
Chapter 8

Programming Fundamentals 1

OBJECT MANIPULATION - INHERITANCE

Chapter 8

� Advanced constructors
� Destructors
� Constant Objects
� Static class members

Programming Fundamentals 2

� Static class members
� Inheritance

Advanced constructors

� Constructors can do more than initializing data
members.

� They can execute member functions and perform
other type of initialization routines that a class

Programming Fundamentals 3

other type of initialization routines that a class
may require when it first starts.

Parameterized Constructors
� Constructors can accept parameters that a client can use

to pass initialization values to the class.

� Example: We can have a constructor function definit ion in the
implementation file as follows:

Payroll::Payroll(double dFed, double dState){

Programming Fundamentals 4

Payroll::Payroll(double dFed, double dState){
dFedTax = dFed;
dStateTax = dState;

};

� Once you create a parameterized constructor, you ha ve
to supply parameters when you instantiate a new obj ect.

//Payroll.h
class Payroll{
public:

Payroll(double, double);
private:

double dFedTax;
double dStateTax;

}
//Payroll.cpp
#include “Payroll.h
#include <iostream.h>

Programming Fundamentals 5

#include <iostream.h>
Payroll::Payroll(double dFred, double dState){

dFedTax = dFed;
dStateTax = dState;

};
void main(){

Payroll employee; //illegal because of no parameter values
……

}

Overloading constructor functions
� Constructor functions can be overloaded. You can instantiate

different versions of a class, depending on the supplied
parameters

� Being able to overload a constructor function allows you to
instantiate an object in multiple ways.

� Example:
//Payroll.h

Programming Fundamentals 6

//Payroll.h
class Payroll{
public:

Payroll(); // three version of constructors
Payroll(double dFed);
Payroll(double dFed, double dState);

private:
double dFedTax;
double dStateTax;

}

//Payroll.cpp
#include “Payroll.h
#include <iostream.h>
Payroll::Payroll(){

dFedTax = 0.28;
dStateTax = 0.05;

};

Payroll::Payroll(double dFed){
dFedTax = dFed;

void main(){

Payroll employeeFL(0.28);

Payroll employeeMA(0.28, 0.0595);

Programming Fundamentals 7

dFedTax = dFed;
};

Payroll::Payroll(double dFred, double dState){
dFedTax = dFed;
dStateTax = dState;

};

}

Initialization Lists
� Initialization lists, or member initialization lists, are another way

of assigning initial values to a class’s data membe rs.
� An initialization list is placed after a function h eader’s closing

parenthesis, but before the function’s opening curl y braces.

� Example :

Payroll::Payroll(double dFed, double dState){

Programming Fundamentals 8

Payroll::Payroll(double dFed, double dState){
dFedTax = dFed;
dStateTax = dState;

};
� You can use initialization list to rewrite the abov e constructor .

Payroll::Payroll(double dFed, double dState)
:dFedTax(dFed), dStateTax(dState) {

};

Parameterized Constructors that Uses Default
Arguments

� To create a parameterized constructor that uses def ault
arguments, we can put the default values at the constructor
prototype.

� Example : The class Employee has a constructor with the
prototype:

Programming Fundamentals 9

prototype:

Employee(const int id = 999, const double hourly = 5.65);

� This format provides the constructor function with default
values for two arguments. When we create an Employee object,
the default values in the constructor prototype are assigned to
the class variables.

Example 8.1.2
#include<iostream.h>
class Employee{
private:

int idNum;
double hourlyRate;

public:
Employee(const int id = 9999, const double hourly = 5.65);
void setValues(const int id, const double hourly);
void displayValues();

};
Employee::Employee(const int id, const double hourl y)
{

Programming Fundamentals 10

{
idNum = id;
hourlyRate = hourly;

}
void Employee::displayValues()
{

cout<<”Employee #<< idNum<<” rate $”<<
hourlyRate<< “ per hour “<<endl;

}

void Employee::setValues(const int id, const double hourly)
{

idNum = id;
hourlyRate = hourly;

}
void main(){

Employee assistant;
cout<< “Before setting values with setValues()”<< e ndl;
assistant.displayValues();

Programming Fundamentals 11

assistant.displayValues();
assistant.setValues(4321, 12.75);
cout<< “After setting values with setValues()”<< en dl;
assistant.displayValues();

}

The output of the above program:

Before setting values with setValues()
Employee #9999 rate $5.65 per hour
After setting values with setValues()
Employee #4321 rate $12.75 per hour

Programming Fundamentals 12

Employee #4321 rate $12.75 per hour

DESTRUCTORS
� A default destructor cleans up any resources allocated to an

object once the object is destroyed.

