
REPETITION STRUCTURES

Programming Fundamentals 1

 Overview

 while loops

 for loops

 do-while Loops

 Interactive while loops

 Nested loops

 Break and Continue statements

Programming Fundamentals 2

 C++ provides three different forms of repetition structures:

1. while structure

2. for structure

3. do-while structure

 Each of these structures requires a condition that must be
evaluated.

 The condition can be tested at either (1) the beginning or (2)
the end of the repeating section of code.

 If the test is at the beginning of the loop, the type of loop is a
pre-test loop.

 If the test is at the end of the loop, the type of loop is a post-
test loop.

Programming Fundamentals 3

 In addition to where the condition is tested, repeating
sections of code are also classified.

 In a fixed count loop, the condition is used to keep track of
how many repetitions have occurred. In this kind of loops, a
fixed number of repetitions are performed, at which point the
repeating section of code is exited.

 In many situations, the exact number of repetitions are not
known in advance. In such cases, a variable condition loop is
used.

 In a variable condition loop, the tested condition does not
depend on a count being achieved, but rather on a variable
that can change interactively with each pass through the loop.
When a specified value is encountered, regardless of how
many iterations have occurred, repetitions stop.

Programming Fundamentals 4

test the

condition ?

Execute the

statement (s)

false

true

Enter the while statement

Exit the while

statement

Programming Fundamentals 5

The while statement is used
for repeating a statement or
series of statements as long
as a given conditional
expression is evaluated to
true.

The syntax for the while
statement:

while(condition expression)

 statement

Example 5.2.1

// This program prints out the numbers from 1 to 10

#include <iostream.h>

int main()

{

 int count;

 count = 1; // initialize count

 while (count <= 10){

 cout << count << " ";

 count++; // increment count

 }

 return 0;

}

The output of the above program:

 1 2 3 4 5 6 7 8 9 10

Programming Fundamentals 6

In the above program, the loop incurs a counter-controlled
repetition. Counter-controlled repetition requires:

 1) the name of a control variable (the variable count)

 2) the initial value of the control variable (count is
initialized to 1 in this case

 3) the condition that tests for the final value of the control

 variable (i.e., whether looping should continue) ;

 4) the increment (or decrement) by which the control
variable is modified each time through the loop.

Programming Fundamentals 7

 The for statement is used for repeating a statement or series
of statements as long as a given conditional expression
evaluates to true.

 One of the main differences between while statement and for
statement is that in addition to a condition, you can also
include code in the for statement

 - to initialize a counter variable and

 - changes its value with each iteration

 The syntax of the for statement:

 for (initialization expression; condition; update expression)
 statement

Programming Fundamentals 8

test the

condition ?

Execute the

statement (s)

false

true

Initialization expression

Exit the for

statement

Enter the for statement

Execute the update

statement

Programming Fundamentals 9

Example 5.4.1
// This program prints the even number from 2 to

20
#include <iostream.h>
int main()
{
 int count;
 for (count = 2; count <= 20; count = count + 2)
 cout << count << " ";
 return 0;
}

The output of the above program:

 2 4 6 8 10 12 14 16 18 20

Programming Fundamentals 10

 do..while statement is used

to create post-test loops.

 The syntax:

 do {

 statements

 } while (conditional expression);

Programming Fundamentals 11

test the

condition ?

Execute the

statement (s)

false

true

Enter the do-while

statement

Exit the do-while

statement

// This program prints the odd number from 1 to 19
#include <iostream.h>
int main()
{
 int count = 1;
 do {
 cout << count << " ";
 count += 2;
 } while (count < 20);
 return 0;
}

The output of the above program:

 1 3 5 7 9 11 13 15 17 19

Programming Fundamentals 13

 Combining interactive data entry with a loop statement
produces very adaptable and powerful programs.

