
Programming Fundamentals 1

Chapter 6

FUNCTIONS AND POINTERS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 2

Chapter 6

 Function and parameter declarations

 Returning values

 Variable scope

 Variabe storage classes

 Pass-by-reference

 Recursion

 Passing arrays to functions

 Pointers

 The typedef declaration statement

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function and parameter declarations

 User-defined program units are called subprograms. In C++ all

subprograms are referred to as internal functions.

 A complex problem is often easier to solve by dividing it into several

smaller parts, each of which can be solved by itself.

 These parts are sometimes made into functions

 main() : functions to solve the original problem

 Defining a Function: data_type name_of_function (parameters){

 statements;

 }

 We could use also external functions (e.g., abs, ceil, rand, etc.)

grouped into specialized libraries (e.g., math, etc.)

Programming Fundamentals 3
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 4

 A function definition consists of four parts:

 A reserved word indicating the data type of the function’s return value.

 The function name

 Any parameters required by the function, contained within (and).

 The function’s statements enclosed in curly braces { }.

 Example :

int FindMax (int x, int y) {

 int maximum;

 if (x > = y)

 maximum = x;

 else

 maximum = y;

 return maximum;

}

Advantages of function:

• separate the concept (what is done)

from the implementation (how it is done).

• make programs easier to understand.

• can be called several times in the same

program, allowing the code to be reused.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 5

How to call functions

 We have to designate a data type for function since it will return a

value from a function after it executes.

 Variable names that will be used in the function header line are

called formal parameters.

 To execute a function, you must invoke, or call it according to the

following syntax:

<function name>(<argument list>)

 The values or variables that you place within the parentheses of a

function call statement are called actual parameters.

 Example: findMax(firstnum, secnum);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 6

Function Prototypes

 A function prototype declares to the compiler that we intend to use

a function later in the program.

 If we try to call a function at any point in the program prior to its

function prototype or function definition, we will receive an error at

compile time.

 The lines that compose a function within a C++ program are called a

function definition.

 The function definition can be placed anywhere in the program

after the function prototypes.

 If a function definition is placed in front of main(), there is no

need to include its function prototype.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 7

Example:

// Finding the maximum of three integers
#include <iostream.h>

int maximum(int, int, int); // function prototype

int main() {
 int a, b, c;
 cout << "Enter three integers: ";
 cin >> a >> b >> c;
 cout << "Maximum is: " << maximum (a, b, c) << endl;
 return 0;

}

// Function maximum definition
// x, y and z are parameters
int maximum(int x, int y, int z) {
 int max = x;
 if (y > max) max = y;
 if (z > max) max = z;
 return max;
}

The output of the above program:

Enter three integers: 22 85 17
Maximum is: 85

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 8

 Note: it is possible to omit the function prototype if the function

definition is placed before it is called.

Example:

// Finding the maximum of three integers
#include <iostream.h>

// Function maximum definition with parameters x, y and z
int maximum(int x, int y, int z) {
 int max = x;
 if (y > max) max = y;
 if (z > max) max = z;
 return max;
}
int main() {
 int a, b, c;
 cout << "Enter three integers: ";
 cin >> a >> b >> c;
 cout << "Maximum is: " << maximum (a, b, c) << endl;
 return 0;

}

Note: there is one-to-one
correspondence between
the arguments in a
function call and the
parameters in the function
definition.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 9

Passing by Value

 If a variable is one of the actual parameters in a function call,

the called function receives a copy of the values stored in the

variable.

 After the values are passed to the called function, control is

transferred to the called function.

 Example: The statement findMax(firstnum, secnum); calls the

function findMax() and causes the values currently residing in the

variables firstnum and secnum to be passed to findMax().

 The method of passing values to a called function is called

pass by value.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 10

RETURNING VALUES

 To actually return a value to a variable, you must

include the return statement within the called

function.

 The syntax for the return statement is either

 return value;

 or

 return(value);

 Values passes back and forth between functions

must be of the same data type.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 11

Inline function

 For small functions, you can use the inline keyword to request that
the compiler replace calls to a function with the function definition
wherever the function is called in a program.

Example:

// Using an inline function to calculate the volume of a cube.
#include <iostream.h>
inline double cube(double s) { return s * s * s; }
int main()
{
 cout << "Enter the side length of your cube: ";
 double side;
 cin >> side;
 cout << "Volume of cube with side "
 << side << " is " << cube(side) << endl;
 return 0;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 12

Function Overloading

 C++ enables several functions of the same name to be defined,

as long as these functions have different sets of parameters (at

least their types are different).

