Chapter 6

FUNCTIONS AND POINTERS

Programming Fundamentals

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 6

Function and parameter declarations
Returning values

Variable scope

Variabe storage classes
Pass-by-reference

Recursion

Passing arrays to functions

Pointers
The typedef declaration statement

Programming Fundamentals

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function and parameter declarations

= User-defined program units are called subprograms. In C++ all

subprograms are referred to as internal functions.

o A complex problem is often easier to solve by dividing it into several

smaller parts, each of which can be solved by itself.
o These parts are sometimes made into functions
o main() : functions to solve the original problem

= Defining a Function: data type name of function (parameters){
statements;

}

= We could use also external functions (e.g., abs, ceil, rand, etc.)

grouped into specialized libraries (e.g., math, etc.)

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

= A function definition consists of four parts:

e A reserved word indicating the data type of the function’s return value.

e The function name

e Any parameters required by the function, contained within (and).

e The function’s statements enclosed in curly braces { }.

= Example: ' ' : '
it FindeaX (intx,inty) { Advantages of function: |
Int maximum, » separate the concept (what is done)
(X >_: Y) from the implementation (how it is done).
maximum = X; _ _ _
else » make programs easier to understand.
maximum =vy; « can be called several times in the same

return maximum; :
\ ’ program, allowing the code to be reused.

Programming Fundamentals 4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

How to call functions

= We have to designate a data type for function since it will return a

value from a function after it executes.

= Variable names that will be used in the function header line are

called formal parameters.

= To execute afunction, you must invoke, or call it according to the

following syntax:
<function name> (<argument list>)

= The values or variables that you place within the parentheses of a

function call statement are called actual parameters.

o Example: findMax(firsthum, secnum),

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Prototypes

= A function prototype declares to the compiler that we intend to use

a function later in the program.

= Ifwe try to call afunction at any point in the program prior to its
function prototype or function definition, we will receive an error at

compile time.

o The lines that compose a function within a C++ program are called a

function definition.

= The function definition can be placed anywhere in the program

after the function prototypes.

= Ifa function definition is placed in front of main (), thereis no

need to include its function prototype.

Programming Fundamentals 6

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example:

/Il Finding the maximum of three integers

#include <iostream.h>

Int maximum(int, int, int);
int main() {
int a, b, c;
cout <<"Enter three integers:
cin >>a>>Dhb >>c;

cout <<"Maximum is: " << maximum (a, b, ¢) << endl;

return O;

1

/l Function maximum definition

I/ X, y and z are parameters

int maximum(int x, inty, int z) {
INt max = Xx;

if(y>max) max=y;
if(z>max) max =z
return max;

}

// function prototype

The output of the above program:

Enter three integers: 22 85 17
Maximumi is: 85

Programming Fundamentals 7

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Note: it is possible to omit the function prototype if the function

definition is placed before it is called.

Example:

// Finding the maximum of three integers
#include <iostream.h>

// Function maximum definition with parameters x,y and z

in_t maximum(int x, inty, int z) { Note: there is one-to-one
:PE mixm"a)):’) NI correspondence between
y 32’ > max)CUln &} ;Z the arguments in a
" function call and the

return Mmax, . :
parameters in the function
int main() { definition.
Int a, b, c;

cout <<"Enter three integers: ";
cin >>a>>Db >>c;

cout <<"Maximum is: " << maximum (a, b, ¢) <<endl;
return O;

Programming Fundamentals 8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Passing by Value

If a variableis one of the actual parametersin a function call,

the called functionreceives a copy of the values stored in the

variable.
After the values are passed to the called function, control is

transferred to the called function.

o Example: The statement findMax(firsthum, secnum); calls the

function findMax() and causes the values currently residing in the

variables firstnum and secnum to be passed to findMax().
The method of passing values to a called function is called

pass by value.

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

RETURNING VALUES

= To actually return a value to a variable, you must

Include the return statement within the called
function.

= The syntax for the return statement is either
return value;
or
return(value);

= Values passes back and forth between functions
must be of the same data type.

Programming Fundamentals

10

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inline function

For small functions, you can use the inline keyword to request that

the compiler replace calls to a function with the function definition
wherever the function is called in a program.

