
Programming Fundamentals 1

Chapter 1

INTRODUCTION TO COMPUTER AND

PROGRAMMING

Programming Fundamentals 2

Chapter 1

 Hardware and software

 Programming Languages

 Problem solution and software development

 Algorithms

Programming Fundamentals 3

Computer Hardware

 Input unit

 Output unit

 Memory unit

 ALU

 CPU

 Secondary storage

Programming Fundamentals 4

Input Unit and Output Unit

 Input Unit

 - It obtains information from

various input devices and

places this information at the

disposal of the other units.

 - Examples of input devices:

keyboards, mouse devices.

 Output Unit

 - It takes information that has been processed by the

computer and places it on various output devices.

 - Most output from computer is displayed on screens, printed

on paper, or used to control other devices.

Input Unit and Output Unit

Programming Fundamentals 5

Programming Fundamentals 6

Memory Unit

 The memory unit stores information. Each computer contains

memory of two main types: RAM and ROM.

 RAM (random access

memory) is volatile. Your

program and data are stored

in RAM when you are using

the computer.

 ROM (read only memory)

contains fundamental

instructions that cannot be lost

or changed by the user. ROM is

non-volatile.

Programming Fundamentals 7

ALU and CPU

 Arithmetic and Logic Unit (ALU)

 ALU performs all the arithmetic and logic

operations.

 Ex: addition, subtraction, comparison, etc..

 CPU

 The unit supervises the overall

 operation of the computer.

Programming Fundamentals 8

Secondary Storage

 Secondary storage devices are

 used to be permanent storage area for

 programs and data.

 Examples: magnetic tapes, magnetic disks

 and optical storage CD.

 Magnetic hard disk

 Floppy disk

 CD ROM

 etc…

Programming Fundamentals 9

Some terminology

 A computer program is a set of

instructions used to operate a

computer to produce a specific

result.

 Writing computer programs is

called computer programming.

 The languages used to create

computer programs are called

programming languages.

 Software means a program or a

set of programs

Programming Fundamentals 10

Machine languages

 Machine languages are the lowest

 level of computer languages.

 Programs written in machine

 language consist of 1s and 0s.

 Programs in machine language can control directly

to the computer’s hardware.

 Example:

 00101010 000000000001 000000000010

 10011001 000000000010 000000000011

opcode address parts

Programming Fundamentals 11

Machine languages (cont.)

 A machine language instruction consists of two

parts: an instruction part and an address part.

 The instruction part (opcode) tells the computer the

operation to be performed.

 The address part specifies the

 memory address of the data to be

 used in the instruction.

opcode address parts

00101010 000000000001 000000000010

Programming Fundamentals 12

Assembly languages

 Assembly languages perform the same tasks as machine

languages, but use symbolic names for opcodes and operands

instead of 1s and 0s.

 LOAD BASEPAY

 ADD OVERPAY

 STORE GROSSPAY

 An assembly language program must be translated into a

machine language program before it can be executed on a

computer.

Programming Fundamentals 13

Assembler

Translation

program

(assembler)

Assembly

language

program

Machine

language

program

Programming Fundamentals 14

High-level Programming Languages

 High level programming languages create computer

programs using instructions that much easier to

understand.

 Programs in a high-level languages must be

translated into a low level language using a program

called a compiler.

 A compiler translates programming

 code into a low-level format.

Programming Fundamentals 15

High-level Programming Languages (cont.)

 High-level languages allow programmers to write

instructions that look like every English sentences

and commonly-used mathematical notations.

 Each line in a high-level language program is called

a statement.

 Example:

 Result = (First + Second)*Third

Programming Fundamentals 16

Application and System Software

 Two types of computer programs are:

 application software and system software.

 Application software consists of those

 programs written to perform particular

 tasks required by the users.

 System software is the collection

 of programs that must be available

 to any computer system for it to

 operate.

Programming Fundamentals 17

Examples of system software

 The most important system software is the operating
system.

 MS-DOS, UNIX, MS WINDOWS, MS WINDOWS NT

 Many operating systems allow

 user to run multiple programs.

 Such operating systems are

 called multitasking systems.

 Beside operating systems,

 language translators are

 system software.

Programming Fundamentals 18

PROGRAMMING LANGUAGES

 Some well-known programming languages:

 FORTRAN 1957

 COBOL 1960s

 BASIC 1960s

 PASCAL 1971 Structure programming

 C

 C++ Object-oriented programming

 Java

 What is Syntax?

 A programming language’s syntax is the set of rules for writing

correct language statements.

Programming Fundamentals 19

The C Programming Language

 In the 1970s, at Bell Laboratories, Dennis Ritchie and Brian
Kernighan designed the C programming language.

 C was used exclusively on UNIX and on mini-computers.
During the 1980s, C compilers were written for other platforms,
including PCs.

 To provide a level of standardization for C language, in 1989,
ANSI created a standard version of C, called ANSI C.

 One main benefit of C : it is much closer to assembly language
other than other high-level programming languages.

 The programs written in C often run faster and more efficiently
than programs written in other high-level programming
language.

