
Chapter 3

SOME MORE BASICS

Programming Fundamentals with C++ 1

Programming Fundamentals with C++ 2

Outline

 Assignment statement

 Program input using the cin object

 Formatting the output

 Using mathematical library functions

 Type Conversions

 Octal and hexadecimal number

 Block statement

Programming Fundamentals with C++ 3

Overview

 In the last chapter, we studied how result are

displayed and how numerical data are stored and

processed using variables and assignment

statements.

 In this chapter, we study some C++’s additional

processing and input capabilities.

Programming Fundamentals with C++ 4

Assignment

 How do we place data items into variables?
 Read in values typed at the keyboard by the user

 Use an assignment statement

 Assignment statement examples:

 length = 25;

 cMyCar = “Mercedes”;

 sum = 3 + 7;

 newtotal = 18.3*amount;

 slope = (y2 – y1)/(x2 – x1);

Programming Fundamentals with C++ 5

Assignment statement

 Assignment operator (=) are used for assignment of a

value to a variable and for performing computations.

 Assignment statement has the syntax:

 variable = expression;

 Expression is any combination of constants, variables,

and function calls that can be evaluated to yield a result.

Programming Fundamentals with C++ 6

Assignment statement (cont.)

 The order of events when the computer executes an
assignment statement is

 - Evaluate the expression on the right hand side of the
assignment operator.

 - Store the resultant value of the expression to the
variable on the left hand side of the assignment operator.

 Note:

 1. The equal sign here does not have the same
meaning as an equal sign in mathematics.

 2. Each time a new value is stored in a variable, the
old one is overwritten.

Programming Fundamentals with C++ 8

Assignment Variations

 C++ includes other arithmetic operators in addition
to the equal sign.

Operator Example Meaning

= iNum1 = iNum2

+= iNum1 += iNum2 iNum1 = iNum1 + iNum2

-= iNum1 -= iNum2 iNum1 = iNum1 - iNum2

*= iNum1 *= iNum2 iNum1 = iNum1 * iNum2

/= iNum1 /= iNum2 iNum1 = iNum1 / iNum2

%= iNum1 %= iNum2 iNum1 = iNum1 % iNum2

 sum += 10 is equivalent to sum = sum + 10

Programming Fundamentals with C++ 9

Increment and decrement operators
 For the special case in which a variable is either

increased or decreased by 1, C++ provides two

unary operators: increment operator and decrement

operator.

 Operator Description

 ++ Increase an operand by a value of one

 - - Decrease an operand by a value of one

 The increment (++) and decrement (--) unary

operators can be used as prefix or postfix operators

to increase or decrease value.

Programming Fundamentals with C++ 10

Increment and decrement operators (cont.)

 A prefix operator is placed before a variable and returns
the value of the operand after the operation is performed.

 A postfix operator is placed after a variable and returns
the value of the operand before the operation is
performed.

 Prefix and postfix operators have different effects when
used in a statement

 b = ++a; // prefix way

 will first increase the value of a to 6, and then assign that new
value to b. It is equivalent to

 a = a +1; b = a;

Programming Fundamentals with C++ 11

 b = a++; // postfix way

 will first assign the value of 5 to b, and then increase the value

of a to 6. It is equivalent to

 b = a; a = a + 1;

 The decrement operators are used in a similar way.

 b = --a;

 equivalent to

 a = a -1; b = a;

 b = a--;

 equivalent to

 b = a; a = a -1;

Programming Fundamentals with C++ 12

Exercise on class
 What are the results of the following program?
#include <iostream.h>

int main()

{

 int c;

 c = 5;

 cout << c << endl;

 cout << c++ << endl

 cout << c << endl << endl;

 c = 5;

 cout << c << endl;

 cout << ++c << endl;

 cout << c << endl;

 return 0;

}

Programming Fundamentals with C++ 13

PROGRAM INPUT USING THE cin OBJECT
 So far, our programs have been limited since that all their

data must be defined within the program source code.