� To delete any heap variables declared by your class , you must
write your own destructor function.

� You create a destructor function using the name of the class,
the same as a constructor function, preceded by a t ilde ~.

Programming Fundamentals 13

the same as a constructor function, preceded by a t ilde ~.
Destructor functions cannot be overloaded or accept
parameters.

� A destructor is called in two ways;
- when a stack object loses scope when the function in which it is
declared ends.
- when a heap object is destroyed with the delete operator.

Example 8.2.1
//Stocks02.h
class Stocks {
public:

Stocks(char* szName);
~Stocks(); //destructor
void setStockName(char* szName);
char* getStockName();
void setNumShares(int);
int getNumShares(int);
void setPricePerShare(double);

Programming Fundamentals 14

void setPricePerShare(double);
double getPricePerShar();
double calcTotalValue();

private:
char* szStockName;
int iNumShares;
double dCurrentValue;
double dPricePerShare;

};

//Stocks.cpp
#include “stocks_02.h”
#include <string.h>
#include <iostream.h>
Stocks::Stocks(char* szName){

szStockName = new char[25];
strcpy(szStockName, szName);

};

Programming Fundamentals 15

Stocks::~Stocks(){
delete[] szStockName;
cout <<”Destructor called” << endl;

}
…
…

void main(){
Stocks stockPick1(“Cisco”);
stockPick1.setNumShares(100);
stockPick1.setPricePerShare(68.875);
Stocks* stockPick2 = new Stocks(“Lucent”); //heap object
stockPick2->setNumShares(200);
stockPick2->setPricePerShare(59.5);
cout << “The current value of your stock in “

<< stockPick1.getStockName() << “ is $”
<< stockPick1.calcTotalValue()

Programming Fundamentals 16

<< stockPick1.calcTotalValue()
<< “.” << endl;

cout << “The current value of your stock in “
<< stockPick2->getStockName() << “ is $”
<< stockPick2->calcTotalValue()
<< “.” << endl;

delete stockPick2;
}

� The output of the above program:

The current value of your stock in Cisco is $6887.5
The current value of your stock in Lucent is $11900
Destructor called.
Destructor called.

� The stockPick1 object calls the destructor when it is
destroyed by the main() function going out of

Programming Fundamentals 17

The stockPick1 object calls the destructor when it is
destroyed by the main() function going out of
scope.

� The stockPick2 object does not call the destructor
since it is declared on the heap and must be delete d
manually.

� To delete the stockPick2 object manually, we add the
statement delete stockPick2; to the main() function

CONSTANT OBJECTS

� If you have any type of variable in a program that does not
change, you should always use the const keyword to declare
the variable as a constant.

� To declare an object as contant, place the const keyword in
front of the object declaration.

Programming Fundamentals 18

� Examle:
const Date currentDate;

� Note: Constant data members in a class can not be assigned
values using a standard assignment statement. You m ust use
an initialization list to assign initial values to constant data
members.

Example:
//Payroll.h
class Payroll{
public:

Payroll();
private:

const double dFedTax;
const double dStateTax;

};
//Payroll.cpp

Using an initialization list

Programming Fundamentals 19

//Payroll.cpp
#include “Payroll.h”
#include <iostream.h>
Payroll::Payroll(){

dFedTax = 0.28; //illegal
dStateTax = 0.05; //illegal

};

Payroll::Payroll()

:dFedTax(0.28), dStateTax(0.05){

};

Using an initialization list

Constant Functions

� Another good programming technique is to use the
const keyword to declare get functions as constant
function.

� The const keyword makes your programs more
reliable by ensuring that functions that are not
supposed to modify data cannot modify data.

Programming Fundamentals 20

supposed to modify data cannot modify data.

� To declare a function as constant, you add the const
keyword after a function’s parentheses in both the
function declaration and definition.

Example :
//Payroll.h
double getStateTax(Payroll* pStateTax) const ;
//Payroll.cpp
double Payroll::getStateTax(Payroll* pStateTax)
const {

Programming Fundamentals 21

const {
return pStateTax->dStateTax;

};

INHERITANE

� Inheritance is a form of software reusability in
which new classes are created from existing
classes by inheriting their attributes and
behaviors, and overriding these with capabilities
the new classes require.

Programming Fundamentals 22

the new classes require.