 This capability is called function overloading.

 When an overloaded function is called, the compiler selects the

proper functions by examining the number, types and order of

the arguments in the call.

 Function overloading is commonly used to create several

functions of the same name that perform similar tasks but on

different data types.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 13

Example:

void showabs(int x)

{

 if(x < 0)

 x = -x;

 cout << “The absolute value of the integer is “ << x << endl;

}

void showabs(double x)

{

 if(x < 0)

 x = -x;

 cout << “The absolute value of the double is “ << x << endl;

}

If the function calls “showabs(10);”,

 then it causes the compiler to use the 1st version of the
function showabs.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 14

Default arguments

 C++ allows default arguments in a function call.

 Default argument values are listed in the function prototype and
are automatically passed to the called function when the
corresponding arguments are omitted from the function call.

 Example: The function prototype

 void example (int, int = 5, float = 6.78);

 provides default values for the two last arguments.

 If any of these arguments are omitted when the function is actually
called, compiler supplies these default values.

 example(7,2,9.3); // no default used

 example(7,2); // same as example(7, 2, 6.78)

 example(7); // same as example(7, 5, 6.78)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 15

VARIABLE SCOPE

 Recall:

 A sequence of statements within { … } is considered a block of
code. The part of the program where you can use a certain
identifier (variable or constant) is called the scope of that identifier.
Scope refers to where in your program a declared identifier is
allowed used.

 The scope of an identifier starts immediately after its declaration
and ends when the “innermost” block of code within which it is
declared ends.

 It is possible to declare the same identifier in another block within
the program.

 Global scope refers to variables declared outside of any functions

or classes and that are available to all parts of your program.

 Local scope refers to a variable declared inside a function and

that is available only within the function in which it is declared.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 16

Example:

#include <iostream.h>

int x; // create a global variable named firstnum

void valfun(); // function prototype (declaration)

int main()

{

 int y; // create a local variable named secnum

 x = 10; // store a value into the global variable

 y = 20; // store a value into the local variable

 cout << "From main(): x = " << x << endl;

 cout << "From main(): y = " << y << endl;

 valfun(); // call the function valfun()

 cout << "\nFrom main() again: x = " << x << endl;

 cout << "From main() again: y = " << y << endl;

 return 0;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 17

void valfun() {

 int y; // create a second local variable named y

 y = 30; // this only affects this local variable's value

 cout << "\nFrom valfun(): x = " << x << endl;

 cout << "From valfun(): y = " << y << endl;

 x = 40; // this changes x for both functions

 return;

} The output of the above program:

From main(): x = 10

From main(): y = 20

From valfun(): x = 10

From valfun(): y = 30

From main() again: x = 40

From main() again: y = 20

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 18

Scope Resolution Operator

 When a local variable has the same name as a

global variable, all uses of the variable’s name

within the scope of the local variable refer to the

local variable.

 In such cases, we can still access to the global

variable by using scope resolution operator (::)

immediately before the variable name.

 The :: operator tells the compiler to use the global

variable.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 19

Example :

#include <iostream.h>

float number = 42.8; // a global variable named number

int main()

{

 float number = 26.4; // a local variable named number

 cout << "The value of number is " << ::number << endl;

 return 0;

}

The output of the above program:

The value of number is 42.8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 21

VARIABLE STORAGE CLASS

 The lifetime of a variable is referred to as the storage
duration, or storage class.

 Four available storage classes: auto, static, extern and
register.

 If one of these class names is used, it must be placed
before the variable’s data type in a declaration statement.

Examples:

 auto int num;

 static int miles;

 register int dist;

 extern float price;

 extern float yld;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 22

Local Variable Storage Classes

 Local variables can only be members of the auto,
static, or register storage classes.

 Default: auto class.

Automatic Variables

 The term auto is short for automatic.

 Automatic storage duration refers to variables that
exist only during the lifetime of the command block
(such as a function) that contains them.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 23

Example:

include <iostream.h>

void testauto(); // function prototype

int main(){

 int count; // count is a local auto variable

 for(count = 1; count <= 3; count++)

 testauto();

 return 0;

}

void testauto(){

 int num = 0; // num is a local auto variable

 cout << "The value of the automatic variable num is "

 << num << endl;

 num++;

 return;

}

The output of the above program:

The value of the automatic variable num is 0

The value of the automatic variable num is 0

The value of the automatic variable num is 0

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 24

Local static variables

 In some applications, we want a function to remember

values between function calls. This is the purpose of the

static storage class.

