Chapter 5

REPETITION STRUCTURES

Programming Fundamentals

Outline

» Overview

» while loops

» forloops

» do-while Loops

» Interactive while loops

» Nested loops

» Break and Continue statements

Overview

» C++ provides three different forms of repetition structures:

7. while structure
2. forstructure
3. do-whilestructure

» Each of these structures requires a condition that must be
evaluated.

» The condition can be tested at either (1) the beginning or (2)
the end of the repeating section of code.

» If the test is at the beginning of the loop, the type of loop is a
pre-test loop.

» If the test is at the end of the loop, the type of loopis a post-
test loop.

Programming Fundamentals

Fixed countloop and variable condition loop

» In addition to where the conditionis tested, repeating
sections of code are also classified.

v In a fixed count loop, the condition is used to keep track of
how many repetitions have occurred. In this kind of loops, a
fixed number of repetitions are performed, at which point the
repeating section of code is exited.

» In many situations, the exact number of repetitions are not
known in advance. In such cases, a variable condition loop is
used.

v In a variable condition loop, the tested condition does not
depend on a count being achieved, but rather on a variable
that can change interactively with each pass through the loop.
When a specified value is encountered, regardless of how

many iterations have occurred, repetitions stop.

Programming Fundamentals

whileloops

The while statement is used
for repeating a statement or
series of statements as long
as a given conditional
expression is evaluated to
true.

The syntax for the while
statement:

while(condition expression)

statement

Enter the while statement

false

test the
condition ?

Execute the
statement (s)

l Exit the while
statement

Programming Fundamentals

Example 5.2.1

/] This program prints out the numbers from 1 to 10
#include <iostream.h>
int main()
{
int count;
count=1; // initialize count
while (count <= 10){

cout << count << :
count++; // increment count

}

return O:

}

The output of the above program:

123456738910

Programming Fundamentals

In the above program, the loop incurs a counter-controlled
repetition. Counter-controlled repetition requires:

1) the name of a control variable (the variable count)

2) the initial value of the control variable (countis
initializedto 1 in this case

3) the condition that tests for the final value of the control
variable (i.e., whether looping should continue) ;

4) the /increment(or decrement by which the control
variable is modified each time through the loop.

Programming Fundamentals

for LOOPS

» The forstatement is used for repeating a statement or series

of statements as long as a given conditional expression
evaluates to true.

» One of the main differences between while statement and for
statement is that in addition to a condition, you can also
include code in the forstatement

- to initialize a counter variable and
- changes its value with each iteration

» The syntax of the forstatement:

for (initialization expression,; condition; update expression)
statement

Programming Fundamentals

Enter the for statement

!

Initialization expression

false

test the
condition ?

\ 4
Execute the
statement (s)
l Exit the for
statement

Execute the update
statement

y

Programming Fundamentals

Example 5.4.1
// This program prints the even number from 2 to

#include <iostream.h>
int main()
{
Int count;
for (count = 2;: count <= 20; count = count + 2)

cout << count << ,
return O:

}

The output of the above program:

2468 1012 14 16 18 20

Programming Fundamentals

10

do-while LOOPS Entr the do-while

statement

}

Execute the
statement (s)

false

test the
condition ?

v do..whilestatement is used
to create post-testloops.
Exit the do-while

» The syntax:
statement

do{
statements

while (conditional expression);

W
Programming Fundamentals 11

Example

// This program prints the odd number from 1 to 19
#include <iostream.h>
;nt main()
int count = 1;
do {
cout << count <<
count += 2;
} while (count < 20);
return O;

}

The output of the above program:

1357911131517 19

Exercise

13

INTERACTIVE LOOP

» Combininginteractive data entry with a loop statement
produces very adaptable and powerful programs.

Example5.3.1
#include <iostream.h>
int main(){
int total, // sum of grades
gradeCounter, // number of grades entered
grade, // one grade
average, /| average of grades
total = 0;
gradeCounter = 1; /| prepare to loop
while (gradeCounter <=10) { // loop 10 times
cout << "Enter grade: "; /| prompt for input
cin >> grade; // input grade
total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter

Programming Fundamentals 14

// termination phase
average = total / 10; /| integer division
cout << "Class average is " << average << endl;
return O;

}

The output of the above program:
Enter grade: 98
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Enter grade:
Class average is 81

/6
/1
87
83
90
57
79
82
94

Programming Fundamentals

15

Example of interactive do while
loop

do {
cout<< “\nEnter an identification number:”;
cin >> idNum;

} while (idNum < 1000 | | idNum> 1999);

» Here, a request for a new id—-number is
repeated until a valid number is entered.

Programming Fundamentals 16

» A refined version of the above program:

do {
cout<< “\nEnter an identification number:”;
cin >> idNum;
if idNum < 1000 || idNum > 1999)

{
cout << “An invalid number was just
entered\n’;

cout << “Please reenter an ID number
/n’;
}

else break;
while (true);

Programming Fundamentals 17

NESTED LOOPS

» In many situations, it is convenientto use a loop contained
within another loop. Such loops are called nested /oops.

» Example 5.4.1
#include <iostream.h>
int main()
{
const int MAXI = 5;
const int MAX] = 4;
inti, j;
fori=1;i <= MAXI;i++) // start of outer loop
{
cout << "\niis now" << i << endl;
forG=1;j <= MAXJ; j++) // start of innerloop
cout <<" j="<<j; // endofinnerloop
} // end of outer loop

ALY
\\\\\
Y \

Programming Fundamentals 18

cout << endl;
return O:

}

The output of the above program:

| is now 1
j=1jJ=2j=3j=4
| is now 2
j=1j=2 j=3 j=4
i is now 3
j=1j=2 j=3 j=4
| IS how 4
j=1j=2 j=3 j=4
i is now 5
j=1j=2 j=3 j=4

Programming Fundamentals 19

Sentinels

» In programming, data values used to indicate either the
start or end of a data series are called sentinels.

» The sentinels must be selected so as not to conflict with
legitimate data values.

Example 5.3.2
#include <iostream.h>
constint HIGHGRADE = 100; // sentinel value
int main()
{
float grade, total;
grade = 0O;
total = O;
cout << "\nTo stop entering grades, type in any number”
<< " greater than 100.\n\n";

Programming Fundamentals

20

cout << "Enter a grade: ";
cin >> grade;
while (grade <= HIGHGRADE)
{
total = total + grade;
cout << "Enter a grade: ";
cin >> grade;
}
cout << "\nThe total of the grades is " << total << endl;
return O;

}

» In tGe above program, the sentinel is the value 100 for the entered
grade.

Programming Fundamentals

21

break statement

» The break statement causes an exit from the innermost
enclosingloop.

Example:
while(count <= 10)
{
cout << “Enter a number:“; cin >> num;

if (num > 76){
cout << “you lose!\n”;
break;

}

else
cout << “Keep on trucking!\n’;
count++;

}

/ /break jumps to here

Programming Fundamentals

22

continue Statements

» The continuestatement halts a looping statement and
restarts the loop with a new iteration.

while(count < 30)

{
cout << “Enter a grade: *;
cin >> grade;
if (grade < 0 || grade > 100)

continue;

total = total + grade;
count++;

}

» In the above program, invalid grades are simply ignored and
only valid grades are added to the total.

Programming Fundamentals

23

The null statement

» All statements must be terminated by a semicolon. A
semicolonwith nothing preceding it is also a valid statement,
called the nul/l/ statement. Thus, the statement

is a null statement.

» Example:
if (@ > 0)
b=7;
else ;

» The null statement is a do-nothing statement.

Programming Fundamentals

24

Exercise