Software reusability saves time in programming
development.

BASIC INHERITANCE

Inheritance refers to the ability of one class to take on
the characteristics of another class.

Base Classes and Derived Classes

� When you write a new class that inherits the charac teristics of
another class, you are deriving or subclassing a class.

Programming Fundamentals 23

another class, you are deriving or subclassing a class.

� An inherited class is called the base class, or superclass and
the class that inherits a base class is called a derived class or
subclass.

� A class that inherits the characteristics of a base class is said
to be extending the base class since you often extend the class
by adding your own class members.

Base Classes and Derived Classes
� When a class is derived from a base class, the deri ved class

inherits all of the base class members and all of i ts member
functions, with the exception of: constructor functions, copy
constructor functions, destructor functions and overloaded
assignment (=) functions

� A derived class must provide its own implementation of these
functions.

Programming Fundamentals 24

� The class header declaration for a derived class Customer
which inherits the characteristics of the Person class is as
follows:

class Customer: public Person
{
……
}

� Once you extend a base class, you can access its cl ass
member directly through objects instantiated from t he
derived class.

� Example 8.4.1
#include<iostream.h>
#include<string.h>
class Person
{

Programming Fundamentals 25

{
private:

int idnum;
char lastName[20];
char firstName[15];

public:
void setFields(int, char[], char[]);
void outputData();

};

void Person::setFields(int num, char last[], char f irst[])
{

idnum = num;
strcpy(lastName, last);
strcpy(firstName, first);

}
void Person::outputData(){

cout<< “ID#”<< idnum << “ Name: “<< firstName << “ “<<
lastName << endl;

}

Programming Fundamentals 26

}
class Customer:public Person
{
private:

double balanceDue;
public:

void setBalDue;
void outputBalDue();

};

void Customer::setBalDue(double bal)
{

balanceDue = bal;
}
void Customer::outputBalDue()
{

cout<< “Balance due $” << balanceDue<< endl;
}
void main()
{

Programming Fundamentals 27

{
Customer cust;
cust.setFields(215, “Santini”, “Linda”);
cust.outputData();
cust.setBalDue(147.95);
cust.outputBalDue();

}

The output of the above program:

ID#215 Name: Linda Santini
Balance due $147.95

Class Hierarchy

Person class

Employee class

Programming Fundamentals 28

Worker class Secretary class

Derived classes themselves can serve as base classe s for other
derived classes. When you build a series of base cl asses and
derived classes, the chain of inherited classes is known as a
class hierarchy

Class hierarchy (cont.)

� Each class in a class hierarchy cummulatively
inherits the class members of all classes that
precede it in the hierarchy chain.

� A class that directly precedes another class in a
class hierarchy, and is included in the derived

Programming Fundamentals 29

class hierarchy, and is included in the derived
class’s base list, is called the direct base class.

� A class that does not directly precedes another
class in a class hierarchy, and that not included i n
the derived class’s base list, is called the indirect
base class.

Access Specifiers and Inheritance

� Even though a derived class inherits the class memb ers of a
base class, the base class’s members are still bound by its
access specifiers.

� Private class members in the base class can be accessed onl y
by the base class’s member functions.

� For example, the idNum data member in the Person class is

Programming Fundamentals 30

� For example, the idNum data member in the Person class is
private. If you write the following member function in the
Customer class, which attempts to directly access to the idNum
data member, you will get a compiler error.

void Customer::outputBalDue(){
cout << “ ID #”<< idNum << “ Balance due $”

<< balanceDue<<endl;
}

Proteced access specifier

� You can declare the idNum data member with the
protected access specifier.

� The protected access modifier restricts class
member access to

1. the class itself

Programming Fundamentals 31

1. the class itself
2. to classes derived from the class.

� The following code shows a modified version of the
Person class declaration in which the private access
modifier has been changed to protected.

Example :

class Person {
protected:

int idNum;
char lastName[20];
char firstName[15];

public:
void setFields(int num, char last[], char first[]);

Programming Fundamentals 32

void setFields(int num, char last[], char first[]);
void outputData();

};

� A member function in Customer class that attempts to directly
access to the idNum data member will work correctly since the
Customer class is a derived class of the Person class and th e
idNum data member is now declared as protected.

OVERRIDDING BASE CLASS MEMBER
FUNCTIONS

� Derived classes are not required to use a base
class’s member functions. You can write a more
suitable version of a member function for a derived
class when necessary.