 A local static variable is not created and destroyed each

time the function declaring the static variable is called.

 Once created, local static variables remain in existence

for the life of the program.

 However, locally declared identifiers cannot be accessed

outside of the block they were declared in.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 25

Example:
#include <iostream.h>

int funct(int); // function prototype

int main()

{

 int count, value; // count is a local auto variable

 for(count = 1; count <= 10; count++){

 value = funct(count);

 cout << count << ‘\t’ << value << endl;

 }return 0;

}

int funct(int x)

{

 int sum = 100; // sum is a local auto variable

 sum += x;

 return sum;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 26

The output of the above program:

 1 101

 2 102

 3 103

 4 104

 5 105

 6 106

 7 107

 8 108

 9 109

 10 110

Note: The effect of increasing sum in funct(), before the function’s
return statement, is lost when control is returned to main().

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 27

Note:

 A local static variable is not created and destroyed each time
the function declaring the static variable is called. Once
created, local static variables remain in existence for the life of
the program.

Example :

#include <iostream.h>
int funct(int); // function prototype
int main()
{
 int count, value; // count is a local auto variable
 for(count = 1; count <= 10; count++){
 value = funct(count);
 cout << count << ‘\t’ << value << endl;}
 return 0;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 28

int funct(int x)

{

 static int sum = 100; // sum is a local auto variable

 sum += x;

 return sum;

}

The output of the above program:

1 101

2 103

3 106

4 110

5 115

6 121

7 128

8 136

9 145

10 155

Note:

1.The initialization of static

variables is done only once

when the program is first

compiled. At compile time, the

variable is created and any

initialization value is placed in

it.

2. All static variables are set to

zero when no explicit

initialization is given.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 29

Register Variables

 Register variables have the same time duration as

automatic variables.

 Register variables are stored in CPU’s internal

registers rather than in memory.

 Examples:

 register int time;

 register double difference;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 30

Global Variable Storage Classes

 Global variables are created by definition statements

external to a function.

 Once a global variable is created, it exists until the

program in which it is declared is finished executing.

 Global variables may be declared as static or extern

(but not both).

External global variables

 The purpose of the external storage class is to

extend the scope of a global variable beyond its

normal boundaries.

 CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 31

External global variables
//file1

int price;

float yield;

static double coupon;

…

int main(){

 func1():

 func2():

 func3():

 func4():

}

int func1();

{

 …

}

int func2();

{

 …

}//end of file1

//file2

double interest;

int func3();

{

 .
 .

}

int func4();

{

 .
 .

}

//end of file2

Although the variable price has been declared in

file1, we want to use it in file2. Placing the statement

extern int price in file2, we can extend the scope of

the variable price into file2.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 32

//file1

int price;

float yield;

static double coupon;

.

.

int main(){

 func1():

 func2():

 func3():

 func4():

}

extern double interest;

int func1();

{

 .

 .
}

int func2();

{

 .

 .
}

//end of file1

//file2

double interest;

extern int price;

int func3();

{
 .

 .

}

int func4();

{
 extern float yield;

 .

 .

}

//end of file2

Note:

 1. We cannot make external static variables.

 2. The scope of a global static variable cannot extend beyond the file

in which it is declared.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 33

PASS BY REFERENCE

 Reference Parameters

 Two ways to invoke functions in many programming languages
are:

 - call by value

 - call by reference

 When an argument is passed call by value, a copy of the
argument’s value is made and passed to the called function.
Changes to the copy do not affect the original variable’s value
in the caller.

 With call-by-reference, the caller gives the called function the
ability to access the caller’s data directly, and to modify that
data if the called function chooses so.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 34

 To indicate that the function parameter is passed-by-reference,
simply follow the parameter’s type in the function prototype of
function header by an ampersand (&).

 For example, the declaration
 int& count
 in the function header means “count is a reference parameter

to an int”.