Example:

// Using an inline function to calculate the volume of a cube.
#include <iostream.h>

Inlinedouble cube(doubles){returns *s *s; }

Int main()

{

cout <<"Enter the side length of your cube: ";

double side;

cin >>side;

cout <<"Volume of cube with side "
<<side<<"Is" << cube(side) << endl;

return O;

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

11

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Overloading

C++enables several functions of the same name to be defined,
as long as these functions have different sets of parameters (at

least their types are different).
This capabilityis called function overloading.

When an overloaded functionis called, the compiler selects the

proper functions by examining the number, types and order of

theargumentsin the call.

Function overloading is commonly used to create several
functions of the same name that perform similar tasks but on

differentdatatypes.

Programming Fundamentals 12

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

%void showabs(int x)
{
- if(x <0)
X = -X;
. cout << “The absolute value of the integer is “ << x << endl;
B
void showabs(double x)
g
If(x <0)
X = -X;
cout << “The absolute value of the doubleis “ << x << end|l;

Ifthe function calls “showabs(10);”,

then it causes the compiler to use the 1st version of the
function showabs.

Programming Fundamentals 13

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Default arguments

C++ allows default arguments in a function call.

Default argument values are listed in the function prototype and
are automatically passed to the called function when the
corresponding arguments are omitted from the function call.

o Example: The function prototype

void example (int, int = 5, float = 6.78);

provides default values for the two last arguments.

If any of these arguments are omitted when the function is actually
called, compiler supplies these default values.

example(7,2,9.3); // no default used
example(7,2); // same as example(7, 2, 6.78)
example(7); /I same as example(7, 5, 6.78)

Programming Fundamentals 14

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

VARIABLE SCOPE

Recall:

o A sequence of statements within { ... } is considered a block of
code. The part of the program where you can use a certain
identifier (variable or constant) is called the scope of that identifier.
Scope refers to where in your program a declared identifier is
allowed used.

o Thescope of an identifier starts immediately after its declaration
and ends when the “innermost” block of code within which it is
declared ends.

o Itis possible to declare the same identifier in another block within
the program.

Global scope refers to variables declared outside of any functions
or classes and that are available to all parts of your program.

Local scope refers to a variable declared inside a function and
that is available only within the function in which it is declared.

Programming Fundamentals 15

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example:

. #include <iostream.h>

Int X; // create a global variable named firstnum
. void valfun(); //function prototype (declaration)

Int main()

K
inty; /[create a local variable named sechum
X = 10; /[store a value into the global variab
y = 20; // store a value into the local variak
cout<<"Frommain();: x=" << x <<endl;
cout<<"Frommain():y = " <<y <<endl;
valfun(); /[call the function valfun()
cout<<"\nFrom main() again: x =" << x << gndl;

cout << "From main() again:y =" <<y << endl;

- return0; \Q‘
»

Programming Fundamentals 16

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

void valfun(){

- inty; /[create a second local variable namedy
y = 30; /] this only affects this local variable's value
cout<<"\nFromvalfun(): x =" << x << endl;
cout<<"Fromvalfun():y =" <<y << endl;

X = 40; /] this changes x for both functions
return;
} The output of the above program:
. .. From maln(): X = 10

From main(): y = 20

From valfun(): x =10
From valfun(): y = 30

From main() again: x = 40
From main() again: y = 20

Programming Fundamentals 17

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Scope Resolution Operator

= When alocal variable has the same name as a %
global variable, all uses of the variable’s name
withinthe scope of the local variable refer to the
local variable.

= In such cases, we can still access to the global
variable by using scope resolution operator (::)
Immediately before the variable name.

= The :: operator tellsthe compiler to use the global
variable.

Programming Fundamentals 18

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example :

g#lnclude <jostream.h> J 3

float number = 42.8; /[a global variable named number
. int main()

float number = 26.4;: // a local variable named number
cout << "The value of number is " << ::number << endl;

return O;

The output of the above program:
The value of number is 42.8

Programming Fundamentals 19

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

VARIABLE STORAGE CLASS

= Thelifetime of a variable is referred to as the storage
duration, or storage class.

