M. Vable Mechanics of Materials: Chapter 11

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

Stability of Columns

* Bending due to a compressive axial load is called Buckling.
* Structural members that support compressive axial loads are called Columns.
* Buckling is the study of stability of a structure’s equilibrium.

Learning objectives

* Develop an appreciation of the phenomena of buckling and the various types of
structure instabilities.

* Understand the development and use of buckling formulas in analysis and
design of structures.
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Buckling Phenomenon

Energy Approach
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Snap Buckling Problem
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Local Buckling

Axial Loads

crinkling

Torsional Loads

Compressive
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Cl11.1 Linear deflection springs and torsional springs are attached to
rigid bars as shown.The springs can act in tension or compression and
resist rotation in either direction. Determine P, the critical load value.
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Fig. C11.1
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Euler Buckling
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Boundary Value Problem

2
Differential Equation: E[d—\zi +Pv =10
dx
Boundary conditions: v(0) = 0 v(L) =0

Solution

Trivial Solution: v = 0

Non-Trivial Solution: v(x) = AcosAx + BsinAx

P
here: A = [—
where /EI

Characteristic Equation: sinAL = 0
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Euler Buckling Load: P, . = I fl
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* Buckling occurs about an axis that has a minimum value of 1.
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Buckling Mode: v
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Effects of End Conditions
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Axial Stress: _ Per
xial Stress: G, = -
. : 1
Radius of gyration: r = 7
2
5 = P, _ nE
cr A 2
(L, f/r)

Slenderness ratio: (Log/T).
Failure Envelopes

il

Material Elastic Failure

1.0

" Ax(ﬂﬁuchlmg Failure
038 \< /
\ \

= I
i
> 0.6
) \
o | Wood
© o4 N

0.2

~—
"‘-‘._‘__-"N____._.____-
0.0
0 50 100 150 200

Legf/r

* Short columns: Designed to prevent material elastic failure.
* Long columns: Designed to prevent buckling failure.
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Cl11.2 Columns made from an alloy will be used in a construction of
a frame. The cross-section of the columns is a hollow-cylinder of thick-
ness 10 mm and outer diameter of ‘d” mm. The modulus of elasticity is
E =200 GPa and the yield stress is 6y;¢1g = 300 MPa. Table below shows

a list of the lengths ‘L’ and outer diameters ‘d’. Identify the long and the
short columns. Assume the ends of the column are built in.

L d
(m) (mm)
1 60

2 80
3 100
4 150
5
6
7

200
225
250
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Cl11.3 A force F= 750 Ib is applied to the two bars structure as
shown. Both bars have a diameter of d = 1/4 inch, modulus of elasticity
E = 30,000 ksi, and yield stress ;g = 30 ksi. Bar AP and BP have

lengths of L ,p= 8 inches and Lgp= 10 inches, respectively. Determine
the factor of safety for the two-bar structures.

& B

Fig. C11.3
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Class Problem 1

Identify the members in the structures that you would check for buckling. Circle the
correct answers.
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Structure 1 AP BP Both None
Structure 2 AP BP Both None
Structure 3 AP BP Both None
Structure 4 AP BP Both None
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Cll.4 A hoist is constructed using two wooden bars to lift a weight
of 5 kips. The modulus of elasticity for wood is E = 1,800 ksi and the
allowable normal stress 3.0 ksi. Determine the maximum value of L to
the nearest inch that can be used in constructing the hoist.
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Fig. C11.4
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