Example :
#include <iostream.h>
int squareByValue(int);
void squareByReference(int &);
int main()
{
 int x = 2, z = 4;
 cout << "x = " << x << " before squareByValue\n"
 << "Value returned by squareByValue: "
 << squareByValue(x) << endl
 << "x = " << x << " after squareByValue\n" << endl;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 35

 cout << "z = " << z << " before squareByReference" << endl;
 squareByReference(z);
 cout << "z = " << z << " after squareByReference" << endl;
 return 0;
}
int squareByValue(int a)
{
 return a *= a; // caller's argument not modified
}
void squareByReference(int &cRef)
{
 cRef *= cRef; // caller's argument modified
}

The output of the above program:

x = 2 before squareByValue

Value returned by squareByValue: 4

x = 2 after squareByReference

z = 4 before squareByReference

z = 16 after squareByReference

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 37

RECURSION

 In C++, it’s possible for a function to call itself. Functions that

do so are called seft-referential or recursive functions.

 In some problems, it may be natural to define the problem in
terms of the problem itself.

 Recursion is useful for problems that can be represented by a
simpler version of the same problem.

 Example: Factorial

1! = 1;

2! = 2*1 = 2*1!

3! = 3*2*1=3*2!

…. n! = n*(n-1)!

The factorial function is only

defined for positive integers.
n!=1 if n is equal to 1

n!=n*(n-1)! if n >1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 38

Example :
#include <iostream.h>

#include <iomanip.h>

unsigned long factorial(unsigned long);

int main(){

 for (int i = 0; i <= 10; i++)

 cout << setw(2) << i << "! = "

 << factorial(i) << endl;

 return 0;

}

// Recursive definition of function factorial

unsigned long factorial(unsigned long number){

 if (number < 1) // base case

 return 1;

 else // recursive case

 return number * factorial(number - 1);

}

The output :

 0! = 1

 1! = 1

 2! = 2

 3! = 6
 4! = 24

 5! = 120

 6! = 720

 7! = 5040

 8! = 40320
 9! = 362880

10! = 3628800

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

 We must always make sure that the recursion bottoms out:

 A recursive function must contain at least one non-

recursive branch.

 The recursive calls must eventually lead to a non-

recursive branch.

 Recursion is one way to decompose a task into smaller subtasks.

 At least one of the subtasks is a smaller example of the same task.

 The smallest example of the same task has a non-recursive

solution.

Example: The factorial function

 n! = n * (n-1)! and 1! = 1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 40

How the Computation is Performed

 The mechanism that makes it possible for a C++
function to call itself is that C++ allocates new
memory locations for all function parameters
and local variables as each function is called.

 There is a dynamic data area for each execution of a function.
This allocation is made dynamically, as a program is executed,
in a memory area referred as the stack.

 A memory stack is an area of memory used for rapidly storing
and retrieving data areas for active functions. Each function call
reserves memory locations on the stack for its parameters, its local
variables, a return value, and the address where execution is to
resume in the calling program when the function has completed
execution (return address).

 Inserting and removing items from a stack are based on last-
in/first-out mechanism.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 41

 Thus, when the function call factorial(n) is made, a

data area for the execution of this function call is

pushed on top of the stack.

 n

reserved for

returned value

return address

The data area for the

first call to factorial

 The progress of execution for the

recursive function factorial applied

with n = 3 is as follows:

 factorial(3) = 3*factorial(2)

 = 3*(2*factorial(1))

 = 3*(2*(1*factorial(0)))

 = 3*(2*(1*1))

 = 3*(2*1)

 = 3*2

 = 6

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

 Price for recursion:

 calling a function consumes more time and memory than

adjusting a loop counter.

 high performance applications (graphic action games,

simulations of nuclear explosions) hardly ever use recursion.

 In less demanding applications recursion is an

attractive alternative for iteration

 (for the right problems!)

Programming Fundamentals 42
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion vs. Iterative structure

 For certain problems (such as the factorial function),

a recursive solution often leads to short and elegant code.

 Recursive solution

int fac(int numb){

 if(numb<=1)

 return 1;

 else

 return numb*fac(numb-1);

}

Iterative solution

int fac(int numb){

 int product=1;

 while(numb>1){

 product *= numb;

 numb--;

 }

 return product;

}

Programming Fundamentals 43
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

 If we use iteration, we must be careful not to
create an infinite loop by accident:

 for(int incr=1; incr!=10;incr+=2)

 ...

 int result = 1;

 while(result >0){

 ...

 result++;

 } Oops!

Oops!