= Four available storage classes: auto, static, extern and
register.

= If one of these class names is used, it must be placed

before the variable’s data type in a declaration statement.

Examples:

~autointnum;
static int miles;
register int dist;
extern float price;
extern float yld;

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

21

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Local Variable Storage Classes

= Local variables can only be members of the auto,
static, or register storage classes.

= Default: auto class.

Automatic VVariables

= Theterm auto is short for automatic.

= Automatic storage duration refers to variables that
existonly during the lifetime of the command block
(such as a function) that contains them.

Programming Fundamentals 22

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

include <iostream.h>
void testauto(); //function prototype
~intmain ()

Int count; /I count is alocal auto variable
for(count = 1; count <= 3; count++)

testauto();
return O;

- void testauto(){
intnum =0; //numis alocal auto variable
cout <<"The value of the automatic variable num is "

<< num << endl; The output of the above program:
num-++; The value of the automatic variable num is 0
return:

The value of the automatic variable num is O

The value of the automatic variable num is O

Programming Fundamentals 23

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

L ocal static variables

In some applications, we want a function to remember
values between function calls. This is the purpose of the
static storage class.

A local static variable is not created and destroyed each
time the function declaring the static variable is called.
Once created, local static variables remain in existence
for the life of the program.

However, locally declared identifiers cannot be accessed

outside of the block they were declared in.

Programming Fundamentals 24

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

'Example:

‘#include <iostream.h>
intfunct(int); //function prototype
Intmain()

o

Int count, value; /[l countis alocal auto variable
for(count=1; count <=10; count++){

value = funct(count);

cout << count << ‘\t’ << value << endl;
treturn O;

}

Int funct(int x)

{

iIntsum =100: //sum is alocal auto variable
sum +=x;
return sum;

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Theoutput of the above program:

101
102
103
104
105
106
107
108
109
110

© 0O NO O b WDN P

=
o

Note: The effect of increasing sumin funct(), before the function’s
return statement, is lost when control is returned to mainy().

Programming Fundamentals 26

uuuuuuu gThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A

Note:

local static variable is not created and destroyed each time

the function declaring the static variableis called. Once
created, local static variables remain in existence for the life of
the program.

o ——
- !
- -~

- -

| . .' = = 1

e : N aEE 1% T =
'Example : : N
#include <iostream.h> %5 Faonr
‘intfunct(int); //function prototype sl) V=
‘intmain() -
A |
. intcount, value; /[countis alocal auto variable i
- for(count=1; count <= 10; count++){ |
- value=funct(count);
. cout<<count<<‘t’ <<value << endl;} :
- return O;
3 |

Programming Fundamentals 27

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int funct(int x)

{

staticintsum =100; //sumis a local auto variable

sum +=Xx;

return sum:
}

Note:

The output of the above program:| 1.Theinitialization of static
1 101 variablesisdoneonly once
2 103 when the program is first
3 106 compiled. At compiletime, the
4 110 variableis created and any
5 115 Initialization valueis placed in
6 121 it.
7 128 . .
3 136 2. All static variables are set to
9 145 _ze_rp\l/yhe_r\ nq epr|C|t
10 155 Initialization is given.

Programming Fundamentals 28

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Register Now

Register Variables @

= Registervariables have the same time duration as
automatic variables.

= Register variables are stored in CPU’s internal
registersrather than in memory.

Examples: |
registerint time; i
register double difference;

Programming Fundamentals 29

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Global Variable Storage Classes

= Global variables are created by definition statements
external to a function.

= Once aglobal variable is created, it exists until the
program in which itis declared is finished executing.

= Global variables may be declared as static or extern
(but not both).

External global variables

= The purpose of the external storage classisto
extend the scope of a global variable beyond its
normal boundaries.

Programming Fundamentals 30

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

External global variables

/lfilel
Int price; /Ifile2
float yield; doubleinterest;
static double coupon; |{ntfun03();
int main(){ '
func(): }'
func2(): int func4();
func3(): {
func4():
} .
int funcl(); }
{ llend of file2
}"' Although the variable price has been declared in
int func2(): filel,wewantto useitin file2. Placing the statement

{ externintpricein file2, we can extend the scope of
the variable priceinto file2.

