
Programming Fundamentals 1

Chapter 5c

STRUCTURED TYPE

Programming Fundamentals 2

Chapter 5

 Array type

 String type

 Structure type

Programming Fundamentals 3

ARRAYS

4 4 8

[0][0] [1][1] [2][2] [3][3] [4][4] [5][5]

 An array is an advanced data type that contains a set

of data represented by a single variable name.

 An element is an individual piece of data contained in

an array.

 The following figure shows an integer array called c.

 c[0] = 4; c[1] = 4, c[2] = 8, etc.

Programming Fundamentals 4

Array Declaration

 The syntax for declaring an array is

 type name[elements];

 Array names follow the same naming conventions as
variable names and other identifiers.

 All elements of a C/C++ array must have the same
type

 Example:

 int arMyArray[3];

 char arStudentGrade[5];

 The first declaration tells the compiler to reserve 3
elements for integer array arMyArray.

Programming Fundamentals 5

Subscript

 The numbering of elements within an array starts with an index
number of 0.

 An index number is an element’s numeric position within an
array. It is also called a subscript.

 Example:

StudentGrade[0] refers to the 1st element in the StudentGrade

array.
StudentGrade[1] refers to the 2nd element in the StudentGrade

array.
StudentGrade[2] refers to the 3rd element in the StudentGrade

array.
StudentGrade[3] refers to the 4th element in the StudentGrade

array.
StudentGrade[4] refers to the 5fth element in the StudentGrade

array.

Programming Fundamentals 6

A example of array

Example 5.8.1

#include <iostream.h>

int main(){

 char arStudentGrade[5]= {‘A’, ‘B’, ‘C’, ‘D’, ‘F’};

 for (int i = 0; i <5; i++)

 cout << arStudentGrade[i] << endl;

 return 0;

}

The output is:

 A

 B

 C

 D

 F

Programming Fundamentals 7

Example 5.8.2

// Compute the sum of the elements of the array

#include <iostream>

int main()

{

 const int arraySize = 12;

 int a[arraySize] = { 1, 3, 5, 4, 7, 2, 99, 16, 45, 67, 89, 45 };

 int total = 0;

 for (int i = 0; i < arraySize; i++)

 total += a[i];

 cout << "Total of array element values is " << total << endl;

 return 0 ;

}

The output of the above program is as follows :

Total of array element values is 383

Programming Fundamentals 8

Multi-Dimensional Arrays

 C++ allows arrays of any type, including arrays of arrays. With

two bracket pairs we obtain a two-dimensional array.

 The idea can be iterated to obtain arrays of higher dimension.

With each bracket pair we add another dimension.

 Some examples of array declarations

 int a[1000]; // a one-dimensional array

 int b[3][5]; // a two-dimensional array

 int c[7][9][2]; // a three-dimensional array

 In these above examples, b has 3  5 elements, and c has

 7  9  2 elements.

Programming Fundamentals 9

A two-dimensional array

 Starting at the base address of the array, all the

array elements are stored contiguously in memory.

 For the array b, we can think of the array elements

arranged as follows:

 col 1 col2 col3 col4 col5

row 1 b[0][0] b[0][1] b[0][2] b[0][3] b[0][4]

row 2 b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

row 3 b[2][0] b[2][1] b[2][2] b[2][3] b[2][4]

Programming Fundamentals 10

#include<iostream.h>

#include<iomanip.h>

const int N = 3;

void main()

{

 int i, j;

 int a[N][N];

 bool symmetr = true;

 for (i=0; i< N; ++i)

 for (j=0; j<N; ++j)

 cin >> a[i][j];

 for(i= 0; i<N; i++){

 for (j = i+1; j < N; j++){

 if(a[i][j] != a[j][i]){

 symmetr = false;

 break;

 }

 }

 if(!symmetr)

 break;

 }

 if(symmetr)

 cout<<"\nThe matrix is symmetric“

 << endl;

 else

 cout<<"\nThe matrix is not symmetric“

 << endl;

 return 0;

}

Example 5.8.3 This program checks if a matrix is symmetric or not.

Programming Fundamentals 12

Strings and String Built-in Functions

 In C we often use character arrays to represent strings. A string

is an array of characters ending in a null character (‘\0’).

 A string may be assigned in a declaration to a character array.

The declaration

 char strg[] = “c”;

 initializes a variable to the string “c”. The declaration creates a

2-element array strg containing the characters ‘c’ and ‘\0’. The

null character (\0) marks the end of the text string.

 The above declaration determines the size of the array

automatically based on the number of initializers provided in

the initializer list.

Programming Fundamentals 13

 In C, you must use a string built-in functions to manipulate char
variables. Some commonly used string functions are listed in
Table 5.1.

Tabe 5.1 Common string functions

Function Description

strcat(s1,s2) Append one string to another

strchr(s1,a) Find the first occurrence of a specified character in a

 string

strcmp(s1,s2) Compare two strings

strcpy(s1,s2) Replaces the contents of one string with the

 contents of another

strlen(s1) Returns the length of a string

Programming Fundamentals 14

 The strcpy() function copies a literal string or the contents of a
char variable into another char variable using the syntax:

 strcpy(destination, source);

 where destination represents the char variable to which you
want to assign a new value to and the source variable
represents a literal string or the char variable contains the
string you want to assign to the destination.

