
Programming Fundamentals 1

Chapter 4

SELECTION STRUCTURES

Programming Fundamentals 2

Chapter 4

 Selection criteria

 The if-else statement

 Nested if statement

 The switch statement

 Conditional expressions

Programming Fundamentals 3

Overview

 The flow of control means the order in which a

program‟s statements are executed.

 Unless directed otherwise, the normal flow of control

for all programs is sequential.

 Selection, repetition and function invocation

structures permit the flow of control to be altered in

a defined way.

 In this chapter, you learn to use selection structures

in C++

Programming Fundamentals 4

SELECTION CRITERIA

 Selection criteria is the value of an

expression which is used to select an

appropriate flow of control

 In C++, there are two kinds of selection

structures:

 If-statement: uses only 2 values, i.e.

true/false or zero/non-zero

 Switch-statement: uses multiple discrete

values, i.e. integer or char or ….

Comparison Operators

 Comparison operators are used to compare two

operands for equality or to determine if one numeric

value is greater than another.

 A Boolean value of true or false is returned after two

operands are compared.

 C++ uses a nonzero value to represent a true and a

zero value to represent a false value

Programming Fundamentals 5

Programming Fundamentals 6

 Operator Description Examples

 == equal a ==„y‟

 != not equal m!= 5

 > greater than a*b > 7

 < less than b < 6

 <= less than or equal b <= a

 >= greater than or equal c >= 6

Programming Fundamentals 7

Logical operators

 Logical operators are used for creating more complex

conditions. Like comparison operators, a Boolean value of true

or false is returned after the logical operation is executed.

 Operator Description

 && AND

 || OR

 ! NOT

 Example:

 (age > 40) && (term < 10)

 (age > 40) || (term < 10)

 !(age > 40)

 (i==j) || (a < b) || complete

Programming Fundamentals 8

Operator precedence

 The relational and logical operators have a hierarchy
of execution similar to the arithmetic operators.

Level Operator Associativity

1. ! unary - ++ -- Right to left

2. * / % Left to right

3. + - Left to right

4. < <= > >= Left to right

5. == != Left to right

6. && Left to right

7. || Left to right

8. = += -= *= /= Right to left

Programming Fundamentals 9

 Example: Assume the following declarations:

 char key = „m‟;

 int i = 5, j = 7, k = 12;

 double x = 22.5;

Expression Equivalent Value Interpretation

--

i + 2 == k-1 (i + 2) == (k –1) 0 false

„a‟ +1 == „b‟ („a‟ +1) == „b‟ 1 true

25 >= x + 1.0 25 >= (x + 1.0) 1 true

key –1 > 20 (key –1) > 20 0 false

Programming Fundamentals 10

Order of evaluation

The following compound condition is evaluated as:

 (6*3 == 36/2) || (13<3*3 + 4) && !(6-2 < 5)

 (18 == 18) || (13 < 9 + 4) && !(4 < 5)

 1 || (13 < 13) && ! 1

 1 || 0 && 0

 1 || 0

 1

Programming Fundamentals 11

The bool Data Type

 As specified by the ANSI/ISO standard, C++ has a built-in
Boolean data type, bool, containing the two values true and
false.

 The actual values represented by the bool values, true and
false, are the integer values 1 and 0, respectively.

 Example 4.1.1

#include<iostream.h>

int main()

{

 bool t1, t2;

 t1 = true;

 t2 = true;

 cout << “The value of t1 is “<< t1

 << “\n and the value of t2 is “<< t2 << endl;

 return 0;

}

Programming Fundamentals 12

THE if-else STATEMENT

Previous

statement

Is condition

true ?

Statement 1 Statement 2

No

Yes

The if-else statement directs

the computer to select a

statement based on the

result of a comparison.

The syntax:

if (conditional expression)

 statement 1

else

 statement 2

Programming Fundamentals 13

START

Input

taxable

taxable <=

CUTOFF?

taxes = HIGHRATE*(taxable –

CUTOFF) + FIXEDAMT

taxes = LOWRATE*taxable

Output

taxes

END

Yes

No

Example 4.2.1

We construct a C++ program for

determining income taxes.

Assume that these taxes are

assessed at 2% of taxable

incomes less than or equal to

$20,000. For taxable income

greater than $20,000, taxes are

2.5% of the income that

exceeds $20,000 plus a fixed

amount of $400.