}/end of filel
Programming Fundamentals 31

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

/filel

int price;

float yield;

static double coupon;

Int main(){
funcl():
func2():
func3():
func4():

extern doubleinterest;
int funcl();

{

}.
int func2();
{

}.
/lend of filel

/file2
doubleinterest;
extern int price;
int func3();

{

}.
int func4();
{

extern float yield;

Note:

1. We cannot make external static variables.

2. The scope of a global static variable cannot extend beyond the file

In which it is declared.

CuuDuongThanCong.com

Programming Fundamentals

}
/lend of file2

https://fb.com/tailieudientucntt

32

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PASS BY REFERENCE

Reference Parameters

Two ways to invoke functions in many programming languages
are:

- call by value
- call by reference

When an argumentis passed call by value, a copy of the
argument’s value is made and passed to the called function.

Changes to the copy do not affect the original variable’s value
in the caller.

With call-by-reference,the caller gives the called function the
ability to access the caller’s data directly, and to modify that
dataif the called function chooses so.

Programming Fundamentals 33

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

To indicatethat the function parameter is passed-by-reference,
simply follow the parameter’s type in the function prototype of
function header by an ampersand (&).

For example, the declaration
iInt& count
in the function header means “countis a reference parameter

to an int”.

Example :
#include <iostream.h>
intsquareByValue(int);
void squareByReference(int &);
Int main()
{
INtx=2,z=4;
cout<<''x =" << x << " before squareByValue\n"
<< "Valuereturned by squareByValue: "

<< squareByValue(x) << endl
<< "X =" << x << " after squareByValue\n"' << endl;

Programming Fundamentals 34

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

cout<<"z =" <<z<<" before squareByReference" << endl;
squareByReference(z);

cout<<"z =" <<z <<" after squareByReference" <<endl;
return O;

%nt squareByValue(inta)

{ return a *=a; //caller's argument not modified
3/oid squareByReference(int &cRef)

i cRef *= cRef; // caller's argument modified

The output of the above program:

X = 2 before squareByValue
Value returned by squareByValue: 4
X = 2 after squareByReference

z = 4 before squareByReference
z = 16 after squareByReference

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

35

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

RECURSION

= InC++,it’s possible for a function to call itself. Functions that
do so are called seft-referential or recursive functions.

= Insome problems,itmay be natural to definethe problem in
terms of the problem itself.

= Recursionis useful for problemsthat can berepresented by a
simpler version of the same problem.

1= Example: Factorial

11 =1,
121 = 2%1 = 2*1!
1 31 = 3*2%1=3*2|

i n! = n*(n-1)!

! The factorial functionis only
l
|

defined for positive integers.
n'= if n is equal to 1
:n!=n* (n-1)! if n >1
|

Programming Fundamentals 37

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example : -
#include <iostream.h> |
#include <iomanip.h>

unsigned long factorial(unsignedlong); '

Int main(){
for (inti=0;i<=10; i++)
cout<<setw(2) <<i<<"l=" The output :
<< factorial(i1) << endl, ol =1
return O; Fli=d,
) =9
1 // Recursive definition of function factorial 31=6
' unsigned long factorial(unsigned long number){ 4: =
,If(number<1) /[base case 2; N %g
I return 1; 7; . 5040
' else /[recursive case g
I _ 8! = 40320
I return number * factorial(number -1); 91 = 362880
|

} 10! = 3628800

Programming Fundamentals 38

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

We must always make sure that the recursion bottoms out:

o A recursive function must contain at least one non-
recursive branch.

o The recursive calls must eventually lead to a non-
recursive branch.

Recursion is one way to decompose atask into smaller subtasks.
At least one of the subtasks is a smaller example of the same task.

The smallest example of the same task has a non-recursive
solution.

[Tl
X
Q
=
=2
@
_l
>
3
m—
Q
O
~t
O
=,
O
*
c
S
O
=,
O
=

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

How the Computation is Performed

= Themechanismthat makes it possibleforaC++g
functionto call itselfis that C++ allocates new
memory locations for all function parameters
and local variables as each functionis called.