Programming Fundamentals 44
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

 Similarly, if we use recursion we must be careful
not to create an infinite chain of function calls:

 int fac(int numb){

 return numb * fac(numb-1);

 }

 Or:

 int fac(int numb){

 if (numb<=1)

 return 1;

 else

 return numb * fac(numb+1);

 }

Oops!
No termination

condition

Oops!

Programming Fundamentals 45
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion vs. Iteration

 Iteration

 Uses repetition structures (for, while or do…while)

 Repetition through explicitly use of repetition structure

 Terminates when loop-continuation condition fails

 Controls repetition by using a counter

 Recursion

 Uses selection structures (if, if…else or switch)

 Repetition through repeated method calls

 Terminates when base case is satisfied

 Controls repetition by dividing problem into simpler

one

Programming Fundamentals 46
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example – Fibonacci numbers

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

 where each number is the sum of the preceding two.

 Fibonacci numbers are believed to model nature to a
certain extent, such as Kepler's observation of
leaves and flowers in 1611.

 Recursive definition:

 F(0) = 0;

 F(1) = 1;

 F(number) = F(number-1)+ F(number-2);

Programming Fundamentals 47
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example - Fibonacci numbers

//Calculate Fibonacci numbers using recursive function.

//A very inefficient way, but illustrates recursion well

int fib(int number)

{

 if (number <= 0) return 0;

 if (number == 1) return 1;

 return (fib(number-1) + fib(number-2));

}

int main(){

 int inp_number;

 cout << "Please enter an integer: ";

 cin >> inp_number;

 cout << "The Fibonacci number for "<< inp_number

 << " is "<< fib(inp_number)<<endl;

 return 0;

}

Programming Fundamentals 48
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Copyright © 2000 by Brooks/Cole Publishing Company

A division of International Thomson Publishing Inc.

Programming Fundamentals 49
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example - Binary Search

 Search for an element in an array

 Sequential search

 Binary search

 Binary search

 Compare the search element with the middle

element of the array

 If not equal, then apply binary search to half of the

array (if not empty) where the search element

would be.

Programming Fundamentals 50
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary Search with Recursion

// Searches an ordered array of integers using recursion

int binSearch(const int data[], // input: array

 int first, // input: lower bound

 int last, // input: upper bound

 int value // input: value to find

)// output: index if found, otherwise return –1

{

 int middle = (first + last) / 2;

 if (data[middle] == value)

 return middle;

 else if (first >= last)

 return -1;

 else if (value < data[middle])

 return binSearch(data, first, middle-1, value);

 else

 return binSearch(data, middle+1, last, value);

}

Programming Fundamentals 51
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary Search

int main() {

 const int array_size = 8;

 int list[array_size]={1, 2, 3, 5, 7, 10, 14, 17};

 int search_value;

 cout << "Enter search value: ";

 cin >> search_value;

 cout << binSearch(list,0,

 array_size-1,search_value) << endl;

 return 0;

}

Programming Fundamentals 52
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary Search w/o recursion

// Searches an ordered array of integers

int binSearch(const int data[], int size, int value
 int first, last, upper;
 first = 0;
 last = size - 1;
 while (true) {
 middle = (first + last) / 2;

 if (data[middle] == value)
 return middle;
 else if (first >= last)
 return -1;
 else if (value < data[middle])
 last = middle - 1;
 else
 first = middle + 1;
 }
}

Programming Fundamentals 53
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercise – Rabbit production

Programming Fundamentals 55

How many pairs of rabbits can be produced

from a single pair in a year's time?

 Assumptions:
 Each pair of rabbits produces a new pair of

offspring every month;

 each new pair becomes fertile at the age of one
month;

 none of the rabbits dies in that year.

 Example:
 After 1 month there will be 2 pairs of rabbits;

 after 2 months, there will be 3 pairs;

 after 3 months, there will be 5 pairs (since the following month the
original pair and the pair born during the first month will both
produce a new pair and there will be 5 in all).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercise

Programming Fundamentals 56
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 57

PASSING ARRAYS TO FUNCTIONS

 To pass an array to a function, specify the name of the array
without any brackets. For example, if array hourlyTemperature
has been declared as

 int hourlyTemperature[24];

 The function call statement

 modifyArray(hourlyTemperature, size);

 passes the array hourlyTemperature and its size to function
modifyArray.

 For the function to receive an array through a function call, the
function’s parameter list must specify that an array will be
received.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 58

 For example, the function header for function modifyArray
might be written as

 void modifyArray(int b[], int arraySize)

 Notice that the size of the array is not required between the
array brackets.

