. STRUCTURED
® PROGRAMMING

OUTLINE

Structured Programming
Top-down stepwise refinement
Example

Summary

STRUCTURED PROGRAMMING

During the 1960s, it became clear that the
indiscriminate use of transfers of control through goto
statements was the root of much difficulty experienced
by programmer groups.

The notion of so-called structured programming
became almost synonymous with “goto elimination.”

Bohm and Jacopini’s work demonstrated that all
programs could be written in terms of only three
control structures:

sequence structure

S[ejuswepuUN | SUTWWRISOI]

selection structure
repetition structure

y

statement 1
i A sequence

structure

statement 2

v

The sequence structure is built into C++.

Unless directed otherwise, the computer
executes C++ statements one after the other in
the order in which they are written.

s[ejusmrepuUN | SUTWWRISOI]

C++ provides three types of selection structures:

- if statement (single-selection structure)

- if-else statement (double-selection structure)

- switch statement. (multiple-selection structure)

C++ provides three types of repetition structures:
- while statement
- do-while statement
- for statement

So C++ has only seven control structures: sequence,
three types of selection and three types of repetition.

s[ejusmrepuUN | SUTWWRISOI]

BUILDING PROGRAMS IN GOOD STYLE

Each C++ program is formed by combining as many of each type
of control structures as appropriate for the algorithm the program
1mplements.

We will see that each control structure has only one entry point
and one exit point. These single-entry/single-exit control
structures make it easy to build programs.

One way to build program is to connect the exit point of one
control structure to the entry point of the next. This way 1s called
control-structure-stacking.

S[ejuswepuUN | SUTWWRISOI]

Another way 1s to place one control structure inside another
control structure. This way is called control-structure-nesting.

INDENTATION

Consistent applying reasonable indentation
conventions throughout your programs greatly
1mproves program readability. We suggest a fixed-size
tab of about % inch or three blanks per indent.

For example, we indent both body statements of an
if..else structure as in the following statement:

1f (grade >= 60)

cout << “Passed’;
else

cout << “Failed”;

S[ejuswepuUN | SUTWWRISOI]

TOP-DOWN STEPWISE REFINEMENT

Using good control structures to build programs is one
of the main principles of structured programming.
Another principle of structured programming is top-
down, stepwise refinement.

Example: Consider the following problem:

Develop a class-averaging program that will process
an arbitrary number of grades each time the program
1S run.

We begin with a pseudocode representation of the top:
Determine the class average for the exam

S[ejuswepuUN | SUTWWRISOI]

FIRST REFINEMENT

Now we begin the refinement process. We divide the
top into a series of smaller tasks and list these 1n the
order in which they need to be performed. This results
in the following first refinement.

First Refinement:

Initialize variables
Input, sum and count the exam grades
Calculate and print the class average.

Here only the sequence structure has been used.

S[ejuswepuUN | SUTWWRISOI]

SECOND REFINEMENT

To proceed to the next level of refinement, we need some
variables and a repetition structure.

We need a running total of the numbers, a count of how many
numbers have been processed, a variable to receive each grade as it
1s iInput and a variable to hold the average.

d

%mwmﬁox

We need a loop to calculate the total of the grades before derivin
the average.

Because we do not know 1in advance how many grades are to be
processed, we will use sentinel-controlled repetition.

sTejuaWIBPUN,]

The program will test for the sentinel value after each grade 1s
input and terminate the loop when the sentinel value is entered by
the user.

Now we come to the pseudo-code of the second
refinement.

Second Refinement;:

Input the first grade(possibly the sentinel)
While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade(possibly the sentinel)
Calculate and print the class average

s[ejusmrepuUN | SUTWWRISOI]

THIRD REFINEMENT

The pseudocode statement
Calculate and print the class average
can be refined as follows:
If the counter is not equal to zero
set the average to the total divided by the counter
print the average
else

S[ejuswepuUN | SUTWWRISOI]

Print “No grades were entered”.

Notice that we are being careful here to test for the
possibility of division by zero.

Now we come to the pseudocode of the third refinement

Third Refinement:

Initialize total to zero

Initialize counter to zero

Input the first grade

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade

If the counter is not equal to zero
set the average to the total divided by the counter
print the average

else

Print “No grades were entered”.

S[ejuswepuUN | SUTWWRISOI]

THE FINAL C++ PROGRAM

Final step: After coding, we come to the following C++ program.

#include <iostream.h>
#include <iomanip.h>
int main()
{
int total, gradeCounter, grade;
double average; // number with decimal point for average
/[1initialization phase
total = 0;
gradeCounter = 0;

S[ejuswepuUN | SUTWWRISOI]

// processing phase
cout << "Enter grade, -1 to end: ";
cin >> grade;

while (grade !=-1) {
total = total + grade;
gradeCounter = gradeCounter + 1;
cout << "Enter grade, -1 to end: ";
cin >> grade;
h
/[termination phase
if (gradeCounter !=0) {
average = double (total) / gradeCounter;
cout << "Class average 1s " << setprecision(2)
<< gsetiosflags(10s::fixed | 10s::showpoint)
<< average << endl,;
h
else
cout << "No grades were entered" << endl,;
return O;

b

S[ejuswepuUN | SUTWWRISOI]

EXERCISE

SUMMARY

Structured programming helps to reduce
programming errors and to maintain the
program easler

Structured programming requires programmers
use control structures that have only one entry
point and only one exit point.

Another principle of structured programming is
top-down, stepwise refinement