Programming Fundamentals 20

The C++ Programming Language

 In 1985, at Bell Laboratories, Bjarne Stroutrup created C++
based on the C language. C++ is an extension of C that adds
object-oriented programming capabilities.

 C++ is now the most popular programming language for writing
programs that run on Windows and Macintosh.

 The standardized version of C++ is referred to as ANSI C++.

 The ANSI standards also define run-time libraries, which
contains useful functions, variables, constants, and other
programming items that you can add to your programs.

 The ANSI C++ run-time library is called Standard Template
Library or Standard C++ Library

Programming Fundamentals 21

Structured Programming

 During 1960s, many large softwares encountered severe

difficulties. Software schedules were late, costs exceeded

budgets and finished products were unreliable.

 People realized that software development was a far more

complex activity than they had imagined.

 Research activity in the 1960s  Structured Programming.

 It is a discipline approach to writing programs that are clearer

than unstructured programs, easier to test and debug and

easier to modify.

 Pascal (Niklaus Wirth) in 1971.

 Pascal was designed for teaching structured programming in

academic environments and rapidly became the preferred

programming languages in most universities.

Programming Fundamentals 22

Object Oriented Programming

 In the 1980s, there is another

 revolution in the software

 community: object- oriented programming.

 Objects are reusable software components that

model items in the real world.

 Software developers are discovering that: using a

modular, object-oriented design and implementation

approach can make software development much more

productive.

 OOP refers to the creation of reusable software

objects that can be easily incorporated into another

program.

Programming Fundamentals 23

Object Oriented Programming (cont.)

 An object is programming code and data that can be

treated as an individual unit or component.

 Data refers to information contained within variables,

constants, or other types of storage structures. The

procedures associated with an object are referred as

functions or methods.

 Variables that are associated with an object are

referred to as properties or attributes.

 OOP allows programmers to use programming

objects that they have written themselves or that

have been written by others.

Programming Fundamentals 24

PROBLEM SOLUTION AND

SOFTWARE DEVELOPMENT

 Software development consists of

 three overlapping phases

 - Development and Design

 - Documentation

 - Maintenance

 Software engineering is concerned with creating

readable, efficient, reliable, and maintainable

programs and systems.

Programming Fundamentals 25

Phase I: Development and Design

The first phase consists of four steps:

1. Analyze the problem

 Analyze the problem requirements to understand what the program
must do, what outputs are required and what inputs are needed.

2. Develop a Solution

 We develop an algorithm to solve the problem.

 Algorithm is a sequence of steps that describes how the data are to
be processed to produce the desired outputs.

3. Code the solution

 This step consists of translating the algorithm into a

 computer program using a programming language.

4. Test and correct the program

Programming Fundamentals 26

Phase II: Documentation

 Documentation requires collecting critical

documents during the analysis, design, coding, and

testing.

 There are five documents for

 every program solution:

 - Program description

 - Algorithm development and changes

 - Well-commented program listing

 - Sample test runs

 - User’s manual

Programming Fundamentals 27

Phase III: Maintenance

 This phase is concerned with

 - the ongoing correction of problems,

 - revisions to meet changing needs and

 - the addition of new features.

Programming Fundamentals 28

ALGORITHMS

 You can describe an algorithm by using flowchart

symbols. By that way, you obtain a flowchart.

 Flow chart is an outline of the basic structure or

logic of the program.

 Another way to describe an algorithm is using

pseudocode.

 Since flowcharts are not convenient to revise, they

have fallen out of favor by programmers. Nowadays,

the use of pseudocode has gained increasing

 acceptance.

Programming Fundamentals 29

Flowchart symbols

Terminal

Input/output

Process

Flowlines

 Decision

 Connector

 Predefined process

SONY
Sticky Note
Tính toán.
a=d/c
.....

SONY
Sticky Note
Nhập các giá trị, vd:
nhập a,b,c là số nguyên

SONY
Sticky Note
Bắt đầu chương trình

SONY
Sticky Note
Điều kiện.
hàm If

SONY
Sticky Note
Bắt đầu và kết thúc chương trình

Programming Fundamentals 30

Example

Start

Input Name,

Hours, Rate

Calculate

Pay  Hours  Rate

Dislay

Name, Pay

End

Note:

Name, Hours and Pay

are variables in the

program.

Programming Fundamentals 31

Algorithms in pseudo-code

 You also can use English-like phases to describe an

algorithm. In this case, the description is called

pseudocode.

 Example:

 Input the three values into the variables Name,

Hours, Rate.

 Calculate Pay = Hours  Rate.

 Display Name and Pay.

SONY
Sticky Note
diễn tả hay mô tả thuật toán

Programming Fundamentals 32

Loops Note:

1. Loop is a very important

concept in programming.

2. NUM  NUM + 1 means

old value of NUM + 1 becomes

new value of NUM.

Start

NUM  4

SQNUM  NUM
2

Print

NUM, SQNUM

NUM  NUM + 1

NUM> 9?

STOP

No

Yes

The algorithm can be described in

pseudocode as follows:

NUM  4

do

 SQNUM NUM2

 Print NUM, SQNUM

 NUM  NUM + 1

while (NUM <= 9)

Exercise

Programming Fundamentals 33