= Thereisa dynamic dataareafor each execution of a function.
This allocationis made dynamically, as a program is executed,
Inamemory areareferred as the stack.

= A memory stack is an area of memory used for rapidly storing
and retrieving data areas for active functions. Each function call
reserves memory locations on the stack for its parameters, its local
variables, a return value, and the address where executionis to
resume in the calling program when the function has completed
execution (return address).

= Inserting and removing items from a stack are based on last-
in/first-out mechanism.

Programming Fundamentals 40

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Thus, when the function call factorial(n)is made, a
data area for the execution of this function call is
pushed on top of the stack.

N Theprogress of execution for the
recursivefunction factorial applied
withn =3 is as follows:

reserved for factorial(3) = 3*factorial(2)
returned value - 3*(2*factorial (1))
. ___ = 3*(2*(1*factorial(0)))
return address = 3%(2*(1*1))
= 3*(2*1)
=3*2
Thedataareafor the =6

first call to factorial

Programming Fundamentals

41

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

Price for recursion:

o calling a function consumes more time and memory than
adjusting a loop counter.

o high performance applications (graphic action games,

In less demanding applications recursion is an
attractive alternative for iteration

(for the right problems!)

simulations of nuclear explosions) hardly ever use recursion.

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

42

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion vs. lterative structure

For certain problems (such as the factorial function),
arecursive solution often leads to short and elegant code.

Recursive solution lterative solution

intfac(int numb){

| |
| |
| |
| |
; ! int fac(int numb){
: If(numb<=1) :
| |
| |
| |
| |
| |
| |

| Intproduct=1;
return 1; while(numb>1){
else
return numb*fac(numb-1);
\ numb--;

}

1

|

|

1

|

|

1

|

|

1

; product *=numb:
:

|

1

! return product;
L

Programming Fundamentals 43

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

If we use iteration, we must be careful not to

create an infinite loop by accident:

for(int incr=l; incr!=10;incr+=2)

int result = 1;
while (result >0) {

result++;

Programming Fundamentals

44

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion

Similarly, if we use recursion we must be careful
not to create an infinitechain of function calls:

int fac(int numb) {
return numb * fac (numb-1) ;

} | A
Or: Oops!
int fac(int numb) { No termination
if (numb<=1) condition
return 1; 4)
else

return numb * fac (numb+l) ;

} :i
0o p:&]]]

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Recursion vs. lteration

lteration

o Uses repetition structures (for, while or do..while)
o Repetition through explicitly use of repetition structure
o Terminates when loop-continuation condition fails

o Controls repetition by using a counter

Recursion

o Uses selection structures (11, 1f..else or switch)
o Repetition through repeated method calls

o Terminates when base case is satisfied
Q

Controls repetition by dividing problem into simpler
one

Programming Fundamentals

46

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example — Fibonacci numbers

o, 1, 1, 2, 3, 5, 8, 13, 21, 34,
where each number is the sum of the preceding two.

Fibonacci numbers are believed to model nature to a
certain extent, such as Kepler's observation of
leaves and flowers in 1611.

Recursive definition:

2 F(0) = O;

2 F(1) = 1;

0 F(number) = F(number-1)+ F (number-2);

(5 ()

Programming Fundamentals 47

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example - Fibonacci numbers

//Calculate Fibonacci numbers using recursive function.
//A very inefficient way, but illustrates recursion well
int fib (int number)
{

if (number <= 0) return 0;

if (number == 1) return 1;

return (fib (number-1) + fib (number-2)) ;
}
int main () {

int inp number;

cout << "Please enter an integer: ";

cin >> inp number;

cout << "The Fibonacci number for "<< inp number

<< " is "<< fib(inp number)<<endl;
return O;

Programming Fundamentals 48

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Fib,, Fib(4)
Fiby_| + Fiby_» Fib(3) - Fib(2)
Fibp | + |Fiby.3 Fiby3 | + |Fibyy Fib2) [+ |Fib(1) Fib(1) | + | Fib(0)
. . 1 1 0
Fiby.3 |+ |Fibyy Fib(1) [4+ | Fib(0)
. . I 0
(a) Fib(n) (b) Fib(4)

Copyright © 2000 by Brooks/Cole Publishing Company

A division of International Thomson Publishing Inc.
Programming Fundamentals 49

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example - Binary Search

o Search for an element In an array
Sequential search
Binary search

o Binary search

Compare the search element with the middle
element of the array

If not equal, then apply binary search to half of the
array (if not empty) where the search element
would be.