Example 6.7.2

#include<iostream.h>

int linearSearch(int [], int, int);

void main()

{

 const int arraySize = 100;

 int a[arraySize], searchkey, element;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 59

 for (int x = 0; x < arraySize, x++) // create some data

 a[x] = 2*x;

 cout<< “Enter integer search key: “<< endl;

 cin >> searchKey;

 element = linearSearch(a, searchKey, arraySize);

 if(element !=-1)

 cout<<”Found value in element “<< element << endl;

 else

 cout<< “Value not found “ << endl;

}

int linearSearch(int array[], int key, int sizeofArray)

{

 for(int n = 0; n< sizeofArray; n++)

 if (array[n] = = key)

 return n;

 return –1;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 60

POINTERS
 A pointer is a special type of variable that stores the memory

address of other variables.

 You declare a variable as a pointer by placing the indirection
operator (*) after the data type or before the variable name.

 Examples:

 int *pFirstPtr;

 int *pSecondPtr;

 You use the address-of operator (&) to assign to the pointer
variable the memory address of another variable.

 Example:

 double dPrimeInterest;

 double *pPrimeInterest;

 pPrimeInterest = &dPrimeInterest;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 61

Example 6.8.1

#include<iostream.h>

void main()

{

 int a;

 int *aPtr;

 // aPtr is a pointer to an integer

 a = 7;

 aPtr = &a; //aPtr set to address of a

 cout << “The address of a is “ << &a

 << “\nThe value of aPtr is “ << aPtr;

 cout << “\n\nThe value of a is “<< a

 << “\nThe value of *aPtr is “ << *aPtr

 << endl;

}

The output of the above program:

The address of a is 0x0065FDF4

The value of aPtr is 0x0065FDF4

The value of a is 7

The value of *aPtr is 7

Note: If ptr is a pointer variable, *ptr means the contents of the

variable pointed to by ptr.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 62

Calling Functions by Reference with Pointer

Arguments

 In C++, programmers can use pointers and the

dereference operator to simulate call-by-reference.

 When calling a function with arguments that should

be modified, the addresses of the arguments are

passed. This is normally achieved by applying the

address-of operator (&) to the name of the variable

whose value will be used.

 A function receiving an address as an argument

must define a pointer parameter to receive the

address.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 63

Example 6.8.2

// Cube a variable using call-by-reference with a pointer argument

#include <iostream.h>

void cubeByReference(int *); // prototype

int main()

{

 int number = 5;

 cout << "The original value of number is " << number;

 cubeByReference(&number);

 cout << "\nThe new value of number is " << number << endl;

 return 0;

}

 void cubeByReference(int *nPtr)

{

 *nPtr = (*nPtr) * (*nPtr) * (*nPtr); // cube number in main

}
The output of the above propgram:

The original value of number is 5

The new value of number is 125

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 64

Pointers and Arrays

 Notice that the name of an array by itself is equivalent to the
base address of that array. That is, the name z in isolation is
equivalent to the expression &z[0].

 Example 6.8.3

#include<iostream.h>

void main()

{

 int z[] = { 1, 2, 3, 4, 5};

 cout << “The value return by ‘z’ itself is the addr “ << z << endl;

 cout << “The address of the 0th element of z is “ << &z[0] << endl;

}

The output of the above program:

The value return by ‘z’ itself is the addr 0x0065FDF4

The address of the 0th element of z is 0x0065FDF4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 65

Accessing Array Element Using Pointer and

Offset

 If we store the address of grade[0] into a pointer named

gPtr, then the expression *gPtr refers to grade[0].

 One unique feature of pointers is that offset may be

included in pointer expression.

 For example, the expression *(gPtr + 3) refers to the

variable that is three (elements) beyond the variable

pointed to by gPtr.

 The number 3 in the pointer expression is an offset. So

gPtr + 3 points to the element grade[3] of the grade array.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 66

Example 6.8.4
#include <iostream.h>

int main()
{
 int b[] = { 10, 20, 30, 40 }, i, offset;
 int *bPtr = b; // set bPtr to point to array b

 cout << "Array b printed with:\n"
 << "Array subscript notation\n";

 for (i = 0; i < 4; i++)
 cout << "b[" << i << "] = " << b[i] << '\n';

 cout << "\nPointer/offset notation\n";
 for (offset = 0; offset < 4; offset++)
 cout << "*(bPtr + " << offset << ") = "
 << *(bPtr + offset) << '\n';
 return 0;
}

The output of the above

program:

Array b printed with:

Array subscript notation

b[0] = 10
b[1] = 20

b[2] = 30

b[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10

*(bPtr + 1) = 20

*(bPtr + 2) = 30

*(bPtr + 3) = 40

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 67

Pointers and Strings

 We can scan through a string by using pointer.

