Chapter 1

INTRODUCTION TO COMPUTER AND
PROGRAMMING

Programming Fundamentals

Chapter 1

Hardware and software

Programming Languages

Problem solution and software development
Algorithms

Programming Fundamentals

Computer Hardware =g

= Input unit

= Output unit
= Memory unit
= ALU

= CPU

= Secondary storage

/1
\ /

CD-ROM

N

3'"2 floppy
disk drive

cd-rom ’ r—l‘

CPU
central
processing
unit

speaker
e T |- (muitimedia kit)
R
video
camera

zip drive
printer

notebook

portable with
all the elements
in one box

Drive

—~Floppy
Disk Drive

| Hard Disk
Drive

L CPU w/Fan

L4~ Motherboard

Adapter

Programming Fundamentals

Input Unit and Output Unit .

Penpheral Perqhml

Input Unit "cﬁ;‘ TU“/' Sﬁw
- It obtains information from \

various input devices and N
laces this information at the « 73

gisposal of the other units. ‘ = / \ \’e)

- Examples of input devices: - A =

keyboards, mouse devices.

Peripheral

Peripherals

Output Unit

- It takes information that has been processed by the
computer and places it on various output devices.

- Most output from computer is displayed on screens, printed
on paper, or used to control other devices.

Programming Fundamentals 4

Input Unit and Output Unit

Standard
Error

(screen)

-

Standard

Input

(keyboard)

'

Program

'

Standard

Output
(screen)

input

Input-output

A
output

black box

feedback

Programming Fundamentals

Memory Unit

= The memory unit stores information. Each computer contains
memory of two main types: RAM and ROM.

= RAM (random access = ROM (read only memory)
memory) is volatile. Your contains fundamental
program and data are stored Instructions that cannot be lost
iIn RAM when you are using or changed by the user. ROM is

the computer. non-volatile.

Programming Fundamentals 6

ALU and CPU

Arithmetic and Logic Unit (ALU)

ALU performs all the arithmetic and logic
operations.

Ex: addition, subtraction, comparison, etc..

CPU

The unit supervises the overall
operation of the computer.

Programming Fundamentals 7

Secondary Storage -
Ex

e :-‘1 s
| % W
! i
'@ !

I
"
H

= Secondary storage devices are D
used to be permanent storage area for
programs and data.

and optical storage CD.

Magnetic hard disk

Floppy disk
CD ROM

etc..

Programming Fundamentals 8

Some terminology What we 5aY fo dogs
Okay: 67706;-/#1;(/;0 hr% ,?/c /.,
)/:Olandsfe-{faofud Ginger ? ..Sf&/odf

of the Q“’W‘fo’dse"

= A computer program is a set of
Instructions used to operate a
computer to produce a specific
result.

= Writing computer programs is
called computer programming.

= The languages used to create
computer programs are called
programming languages.

= Software means a program or a
set of programs

Programming Fundamentals 9

Machine languages

FOHT;Q C\ Pascal

High-Level Language

Machine languages are the lowest

Assembly Language
level of computer languages. SR——

Machine Language

Programs written in machine

language consist of 1s and Os. Hardware

Programs in machine language can control directly
to the computer’s hardware.

Example:
00101010 000000000001 000000000010
39611001 00000006Q010 0000000011

opcode address parts

Programming Fundamentals 10

Machine languages (cont.)

= A machine language instruction consists of two
parts: an instruction part and an address part.

= Theinstruction part (opcode) tells the computer the
operation to be performed.

= The address part specifies the
memory address of the data to be
used in the instruction.

00101010 000000000001 000000000010

opcode address parts | Ee il T

Programming Fundamentals 11

Assembly languages

Assembly languages perform the same tasks as machine
languages, but use symbolic names for opcodes and operands

Instead of 1sand 0s. | _.
it (i == 3)
k=0;

LOAD BASEPAY e'sie=j_1_
ADD OVERPAY
STORE GROSSPAY

(@)

Wo~No0EWN-=

10
11
12
13 L1:
14
15 L2:

ILOAD j
ILOAD k
IADD
ISTORE i
ILOAD i
BIPUSH 3

Hi=j+k

i if (i < 3)

IF_ICMPEQ LA1

ILOAD j
BIPUSH 1
ISUB

ISTORE j
GOTO L2

ISTORE k

(b)

Mij=j—1

BIPUSH 0

0x15 0x0D2

0x15 0x03

0x60

0x36 0x01

0x15 0x01

0x10 Ox03

0x9F 0x00 0x0D
0x15 0x02

0x10 0x01

0x64

0x36 0x02

OxA7 0x00 Ox07
// K=0 0x10 0x00
0x36 0x03

(c)

An assembly language program must be translated into a
machine language program before it can be executed on a

computer.