 The strcat() function combines two strings using the syntax:

 strcat(destination, source);

 where destination represents the char variable whose string
you want to combine with another string. When you execute
strcat(), the string represented by the source argument is
appended to the string contained in the destination variable.

Programming Fundamentals 15

Example:
 char FirstName[25];
 char LastName[25];
 char FullName[50];
 strcpy(FirstName, “Mike”);
 strcpy(LastName, “Thomson”);
 strcpy(FullName, FirstName);
 strcat(FullName, “ “);
 strcat(FullName, LastName);

 Two strings may be compared for equality using the strcmp()
function. When two strings are compared, their individual
characters are compared a pair at a time. If no differences are
found, the strings are equal; if a difference is found, the string with
the first lower character is considered the smaller string.

 The function listed in Table 5.1 are contained in the string.h
header file. To use the functions, you must add the statement
#include<string.h> to your program.

Programming Fundamentals 16

Example 5.8.4
#include<iostream.h>
#include<string.h>
int main()
{
 char FirstName[25];
 char LastName[25];
 char FullName[50];
 strcpy(FirstName, "Mike");
 strcpy(LastName, "Thomson");
 strcpy(FullName, FirstName);
 strcat(FullName, " ");
 strcat(FullName, LastName);
 cout << FullName << endl;
 int n;
 n = strcmp(FirstName, LastName);
 if(n<0)
 cout<< FirstName << " is less than "<< LastName<<endl;

Programming Fundamentals 17

else if(n ==0)

 cout<< FirstName << " is equal to “

 << LastName<<endl;

else

 cout<< FirstName << " is greater than “

 << LastName<<endl;

return 0;

}

The output of the program:

Mike Thomson

Mike is less than Thomson

Programming Fundamentals 19

STRUCTURES

 A structure, or struct, is an advanced, user-defined data type
that uses a single variable name to store multiple pieces of
related information.

 The individual pieces of information stored in a structure are
referred to as elements, field, or members.

 You define a structure using the syntax:

 struct struct_name{

 data_type field_name;

 data_type field_name;

 ……..

 } variable_name;

Programming Fundamentals 20

To access a field inside a structure
 Example:

 struct emloyee{

 char firstname[25];

 char lastname[25];

 long salary;

 };

 To access the field inside a structure variable, you append a
period to the variable name, followed by the field name using
the syntax:

 variable.field;

 When you use a period to access a structure fields, the period
is referred to as the member selection operator.

Programming Fundamentals 21

Example 5.9.1

#include <iostream.h>

struct Date // this is a global declaration

{

 int month;

 int day;

 int year;

};

int main(){

 Date birth; // birth is a variable belonging to Date type

 birth.month = 12;

 birth.day = 28;

 birth.year = 1982;

 cout << "\nMy birth date is "

 << birth.month << '/‘ << birth.day << '/'

 << birth.year % 100 << endl;

 return 0;

}

Programming Fundamentals 22

Arrays of Structures

 The real power of structures is realized when the same
structure is used for lists of data.

 Declaring an array of structures is the same as declaring an
array of any other variable type.

 Example 5.9.2:

 The following program uses array of employee records. Each of
employee record is a structure named PayRecord. The program
displays the first five employee records.

#include <iostream.h>

#include <iomanip.h>

const int MAXNAME = 20; // maximum characters in a name

Programming Fundamentals 23

struct PayRecord // this is a global declaration

{

 long id;

 char name[MAXNAME];

 float rate;

};

int main()

{

 const int NUMRECS = 5; // maximum number of records

 int i;

 PayRecord employee[NUMRECS] = {

 { 32479, "Abrams, B.", 6.72 },

 { 33623, "Bohm, P.", 7.54},

 { 34145, "Donaldson, S.", 5.56},

 { 35987, "Ernst, T.", 5.43 },

 { 36203, "Gwodz, K.", 8.72 } };

 cout << endl; // start on a new line

Programming Fundamentals 24

cout << setiosflags(ios::left);

 // left justify the output

 for (i = 0; i < NUMRECS; i++)

 cout << setw(7) << employee[i].id

 << setw(15) << employee[i].name

 << setw(6) << employee[i].rate << endl;

 return 0;

 }

The output of the program is:

 32479 Abrams, B. 6.72

 33623 Bohm, P. 7.54

 34145 Donaldson, S. 5.56

 35987 Ernst, T. 5.43

 36203 Gwodz, K 8.72

Summary

 Structured type contains many elements

 There are 3 structured types concerned in this lecture:

 Array type:

 all elements have the same type

 Each element can be accessed by index

 String type:

 Like array type but element type is char

 Has extra (last) element that contains ‘\0’

 Struct type:

 Elements may be in different type

 Each element can be accessed by name

Programming Fundamentals 26