 The name of a string by itself is equivalent to the

base address of that string.

 Example 6.8.5
/* Printing a string one character at a time using pointer */
#include<iostream.h>

void main()

{

 char strng[] = “Adams”;

 char *sPtr;

 sPtr = &strng[0];

 cout << “\nThe string is: \n”;

 for(; *sPtr != ‘\0’; sPtr++)

 cout << *sPtr << ‘ ‘;

}

The output of the above

program:

The string is:

A d a m s

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Dynamically Allocating Storage

 Besides variables, i.e. statically allocated and named

storage, a dynamic storage can be dynamically

allocated and be accessed through pointers

 Syntax:

 <pointer> = new <type>

 <pointer> = new <type> [<number_of_elements>]

 Example:

int *p,*q;

p = new int;

*p = 10;

q = p;

Programming Fundamentals 68

p

q
10

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Dynamic data structure

 Dynamic data structures are those that are able to

grow and shrink such as lists, queues, stacks,

trees,…

 Example:

struct node {

 int value;

 struct node *link;

}

Programming Fundamentals 69

node *head = 0, *p;

for (int i = 1; i < 4; i++) {

 p = new node;

 p -> value = i;

 p -> link = head;

 head = p;

}

value

link

2 1 3 head

p

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

De-allocating dynamic storage

 Dynamic storage should be de-allocated when it is

not used any more; otherwise, it becomes garbage.

 Syntax:

 delete <pointer>

 delete [] <pointer>

 Example

int *p;

p = new int;

…

delete p;

Programming Fundamentals 70
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercise

Programming Fundamentals 71
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 72

Passing Structures as Parameters

 Complete copies of all members of a structure can be passed
to a function by including the name of the structure as an
argument to the called function.

 The parameter passing mechanism here is call-by-value.

Example 6.8.6

#include <iostream.h>

struct Employee // declare a global type

{

 int idNum;

 double payRate;

 double hours;

};

double calcNet(Employee); // function prototype

int main()

{

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 73

 Employee emp = {6782, 8.93, 40.5};

 double netPay;

 netPay = calcNet(emp); // pass by value

 cout << "The net pay for employee "

 << emp.idNum << " is $" << netPay << endl;

 return 0;

}

double calcNet(Employee temp) // temp is of data

 // type Employee

{

 return (temp.payRate * temp.hours);

}

The output:

The net pay for employee 6782 is $361.665

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 74

Second way of passing a structure

 An alternative to the pass-by-value function call, we can pass a
structure by passing a pointer.

Example 6.8.5

#include <iostream.h>

struct Employee // declare a global type

{

 int idNum;

 double payRate;

 double hours;

};

double calcNet(Employee *); //function prototype

int main()

{

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 75

 Employee emp = {6782, 8.93, 40.5};

 double netPay;

 netPay = calcNet(&emp); // pass an address

 cout << "The net pay for employee "

 << emp.idNum << " is $" << netPay << endl;

 return 0;

}

double calcNet(Employee* pt) //pt is a pointer

{ //to a structure of Employee type

 return (pt->payRate * pt->hours);

}

The output is:

The net pay for employee 6782 is $361.665

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 76

THE typedef DECLARATION STATEMENT

 The typedef declaration permits us to construct alternate
names for an existing C++ data type name. The syntax of a
typedef statement:

 typedef data-type new-type-name

 For example, the statement:

 typedef float REAL;

 make the name REAL a synonym for float. The name REAL can
now be used in place of float anywhere in the program after the
synonym has been declared.

 The definition

 REAL val;

 is equivalent to float val;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Programming Fundamentals 77

Example: Consider the following statement:

 typedef struct

 {

 char name[20];

 int idNum;

 } EMPREC;

The declaration EMPREC employee[75]; is equivalent to

 struct

 {

 char name[20];

 int idNum;

 } employee[75];

Example: Consider the statement:

 typedef double* DPTR;

The declaration: DPTR pointer1;

is equivalent to double* pointer1;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