� Writing a member function in a derived class to

Programming Fundamentals 33

� Writing a member function in a derived class to
replace a base class member function is called
function overridding.

� To overrid a base class function, the derived
member function declaration must exactly match the
base class member function declaration, including
the function name, return type and parameters.

� To force an object of a derived class to use the ba se
class version of an overriden function, you precede
the function name with the base class name and the
scope resolution operator using the syntax:

object.base_class::function();

Programming Fundamentals 34

object.base_class::function();

� Example 8.4.2
In the following code, the base class Person and the
derived class Employee have their own function
member with the same name setFields().

#include<iostream.h>
#include<string.h>
class Person
{
private:

int idnum;
char lastName[20];
char firstName[15];

public:
void setFields(int, char[], char[]);

Programming Fundamentals 35

void setFields(int, char[], char[]);
void outputData();

};

void Person::setFields(int num, char last[], char f irst[])
{

idnum = num;
strcpy(lastName, last);
strcpy(firstName, first);

}

void Person::outputData()
{

cout<< “ID#”<< idnum << “ Name: “<< firstName << “ “<< l astName <<
endl;

}
class Employee: public Person
{
private:

int dept;
double hourlyRate;

public:

Programming Fundamentals 36

public:
void setFields(int, char[], char[], int, double);

};
void Employee::setFields(int num, char last[], char first[], int dept,

double sal)
{

Person::setFields(num, last, first);
dept = dep; hourlyRate = sal;

}

void main()
{

Person aPerson;
aPerson.setFields(123, “Kroening”, “Ginny”);
aPerson.outputData();
cout<< endl<<endl;
Employee worker;
worker.Person::setFields(777, “Smith”, “John”);
worket.outputData();
worker.setFields(987,”Lewis”, “Kathy”, 6, 23.55);

Programming Fundamentals 37

worker.setFields(987,”Lewis”, “Kathy”, 6, 23.55);
worker.outputData();

}
The output of the above program:

ID # 123 Name: Ginny Kroening
ID # 777 Name: John Smith
ID # 987 Name: Kathy Lewis

CONSTRUCTORS AND DESTRUCTORS IN
DERIVED CLASSES

� When you derive one class from another class, you
can think of any instantiated object of the derived
class as having two portions:

- the base class portion and

Programming Fundamentals 38

- the base class portion and
- the derived class portion.

� During the instantiating process, the base class
portion of the object is instantiated, and then the
derived class portion of the object is instantiated .

� So, two constructors execute for a single derived
class object: the base class constructor and the
derived class constructor.

� When a derived class object instantiates,
constructors begin executing at the top of the clas s

Programming Fundamentals 39

constructors begin executing at the top of the clas s
hierarchy. First, the base constructor executes, th en
any indirect base class’s constructors execute.
Finally, the derived class’ constructor executes.

� When an object is destroyed, class destructors are
executed in the reverse order

Class A

Class B

Class C

Class D

Programming Fundamentals 40

Class D object Instantiated

Order of Construction Order of Destruction

1.Class A 1. Class D

2. Class B 2. Class C

3. Class C 3. Class B

4. Class D 4. Class A

Example 8.4.3
#include<iostream.h>
#include<string.h>
class Person
{
private:

int idnum;
char lastName[20];
char firstName[15];

public:

Programming Fundamentals 41

public:
Person();
void setFields(int, char[], char[]);
void outputData();

};
Person::Person(){

cout << “Base class constructor call “<< endl;
}

void Person::setFields(int num, char last[], char f irst[])
{

idnum = num;
strcpy(lastName, last);
strcpy(firstName, first);

}
void Person::outputData()
{

cout<< “ID#”<< idnum << “ Name: “<< firstName << “ “<< l astName <<
endl;

}

Programming Fundamentals 42

}
class Customer: public Person
{
private:

double balanceDue;
public:

Customer();
void setBalDue;
void outputBalDue();

};

Customer::Customer(){
cout << “Derived constructor called” <<
endl;

}
void Customer::setBalDue(double bal)
{

balanceDue = bal;
}
void Customer::outputBalDue()
{

cout<< “Balance due $” The output of the above program:

Programming Fundamentals 43

cout<< “Balance due $”
<< balanceDue<< endl;

}
void main()
{

Customer cust;
cust.setFields(215, “Santini”, “Linda”);
cust.outputData();
cust.setBalDue(147.95);
cust.outputBalDue();

}

The output of the above program:

Base class constructor called

Derived class constructor called

ID #215 Name: Linda Santini

Balance due $147.95