Programming Fundamentals 50

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary Search with Recursion

// Searches an ordered array of integers using recursion
int binSearch (const int data[], // input: array

int first, // input: lower bound
int last, // input: upper bound
int value // input: value to find

)// output: index if found, otherwise return -1

int middle = (first + last) / 2;
if (data[middle] == wvalue)
return middle;
else if (first >= last)
return -1;
else if (value < data[middle])
return binSearch (data, first, middle-1, wvalue);
else
return binSearch (data, middle+l, last, wvalue);

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary Search

int main() {
const int array size = 8;
int list[array size]={1, 2, 3, 5, 7, 10, 14, 17};
int search value;

cout << "Enter search wvalue: ";
cin >> search_value;
cout << binSearch(list,O0,

array size-1,search value) << endl;

return O;

Programming Fundamentals 52

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary Search w/o recursion

// Searches an ordered array of integers

int binSearch (const int data[], int size, int wvalue
int first, last, upper;
first = 0;
last = size - 1;
while (true) {
middle = (first + last) / 2;
if (data[middle] == wvalue)
return middle;
else i1f (first >= last)
return -1;
else i1f (value < data[middlel])
last = middle - 1;
else
first = middle + 1;

Programming Fundamentals 53

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercise — Rabbit production

How many pairs of rabbits can be produced
from a single pair in a year's time?

= Assumptions:

o Each pair of rabbits produces a new pair of
offspring every month;

o each new pair becomes fertile at the age of one
month;

o none of the rabbits dies in that year.

= Example:
o After 1 monththere will be 2 pairs of rabbits;
o after 2 months, there will be 3 pairs;

o after 3 months, there will be 5 pairs (since the following month the
original pair and the pair born during the first month will both
produce a new pair and there will be 5 in all).

e @

[
_Y - 3
¢ ﬁ) ﬂ) {m Programming Fundamentals 55
uuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

‘Exercise

CuuDuongThanCong.com

Programming Fundamentals

https://fb.com/tailieudientucntt

56

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PASSING ARRAYS TO FUNCTIONS

To pass an array to a function, specify the name of the array
without any brackets. For example, if array hourlyTemperature
has been declared as

Int hourlyTemperature[24];
Thefunction call statement
modifyArray(hourlyTemperature, size);

passesthe array hourlyTemperature and its size to function
modifyArray.

For the function to receive an array through afunction call, the
function’s parameter list must specify that an array will be
received.

Programming Fundamentals 57

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

For example, the function header for function modifyArray
might be written as

void modifyArray(intb[], int arraySize)

Noticethatthe size of the array is not required between the
array brackets.

Example 6.7.2

#include<iostream.h>
IntlinearSearch(int[], int, int);
void main()
{
constint arraySize = 100;
Int a[arraySize], searchkey, element;

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

for (intx =0; X <arraySize, x++) //create some data
a[x] = 2*x;
cout<< “Enterinteger search key: “<<endl;
cin >>searchKey;
element = linearSearch(a, searchKey, arraySize);
If(element !=-1)

cout<<”Found value in element “<< element << endl;
else

cout<<“Value not found “ << endl;

}
Int linearSearch(int array[], int key, int sizeofArray)
{
for(intn=0; n<sizeofArray; n++)
If (array[n] = = key)
returnn;
return =1;

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

59

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

POINTERS

A pointerisaspecial type of variable that stores the memory
address of other variables.

You declarea variable as a pointer by placing the indirection
operator (*) after the datatype or before the variable name.

Examples:
Int *pFirstPtr;
int *pSecondPtr;

You usethe address-of operator (&) to assign to the pointer
variablethe memory address of another variable.

