
STRUCTURED

PROGRAMMING

OUTLINE

 Structured Programming

 Top-down stepwise refinement

 Example

 Summary

STRUCTURED PROGRAMMING

 During the 1960s, it became clear that the
indiscriminate use of transfers of control through goto
statements was the root of much difficulty experienced
by programmer groups.

 The notion of so-called structured programming
became almost synonymous with “goto elimination.”

 Bohm and Jacopini’s work demonstrated that all
programs could be written in terms of only three
control structures:

 - sequence structure

 - selection structure

 - repetition structure
3

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

statement 1

statement 2

4

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

A sequence

structure

 The sequence structure is built into C++.

 Unless directed otherwise, the computer

executes C++ statements one after the other in

the order in which they are written.

 C++ provides three types of selection structures:

 - if statement (single-selection structure)

 - if-else statement (double-selection structure)

 - switch statement. (multiple-selection structure)

 C++ provides three types of repetition structures:

 - while statement

 - do-while statement

 - for statement

 So C++ has only seven control structures: sequence,

three types of selection and three types of repetition.

5

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

BUILDING PROGRAMS IN GOOD STYLE

 Each C++ program is formed by combining as many of each type

of control structures as appropriate for the algorithm the program

implements.

 We will see that each control structure has only one entry point

and one exit point. These single-entry/single-exit control

structures make it easy to build programs.

 One way to build program is to connect the exit point of one

control structure to the entry point of the next. This way is called

control-structure-stacking.

 Another way is to place one control structure inside another

control structure. This way is called control-structure-nesting.
6

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

INDENTATION

 Consistent applying reasonable indentation

conventions throughout your programs greatly

improves program readability. We suggest a fixed-size

tab of about ¼ inch or three blanks per indent.

For example, we indent both body statements of an

if..else structure as in the following statement:

 if (grade >= 60)

 cout << “Passed”;

 else

 cout << “Failed”;

7

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

TOP-DOWN STEPWISE REFINEMENT

 Using good control structures to build programs is one

of the main principles of structured programming.

Another principle of structured programming is top-

down, stepwise refinement.

 Example: Consider the following problem:

 Develop a class-averaging program that will process

an arbitrary number of grades each time the program

is run.

We begin with a pseudocode representation of the top:

 Determine the class average for the exam

8

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

FIRST REFINEMENT

 Now we begin the refinement process. We divide the

top into a series of smaller tasks and list these in the

order in which they need to be performed. This results

in the following first refinement.

 First Refinement:

 Initialize variables

 Input, sum and count the exam grades

 Calculate and print the class average.

 Here only the sequence structure has been used.

 9

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

SECOND REFINEMENT

 To proceed to the next level of refinement, we need some
variables and a repetition structure.

 We need a running total of the numbers, a count of how many
numbers have been processed, a variable to receive each grade as it
is input and a variable to hold the average.

 We need a loop to calculate the total of the grades before deriving
the average.

 Because we do not know in advance how many grades are to be
processed, we will use sentinel-controlled repetition.

 The program will test for the sentinel value after each grade is
input and terminate the loop when the sentinel value is entered by
the user.

10

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

 Now we come to the pseudo-code of the second

refinement.

 Second Refinement:

 Input the first grade(possibly the sentinel)

 While the user has not as yet entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Input the next grade(possibly the sentinel)

 Calculate and print the class average

11

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

THIRD REFINEMENT

 The pseudocode statement

 Calculate and print the class average

 can be refined as follows:

 If the counter is not equal to zero

 set the average to the total divided by the counter

 print the average

 else

 Print “No grades were entered”.

 Notice that we are being careful here to test for the

possibility of division by zero.

12

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

 Now we come to the pseudocode of the third refinement

 Third Refinement:

 Initialize total to zero

 Initialize counter to zero

 Input the first grade

 While the user has not as yet entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Input the next grade

 If the counter is not equal to zero

 set the average to the total divided by the counter

 print the average

 else

 Print “No grades were entered”.

13

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

THE FINAL C++ PROGRAM

 Final step: After coding, we come to the following C++ program.

#include <iostream.h>

#include <iomanip.h>

int main()

{

 int total, gradeCounter, grade;

 double average; // number with decimal point for average

 // initialization phase

 total = 0;

 gradeCounter = 0;

 // processing phase

 cout << "Enter grade, -1 to end: ";

 cin >> grade;

 14

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

while (grade != -1) {

 total = total + grade;

 gradeCounter = gradeCounter + 1;

 cout << "Enter grade, -1 to end: ";

 cin >> grade;

 }

 // termination phase

 if (gradeCounter != 0) {

 average = double (total) / gradeCounter;

 cout << "Class average is " << setprecision(2)

 << setiosflags(ios::fixed | ios::showpoint)

 << average << endl;

 }

 else

 cout << "No grades were entered" << endl;

 return 0;

 }

 15

P
ro

g
ra

m
m

in
g
 F

u
n

d
a

m
e
n

ta
ls

EXERCISE

SUMMARY

 Structured programming helps to reduce

programming errors and to maintain the

program easier

 Structured programming requires programmers

use control structures that have only one entry

point and only one exit point.

 Another principle of structured programming is

top-down, stepwise refinement