Programming Fundamentals

12

‘ Assembler

file math debug wiew external virtual devices wirtual drive help

(=1

Assembly
language ——
program

o P
= (] 4l > B> P
Load reload step back single step run step delay ms: 0
*@“aSH L 07 00: 0108 A700: 0108
&y |08 |83 A7100: B8 184 3 | [MOU AX. B@PA3hH =
@7iAi: @3 6A3 v [INT B1i6h
Ex |88 (8@ MOU Ax,. Wiwvw
MOU BX, BOBABh
Cx |88 |uB INT @18h
HMOU DL, G@h
U |88 |e@ MOU DH. B@h
MOU BL, @@h
C5 |e70@ JMP @11Eh
: INC DH
IF {8183 B710A: 8@ BAA NULL C CMP DH, @18h C
cc A71@B: CD 285 = JZ 8138h
6708 B718C: 1@ @16 % MOU DL, @8h
@71@8D: B2 178 MOU AH, B2h
o [onen || Grick: g8 oo N g
BF 0688 A711A: @R BAA NULL MOU BH. B@h
s [pooa @7111: B3 179 | MOU CX, P@RALih
A7112: B@ PE@ NULL HOU AH, B%h
ol |peea @7113: EB 235 & INT 818h
@7114: @9 809 TAB -l --- ~
oS |e70a
ES 6788 FofEEn SOUICE reset AL Wars debug stack flagz

program
(assembler)

Machine
, language

program

Programming Fundamentals

13

High-level Programming Languages

= High level programming languages create computer
programs using instructions that much easier to
understand.

= Programs in a high-level languages must be
translated into a low level language using a program
called a compiler.

= A compiler translates programming
code into a low-level format.

High-Level Language

Assembly Language |

Machine Language

Harchware

Programming Fundamentals 14

High-level Programming Languages (cont.)

= High-level languages allow programmers to write
Instructions that look like every English sentences
and commonly-used mathematical notations.

= Each line in a high-level language program is called

a statement. g oo ASPnet
= Example: & =
_ e ey
Result = (First + Second)*Third >, ct ¢
Php)
<A ®
@& N T [

Programming Fundamentals 15

Application and System Software

= Two types of computer programs are:
application software and system software.

= Application software consists of those
programs written to perform particular
tasks required by the users.

= System software is the collection
of programs that must be available
to any computer system for it to
operate.

Programming Fundamentals

16

Examples of system software

= The most important system software is the operating

system.
MS-DOS, UNIX, MS WINDOWS, MS WINDOWS NT

= Many operating systems allow
user to run multiple programs.
Such operating systems are
called multitasking systems.

= Beside operating systems,
language translators are
system software.

Programming Fundamentals

17

PROGRAMMING LANGUAGES

= Some well-known programming languages:

FORTRAN
COBOL
BASIC
PASCAL
C

C++

Java

= What is Syntax?

1957

1960s

1960s

1971 Structure programming

Object-oriented programming

A programming language’s syntax is the set of rules for writing
correct language statements.

Programming Fundamentals

18

The C Programming Language

In the 1970s, at Bell Laboratories, Dennis Ritchie and Brian
Kernighan designed the C programming language.

C was used exclusively on UNIX and on mini-computers.
During the 1980s, C compilers were written for other platforms,
including PCs.

To provide a level of standardization for C language, in 1989,
ANSI created a standard version of C, called ANSI C.

One main benefit of C . itis much closer to assembly language
other than other high-level programming languages.

The programs written in C often run faster and more efficiently
than programs written in other high-level programming
language.

Programming Fundamentals 19

The C++ Programming Language

In 1985, at Bell Laboratories, Bjarne Stroutrup created C++
based on the C language. C++ is an extension of C that adds
object-oriented programming capabilities.

C++is now the most popular programming language for writing
programs that run on Windows and Macintosh.

The standardized version of C++ is referred to as ANSI| C++.

The ANSI standards also define run-time libraries, which
contains useful functions, variables, constants, and other
programming items that you can add to your programs.

The ANSI C++ run-time library is called Standard Template
Library or Standard C++ Library

Programming Fundamentals 20

Structured Programming

During 1960s, many large softwares encountered severe
difficulties. Software schedules were late, costs exceeded
budgets and finished products were unreliable.

People realized that software development was a far more
complex activity than they had imagined.