Example 5.3.1
#include <iostream.h>
int main(){
 int total, // sum of grades
 gradeCounter, // number of grades entered
 grade, // one grade
 average; // average of grades
 total = 0;
 gradeCounter = 1; // prepare to loop
 while (gradeCounter <= 10) { // loop 10 times
 cout << "Enter grade: "; // prompt for input
 cin >> grade; // input grade
 total = total + grade; // add grade to total
 gradeCounter = gradeCounter + 1; // increment counter
 }

Programming Fundamentals 14

 // termination phase

 average = total / 10; // integer division
 cout << "Class average is " << average << endl;
 return 0;
}

Programming Fundamentals 15

The output of the above program:

 Enter grade: 98

Enter grade: 76

Enter grade: 71

Enter grade: 87

Enter grade: 83

Enter grade: 90

Enter grade: 57

Enter grade: 79

Enter grade: 82

Enter grade: 94

Class average is 81

do {

 cout<< “\nEnter an identification number:”;

 cin >> idNum;

} while (idNum < 1000 | | idNum> 1999);

 Here, a request for a new id-number is
repeated until a valid number is entered.

Programming Fundamentals 16

 A refined version of the above program:

do {
 cout<< “\nEnter an identification number:”;
 cin >> idNum;
 if (idNum < 1000 || idNum > 1999)
 {
 cout << “An invalid number was just

entered\n”;
 cout << “Please reenter an ID number

/n”;
 }
 else break;
} while (true);

Programming Fundamentals 17

 In many situations, it is convenient to use a loop contained
within another loop. Such loops are called nested loops.

 Example 5.4.1
#include <iostream.h>
int main()
{
 const int MAXI = 5;
 const int MAXJ = 4;
 int i, j;
 for(i = 1; i <= MAXI; i++) // start of outer loop
 {
 cout << "\ni is now " << i << endl;
 for(j = 1; j <= MAXJ; j++) // start of inner loop
 cout << " j = " << j; // end of inner loop
 } // end of outer loop

Programming Fundamentals 18

 cout << endl;

 return 0;

}

The output of the above program:

i is now 1

 j = 1 j = 2 j = 3 j = 4

i is now 2

 j = 1 j = 2 j = 3 j = 4

i is now 3

 j = 1 j = 2 j = 3 j = 4

i is now 4

 j = 1 j = 2 j = 3 j = 4

i is now 5

 j = 1 j = 2 j = 3 j = 4

Programming Fundamentals 19

 In programming, data values used to indicate either the
start or end of a data series are called sentinels.

 The sentinels must be selected so as not to conflict with
legitimate data values.

Example 5.3.2
#include <iostream.h>
const int HIGHGRADE = 100; // sentinel value
int main()
{
 float grade, total;
 grade = 0;
 total = 0;
 cout << "\nTo stop entering grades, type in any number"
 << " greater than 100.\n\n";

Programming Fundamentals 20

cout << "Enter a grade: ";
 cin >> grade;
 while (grade <= HIGHGRADE)
 {
 total = total + grade;
 cout << "Enter a grade: ";
 cin >> grade;
 }
 cout << "\nThe total of the grades is " << total << endl;
 return 0;
}

 In the above program, the sentinel is the value 100 for the entered

grade.

Programming Fundamentals 21

 The break statement causes an exit from the innermost
enclosing loop.

Example:
while(count <= 10)
{
 cout << “Enter a number: “; cin >> num;
 if (num > 76){
 cout << “you lose!\n”;
 break;
 }
 else
 cout << “Keep on trucking!\n”;
 count++;
}
//break jumps to here

Programming Fundamentals 22

 The continue statement halts a looping statement and
restarts the loop with a new iteration.

while(count < 30)

{

 cout << “Enter a grade: “;

 cin >> grade;

 if (grade < 0 || grade > 100)

 continue;

 total = total + grade;

 count++;

}

 In the above program, invalid grades are simply ignored and
only valid grades are added to the total.

Programming Fundamentals 23

 All statements must be terminated by a semicolon. A
semicolon with nothing preceding it is also a valid statement,
called the null statement. Thus, the statement

 ;

 is a null statement.

 Example:

 if (a > 0)

 b = 7;

 else ;

 The null statement is a do-nothing statement.

Programming Fundamentals 24