 We now learn how to write programs which enable data to be
entered via the keyboard, while the program is running.

 Standard Input Stream

o The cin object reads in information from the keyboard via
the standard input stream.

o The extraction operator (>>) retrieves information from the
input stream.

o When the statement cin >> num1; is encountered, the
computer stops program execution and accepts data from
the keyboard. When a data item is typed, the cin object
stores the item into the variable listed after the >> operator.

Programming Fundamentals with C++ 14

Example 3.4.1
#include <iostream.h>
int main()
{
 float num1, num2, product;
 cout << "Please type in a number: ";
 cin >> num1;
 cout << "Please type in another number: ";
 cin >> num2;
 product = num1 * num2;
 cout << num1 << " times " << num2 << " is " << product << endl;
 return 0;
 }

The output of the above program:

Please type in a number: 30

Please type in another number: 0.05

30 times 0.05 is 1.5

Programming Fundamentals with C++ 15

Exercise on class

Write a program that gets 3 numbers and prints out their
average

#include <iostream.h>
int main()
{
 int num1, num2, num3;
 float average=0;
 cout << "Enter three integer numbers: ";
 // Your code here

 cout << "The average of the numbers is " << average << endl;
 return 0;
}

 The output of the your program should be:

Enter three integer numbers: 22 56 73

The average of the numbers: 50.333333

Programming Fundamentals with C++ 16

FORMATTING FOR PROGRAM OUTPUT

 Besides displaying correct results, a program should
present its results attractively with good formats.

 Stream Manipulators

 Stream manipulator functions are special stream
functions that change certain characteristics of the input
and output.

 The main advantage of using manipulator functions is
they facilitate the formatting of the input and output
streams.

Programming Fundamentals with C++ 17

Stream manipulator

 setiosflags This manipulator is used to control

different input and output settings.

 setiosflag(ios::fixed) means the output field will use

convertion to a fixed-point decimal notation.

 setiosflag(ios::showpoint) means the output field will

show the decimal point for floating point number.

 setiosflag(ios::scientific) means the output field will use

exponential notation.

Note: Without the ios::fixed flag, a floating point number is

displayed with a default of 6 significiant digits. If the

integral part of the number requires more than 6 digits,

the display will be in exponential notation.

Programming Fundamentals with C++ 18

Some other format flags for use with setiosflags()

Flag Meaning

--

ios::showpos display a leading + sign when the number is positive.

ios::dec display in decimal format

ios::oct display in octal format

ios::left left-justify output

ios::right right-justify output

ios::hex display in hexadecimal format

To carry out the operations of these manipulators in a user

program, you must include the header file <iomanip.h>

Programming Fundamentals with C++ 19

Example 3.2.2
// a progran to illustrate output conversions
#include <iostream.h>
#include <iomanip.h>
int main()
{
 cout << "The decimal (base 10) value of 15 is " << 15 << endl
 << "The octal (base 8) value of 15 is "
 << setiosflags(ios::oct) << 15 << endl
 << "The hexadecimal (base 16) value of 15 is "
 << setiosflags(ios::hex) << 15 << endl;
 return 0;
 }

The output of the above program:

 The decimal (base 10) value of 15 is 15

 The octal (base 8) value of 15 is 17

 The hexadecimal (base 16) value of 15 is f

Programming Fundamentals with C++ 20

Stream Manipulators (cont’d)

 setw() The setw() stands for set width. This manipulator is
used to specify the minimum number of the character positions on
the output field a variable will consume.

 setprecision() The setprecision() is used to control the number of
digits of an output stream display of a floating point value.
Setprecision(2) means 2 digits of precision to the right of the decimal
point.

