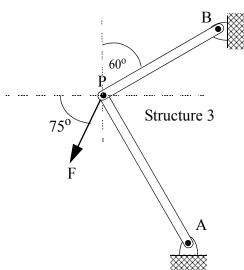
August 2012

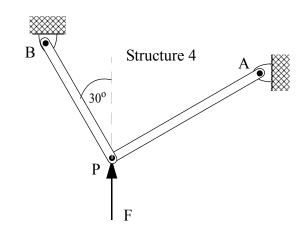
Class Problem 1

Identify the members in the structures that you would check for buckling. Circle the correct answers.





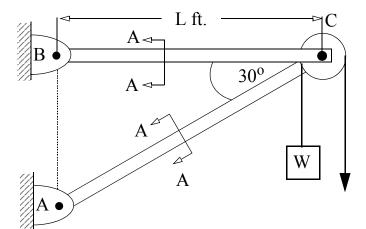


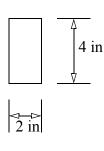


Structure 1 Structure 2 Structure 3 Structure 4 AP AP AP AP

BP BP BP Both None
Both None
Both None

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm





Cross-section AA

Fig. C11.4