Programming Fundamentals 14

Example 4.2.1

#include <iostream.h>
#include <iomanip.h>
const float LOWRATE = 0.02; // lower tax rate
const float HIGHRATE = 0.025; // higher tax rate
const float CUTOFF = 20000.0; // cut off for low rate
const float FIXEDAMT = 400;
int main()
{
 float taxable, taxes;
 cout << "Please type in the taxable income: ";
 cin >> taxable;
 if (taxable <= CUTOFF)
 taxes = LOWRATE * taxable;
 else
 taxes = HIGHRATE * (taxable - CUTOFF) + FIXEDAMT;

Programming Fundamentals 15

// set output format

 cout << setiosflags(ios::fixed)

 << setiosflags(ios::showpoint)

 << setprecision(2);

 cout << "Taxes are $ " << taxes << endl;

 return 0;

}

The results of the above program:

 Please type in the taxable income: 10000

 Taxes are $ 200

and

 Please type in the taxable income: 30000

 Taxes are $ 650

Programming Fundamentals 16

One-way Selection

 A useful modification of the

if-else statement involves

omitting the else part of the

statement. In this case, the if

statement takes a shortened

format:

 if (conditional expression)

 statement;

Previous

statement

Is condition

true ?

Statement(s)

No

Yes

Programming Fundamentals 17

Example 4.2.2

 The following program displays an error message for the grades

that is less than 0 or more than 100.

#include <iostream.h>

int main()

{

 int grade;

 cout << "\nPlease enter a grade: ";

 cin >> grade;

 if(grade < 0 || grade > 100)

 cout << " The grade is not valid\n";

 return 0;

}

Exercise

Programming Fundamentals 18

Programming Fundamentals 19

NESTED if STATEMENT

 The inclusion of one or more if statement within an existing

if statement is called a nested if statement.

 The if-else Chain

 When an if statement is included in the else part of an

existing if statement, we have an if-else chain.

 if (Expression 1)

 Statement 1

 else if (Expression 2)

 Statement 2

 else

 Statement 3

Programming Fundamentals 20

Example 4.3.1

// This program can solve quadratic equation

#include <iostream.h>

#include <math.h>

#include <iomanip.h>

int main()

{

 double a, b, c, del, x1, x2;

 cout << “Enter the coefficients of the equation: “<< endl;

 cin >> a >> b >> c;

 del = b*b – 4.0*a*c;

 if (del == 0.0)

 {

 x1 = x2 = -b/(2*a);

 cout << "x1 = “ << x1 << setw(20) << “x2 = “ << x2 << endl;

 }

Programming Fundamentals 21

 else if (del > 0.0)

 {

 x1 = (-b + sqrt(del))/(2*a);

 x2 = (-b – sqrt(del))/(2*a);

 cout << "x1 = “ << x1 << setw(20) << “x2 = “ << x2 << endl;

 }

 else

 cout << "There is no solution\n";

 return 0;

}

The output of the above program:

Enter the coefficients of the equation:

1 5 6

x1 = -2.0 x2 = -3.0

NESTED if STATEMENT (cont‟d)

 The dangling else

An else part which can ambiguously attach to any in 2 if

statements is called the dangling else

 if (exp1) if (exp2) statement1 else statement2

 To solve the problem of dangling else, you can use:

 C++ convention: else part is attached to the nearby if

statement

 Compound statement:

if (exp1) { if (exp2) statement1 } else statement2

Or

if (exp1) {if (exp2) statement1 else statement2 }

Programming Fundamentals 22

Programming Fundamentals 23

Exercise

Programming Fundamentals 24

THE switch STATEMENT
 The switch statement controls program flow by executing a set

of statements depending on the value of an expression.

 The syntax for the switch statement:

 switch(expression){

 case label1:

 statement(s) 1;

 break;

 case label2;

 statement(s) 2;

 break;

 default:

 statement(s) 3;

}

Note: The value of

expression must be an

integer data type, which

includes the char, int,

long int, and short data

types.

Programming Fundamentals 25

Execution of the switch statement

 The expression in the switch statement must evaluate to
an integer result.

 The switch expression‟s value is compared to each of
these case values in the order in which these values are
listed until a match is found. When a match occurs,
execution begins with the statement following the match.

 If the value of the expression does not match any of the
case values, no statement is executed unless the
keyword default is encountered. If the value of the
expression does not match any of the case values,
program execution begins with the statement following
the word default.