Research activity in the 1960s = Structured Programming.

It is a discipline approach to writing programs that are clearer
than unstructured programs, easier to test and debug and

easier to modify.
Pascal (Niklaus Wirth) in 1971.

o Pascal was designed for teaching structured programming in
academic environments and rapidly became the preferred

programming languages in most universities.

Programming Fundamentals

21

Object Oriented Programming

= In the 1980s, there is another
revolution in the software
community: object- oriented programming.

= Objects are reusable software components that
model items in the real world.

= Software developers are discovering that: using a
modular, object-oriented design and implementation
approach can make software development much more
productive.

= OOP refers to the creation of reusable software
objects that can be easily incorporated into another
program.

Programming Fundamentals

22

Object Oriented Programming (cont.)

An object is programming code and data that can be
treated as an individual unit or component.

Data refers to information contained within variables,
constants, or other types of storage structures. The
procedures associated with an object are referred as
functions or methods.

Variables that are associated with an object are
referred to as properties or attributes.

OOP allows programmers to use programming
objects that they have written themselves or that
have been written by others.

Programming Fundamentals 23

PROBLEM SOLUTION AND
SOFTWARE DEVELOPMENT

= Software development consists of
three overlapping phases

- Development and Design
- Documentation
- Maintenance

= Software engineering is concerned with creating
readable, efficient, reliable, and maintainable
programs and systems.

Programming Fundamentals 24

Phase |: Development and Design

The first phase consists of four steps:

1. Analyze the problem

Analyze the problem requirements to understand what the program
must do, what outputs are required and what inputs are needed.

2. Develop a Solution
We develop an algorithm to solve the problem.

Algorithm is a sequence of steps that describes how the data are to
be processed to produce the desired outputs.

3. Code the solution

4. Test and correct the program

Programming Fundamentals 25

Phase |I: Documentation

= Documentation requires collecting critical &
documents during the analysis, design, codlng and
testing.

= There are five documents for
every program solution:

FRAN(HEMENT MAMAN |
WHE KLaT..E5(€
Qe & w, 96‘1 owﬂ’ee

- Program description
- Algorithm development and changes Gt
- Well-commented program listing]
- Sample test runs

- Usgr;s manual

......

Programming Fundamentals 26

Phase Ill: Maintenance

= This phase is concerned with
- the ongoing correction of problems,
- revisions to meet changing needs and ¢
- the addition of new features.

]

Programming Fundamentals 27

ALGORITHMS

= You can describe an algorithm by using flowchart
symbols. By that way, you obtain a flowchart.

= Flow chart is an outline of the basic structure or
logic of the program.

= Another way to describe an algorithm is using
pseudocode.

= Since flowcharts are not convenient to revise, they

have fallen out of favor by programmers. Nowadays,
the use of pseudocode has gained increasing
acceptance.

Programming Fundamentals 28

‘ Flowchart symbols

Terminal [-]

Input/output / '@/

Process ‘ &) ‘

—
Flowlines — u

Decision
Connector O S

YES

YES

Predefined process Dot

Programming Fundamentals 29

SONY
Sticky Note
Tính toán.
a=d/c
.....

SONY
Sticky Note
Nhập các giá trị, vd:
nhập a,b,c là số nguyên

SONY
Sticky Note
Bắt đầu chương trình

SONY
Sticky Note
Điều kiện.
hàm If

SONY
Sticky Note
Bắt đầu và kết thúc chương trình

Example

Input Name,
Hours, Rate

Calculate
Pay <« Hours x Rate

Dlslay
Name, Pay

o

Note:

Name, Hours and Pay
are variables in the
program.

Programming Fundamentals

30

Algorithms in pseudo-code

—

)
You also can use English-like phases to describe an

algorithm. In this case, the description is called
pseudocode.

Example:

Input the three values into the variables Name,
Hours, Rate.

Calculate @ Pay = Hours x Rate.
Display Name and Pay.

Programming Fundamentals

31

SONY
Sticky Note
diễn tả hay mô tả thuật toán

_oops

NUM « 4

v

SQNUM « NUM?

Note:

1. Loop is avery important
concept in programming.

2. NUM « NUM + 1 means

old value of NUM + 1 becomes
new value of NUM.

Print

NUM, SQNUM

No

'

NUM <~ NUM +1

The algorithm can be described in
pseudocode as follows:

NUM « 4

do
SQNUM¢« NUM?
Print NUM, SQNUM
NUM « NUM + 1

while (NUM <= 9)

Programming Fundamentals 32

Exercise

Programming Fundamentals

33