Example:
double dPrimelnterest;
double *pPrimeinterest;
pPrimelnterest = &dPrimelnterest;

Programming Fundamentals 60

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Note: If ptris a pointer variable, *ptr means the contents of the
variable pointed to by ptr.

Example6.8.1
#include<iostream.h>
void main()

{

Int &; The output of the above program:
Int *aPtr;

/[aPtr is a pointer to an integer
a=717, The address of ais 0xO065FDF4
aPtr = &a; //aPtr set to address of a The value of aPtr is Ox0065EDE4
cout << “The address of ais “ << &a

<< “AnThe value of aPtr is “ << aPtr;
cout << “\n\nThe value of a is “<<a The value of ais 7
<< ‘“AnThe value of *aPtr is “ << *aPtr

<< endl;

The value of *aPtr is 7

Programming Fundamentals 61

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Calling Functions by Reference with Pointer
Arguments

In C++, programmers can use pointers and the
dereference operator to simulate call-by-reference.

When calling a function with arguments that should
be modified, the addresses of the arguments are
passed. This is normally achieved by applying the
address-of operator (&) to the name of the variable
whose value will be used.

A function receiving an address as an argument
must define a pointer parameter to receive the

address.

Programming Fundamentals 62

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example6.8.2
/[Cubea variable using call-by-reference with a pointer argument
#include <iostream.h>
void cubeByReference(int*); //prototype
Intmain()
{
int number =5;
cout <<"Theoriginal value of numberis" <<number;
cubeByReference(&number);
cout <<"\nThe new value of numberis" <<number << endl;
return O;

}

void cubeByReference(int *nPtr)

{

*nPtr = (*nPtr) * (*nPtr) * (*nPtr); //cube number in main

i The output of the above propgram:

The original value of number is 5
The new value of number is 125

Programming Fundamentals 63

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers and Arrays

Noticethat the name of an array by itself is equivalentto the
base address of that array. That is, the name z in isolationis
equivalentto the expression &z[0].

Example 6.8.3
#include<iostream.h>
void main()

{

intz[] ={1,2, 3, 4, 5};
cout << “The value return by ‘2’ itself is the addr “ <<z << end|;
cout << “The address of the 0th element of z is “ << &z[0] << end];

}

The output of the above program:

The value return by ‘Z’ itself is the addr 0x0065FDF4
The address of the Oth element of z is OXOO65FDF4

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

64

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Accessing Array Element Using Pointer and
Offset

If we store the address of grade[0O] into a pointer named
gPtr, then the expression *gPtr refers to grade[O0].

One unique feature of pointers is that offset may be
Included in pointer expression.,

For example, the expression *(gPtr + 3) refers to the
variable that is three (elements) beyond the variable
pointed to by gPtr.

The number 3 in the pointer expression is an offset. So
gPtr + 3 points to the element grade[3] of the grade array.

Programming Fundamentals 65

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example 6.8.4
#include <iostream.h>

Int main()
{
int b[] ={ 10, 20, 30, 40 }, I, offset;
int *bPtr=Db; //set bPtrto pointto arrayb

cout <<"Array b printed with:\n"
<<"Array subscript notation\n";

for(1=0;1<4;i++)
cout<<"b[" <<i<<"]="<<b[i]<<"\n"

cout <<"\nPointer/offset notation\n";
for (offset = O; offset < 4; offset++)
cout<<"*(bPtr +" << offset<<") ="
<<*(bPtr + offset) <<'\n';
return O;

}

Programming Fundamentals

CuuDuongThanCong.com

The output of the above
program:

Array b printed with:
Array subscript notation
b[0] =10

b[1] =20

b[2] = 30

b[3] =40

Pointer/offset notation
*(bPtr + 0) =10
*(bPtr+ 1) =20
*(bPtr + 2) =30
*(bPtr + 3) =40

66

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers and Strings

We can scan through astring by using pointer.

Thename of a string by itself is equivalentto the
base address of that string.