Programming Fundamentals 26

break statements in the switch statement

 The break statement is used to identify the end of a

particular case and causes an immediate exit from

the switch statement.

 If the break statements are omitted, all cases

following the matching case value, including the

default case, are executed.

Programming Fundamentals 27

Example 4.4.1
#include <iostream.h>
int main()
{
 int iCity;

 cout << "Enter a number to find the state where a city is located. "<<

endl;
 cout << “1. Boston” << endl;
 cout << "2. Chicago" << endl;
 cout << "3. Los Angeles” << endl;
 cout << "4. Miami” << endl;
 cout << "5. Providence” << endl;
 cin >> iCity;
 switch (iCity)
 {
 case 1:
 cout << "Boston is in Massachusetts " << endl;
 break;
 case 2:
 cout << "Chicago is in Illinois " << endl;
 break;

Programming Fundamentals 28

 case 3:

 cout << "Los Angeles is in California " << endl;

 break;

 case 4:

 cout << "Miami is in Florida " << endl;

 break;

 case 5:

 cout << "Providence is in Rhode Island " << endl;

 break;

 default:

 cout << “You didn‟t select one of the five cities” << endl;

 } // end of switch

 return 0;

}

Programming Fundamentals 29

The output of the above program:

Enter a number to find the state where a city is located.

1. Boston

2. Chicago

3. Los Angeles

4. Miami

5. Providence

3

Los Angeles is in California

Programming Fundamentals 30

When writing a switch statement, you can use multiple case
values to refer to the same set of statements; the default label
is optional.

switch(number)

{

 case 1:

 cout << “Have a Good Morning\n”;

 break;

 case 2:

 cout << “Have a Happy Day\n”;

 break;

 case 3:

 case 4:

 case 5:

 cout << “Have a Nice Evening\n”;

 }

Programming Fundamentals 31

CONDITIONAL EXPRESSIONS

 A conditional expression uses the conditional
operator, ?:, and provides an alternative way of
expressing a simple if-else statement.

 The syntax of a conditional expression:

 expression1 ? expression2 : expression3

 If the value of expression1 is nonzero (true),
expresson2 is evaluated; otherwise, expression3 is
evaluated. The value for the complete conditional
expression is the value of either expression2 or
expression3 depending on which expression was
evaluated.

Programming Fundamentals 32

 Example: The if statement:

 if (hours > 40)

 rate = 0.45;

 else

 rate = 0.02;

can be replaced with the following one-line statement:

 rate = (hours > 40) ? 0.45 : 0.02;

Programming Fundamentals 33

THE enum SPECIFIER

 The enum specifier creates an enumerated data type,
which is simply a user-defined list of values that is
given its own data type name.

 Such data types are identified by the reserved word
enum followed by an optional user-selected name for
the data type and a listing of acceptable values for
the data type.

 Example:

 enum day { mon, tue, wed, thr, fri, sat, sun}

 enum color {red, green, yellow};

Programming Fundamentals 34

 Any variable declared to be of type color can take

only a value of red or green or yellow. Any variable

declared to be of type day can take only a value

among seven given values.

 The statement

 enum day a, b,c;

 declares the variables a, b, and c to be of type day.

Programming Fundamentals 35

 Internally, the acceptable values of each enumerated

data type are ordered and assigned sequential

integer values beginning with 0.

 Example: For the values of the type color, the

correspondences created by C++ compiler are that

red is equivalent to 0, green is equivalent to 1, and

yellow is equivalent to 2.

 The equivalent numbers are required when inputting

values or displaying values.

Programming Fundamentals 36

Example 4.6.1

#include <iostream.h>

int main(){

 enum color{red, green, yellow};

 enum color crayon = red;

 cout << “\nThe color is “ << crayon << endl;

 cout << “Enter a value: “; cin >> crayon;

 if (crayon == red)

 cout << “The crayon is red.” << endl;

 else if (crayon == green)

 cout << “The crayon is green.” << endl;

 else if (crayon== yellow)

 cout << “The crayon is yellow.” << endl;

 else

 cout << “The color is not defined. \n” <<
endl;

 return 0;

}

The output of the above

program:

 The color is 0

 Enter a value: 2

 The crayon is yellow.

Exercise

Programming Fundamentals 37

Summary

 Selection criteria is used to select a flow of control

 In C++, there are

 if statetement (2 choices)

 if-else statement (2 choices)

 switch statement (many choices)

 Some other concepts:

 Conditional expression

 enum type

Programming Fundamentals 38