Example:

cout << “|” << setw(10)

 << setioflags(ios::fixed)<< setprecision(3) << 25.67<<”|”;

cause the printout

 | 25.670|

Programming Fundamentals with C++ 21

² Example 3.2.1

#include <iomanip.h>

int main()

{

 cout << setw(3) << 6 << endl

 << setw(3) << 18 << endl

 << setw(3) << 124 << endl

 << "---\n"

 << (6+18+124) << endl;

 return 0;

}

The output of the above program:

 6

 18

124

- - -

148

Programming Fundamentals with C++ 23

USING MATHEMATICAL LIBRARY FUNCTIONS

 C++ provides standard library functions that can be included in

a program.

 If your program uses mathematic function sqrt(), it should

have the preprocessor command #include<math.h> in the

beginning of the program.

Function Name Description Return Value

abs(a) Absolute value Same data type as argument

log(a) Natural logarithm double

sin(a) sine of a (a in radians) double

cos(a) cosine of a (a in radians) double

tan(a) tangent of a (a in radians) double

Programming Fundamentals with C++ 24

Function Name Description Return Value

log10(a) common log (base 10) of a double

pow(a1,a2) a1 raised to the a2 power double

exp(a) ea double

sqrt(a) square root of a double

Except abs(a), they all take an argument of type double and return

a value of type double

Programming Fundamentals with C++ 25

Example 3.3.1

#include <iostream.h>

#include <math.h>

int main()

{

 int height;

 double time;

 height = 800;

 time = sqrt(2 * height / 32.2); // gravitational constant g = 32.32

 cout << "It will take " << time << " seconds to fall "

 << height << " feet." << endl;

 return 0;

}

The output of the above program:

It will take 7.049074 seconds to fall 800 feet.

Programming Fundamentals with C++ 27

Implicit Data Type Conversion

 Note: Data type conversion can take place implicitly

across assignment operators, i.e., the value of the

expression on the right side is converted to the data

type of the variable to the left side.

 For example, if temp is an integer variable, the

assignment temp = 25.89 causes the integer value 25

to be stored in the integer variable temp.

Programming Fundamentals with C++ 28

Explicit Data Type Conversion: Casts

 We have already seen the conversion of an

operand’s data type within mixed-mode expressions

and across assignment operators.

 In addition to these implicit data type conversions,

C++ also provides for explicit user-specified type

conversion. This method is called casting.

 Casting or type casting, copies the value contained

in a variable of one data type into a variable of

another data type.

Programming Fundamentals with C++ 29

The C++ syntax for casting variables is

 variable = new_type(old_variable);

where the new_type portion is the keyword

representing the type to which you want to cast the

variable.

Example:

 int iNum = 100;

 float fNum;

 fNum = float(iNum);

Programming Fundamentals with C++ 30

Octal and Hexadecimal number
 To designate an octal integer constant, the number

must have a leading 0. Hexadecimal number are
denoted using a leading 0x.

 Example

#include <iostream.h>

int main()

{

 cout << "The decimal value of 025 is " << 025 << endl

 << "The decimal value of 0x37 is "<< 0x37 << endl;

 return 0;

}

The output of the above program:

 The decimal value of 025 is 21

 The decimal value of 0x37 is 55

Programming Fundamentals 31

Block Statement (Compound stat.)

 A block statement = many statements

enclosed by parentheses { }

 Any declaration declared within a block only

is valid within the block.

 No duplication is allowed in a block

 The extent of a program where a variable can

be used is formally referred to as the scope

of the variable.

Programming Fundamentals 32

 Example:

{ // start of outer block

 int a = 25;

 int b = 17;

 cout << “The value of a is “ << a << “ and b is “ << b << endl;

 { // start of inner block

 float a = 46.25;

 int c = 10;

 cout << “ a is now “ << a << “b is now “ << b

 << “ and c is “ << c << endl;

 }

 cout << “ a is now “ << a

 << “b is now “ << b << endl;

} // end of outer block

The output is

 The value of a is 25 and b is 17

 a is now 46.25 b is now 17 and c is 10

 a is now 25 b is now 17

Summary

 Two statements: assignment and block

 How to format a value when printing it out

 How to use some library functions

 How to change the type of an expression

Programming Fundamentals with C++ 34