Example 6.8.5
[* Printing a string one character at a time using pointer */
#include<iostream.h>

void main()

{ Theoutput of the above
char strng[] = “Adams”; program:
char *sPtr;

sPtr = &strng|O0];

cout << “AnThe string is: \n”;

for(; *sPtr 1= "\0’; sPtr++) Adams
cout << *sPtr << * ;

The string is:

Programming Fundamentals

CuuDuongThanCong.com https://fb.com/tailieudientucntt

67

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Dynamically Allocating Storage

Besides variables, i.e. statically allocated and named
storage, a dynamic storage can be dynamically
allocated and be accessed through pointers

Syntax:

0 <pointer> = new <type>
0 <pointer> = new <type> [<number_of elements>]
Example:

Int*p,*q; D —

P = new int; } 10
*p = 10;

a=0Dp,

Programming Fundamentals 68

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Dynamic data structure

Dynamic data structures are those that are able to
grow and shrink such as lists, queues, stacks,

trees,...
head

3 2 1

Example:

struct node { p
Int value;
struct node *link;

value
link

node *head = 0, *p;
for(inti=1;i1<4;i++){
P = new node;
p -> value =i
p -> link = head,
head = p;

}

Programming Fundamentals 69

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

De-allocating dynamic storage

Dynamic storage should be de-allocated when it is
not used any more; otherwise, it becomes garbage.

Syntax:
0 delete <pointer>
0 delete [] <pointer>
Example
Int *p;
P = new int;

delete p;

Programming Fundamentals 70

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

‘ Exercise

CuuDuongThanCong.com

Programming Fundamentals

https://fb.com/tailieudientucntt

71

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Passing Structures as Parameters

Completecopies of all members of a structure can be passed
to a function by including the name of the structure as an
argumentto the called function.

The parameter passing mechanism hereis call-by-value.

Example 6.8.6
#include <iostream.h>
struct Employee /[declare aglobal type
{

IntidNum:

double payRate;

double hours;
};
doublecalcNet(Employee); //function prototype
Int main()

{

Programming Fundamentals

72

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Employeeemp = {6782, 8.93, 40.5};

double netPay;

netPay = calcNet(emp); //pass by value

cout<<"Thenet pay for employee"
<<emp.idNum <<" is $" << netPay << endl;

return O;

}

doublecalcNet(Employeetemp)// temp is of data
/[type Employee

{

return (temp.payRate *temp.hours);

}

The output:

The net pay for employee 6782 is $361.665

Programming Fundamentals

73

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Second way of passing a structure

An alternativeto the pass-by-value function call, we can pass a
structureby passing a pointer.

Example 6.8.5

#include <iostream.h>
struct Employee //declarea globaltype
{
INntidNum;
double payRate;
doublehours;
};
double calcNet(Employee *); /[function prototype
iInt main()

{

Programming Fundamentals 74

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Employeeemp = {6782, 8.93, 40.5};

double netPay;

netPay = calcNet(&emp); //pass an address

cout<<"Thenet pay for employee"
<<emp.idNum <<" is $" << netPay << endl;

return O;

}

doublecalcNet(Employee* pt) //ptis a pointer
{ //to a structure of Employeetype
return (pt->payRate * pt->hours);

}

Theoutputis:

The net pay for employee 6782 is $361.665

Programming Fundamentals

75

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

THE typedef DECLARATION STATEMENT

Thetypedefdeclaration permits us to construct alternate
names for an existing C++ datatype name. The syntax of a
typedef statement:

typedef data-type new-type-name

For example, the statement:

typedef float REAL;

make the name REAL a synonym for float. The name REAL can
now beused in place of float anywhere in the program after the
synonym has been declared.

The definition
REAL val;
IS equivalent to float val;

Programming Fundamentals 76

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example: Consider the following statement:
typedef struct
{
char name[20];
int idNum;
} EMPREC;

The declaration EMPREC employee[75];
struct

{

char name[20];
int idNum;
} employee[75];

Example: Consider the statement:
typedef double* DPTR,;

The declaration: DPTR pointerl;
IS equivalent to double* pointeri,;

Programming Fundamentals

CuuDuongThanCong.com

IS equivalent to

https://fb.com/tailieudientucntt

77

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

