Chapter 8

OBJECT MANIPULATION - INHERITANCE

Programming Fundamentals

Chapter 8

Advanced constructors
Destructors

Constant Objects
Static class members
Inheritance

Programming Fundamentals

Advanced constructors

Constructors can do morethan initializing data
members.

They can execute member functions and perform
other type of initialization routinesthat a class
may requirewhen it first starts.

Programming Fundamentals

Parameterized Constructors

Constructors can accept parameters that a client can use
to pass initialization values to the class.

Example: We can have a constructor function definit lon in the
implementation file as follows:

Payroll::Payroll(double dFed, double dState){

dFedTax = dFed:;
dStateTax = dState;

Once you create a parameterized constructor, you ha ve
to supply parameters when you instantiate a new obj ect.

Programming Fundamentals

//Payroll.h
class Payroll{
public:
Payroll(double, double);
private:
double dFedTax;
double dStateTax;
}
//Payroll.cpp
#include “Payroll.h
#include <iostream.h>
Payroll::Payroll(double dFred, double dState){
dFedTax = dFed;
dStateTax = dState;

I3
void main({

Payroll employee; /llllegal because of no parameter values
}

Programming Fundamentals

Overloading constructor functions

Constructor functions can be overloaded. You can instantiate
different versions of a class, depending on the supplied
parameters

Being able to overload a constructor function allows you to
iInstantiate an object in multiple ways.

Example:
//Payroll.h
class Payroll{
public:
Payroll(); /Il three version of constructors
Payroll(double dFed);
Payroll(double dFed, double dState);
private:
double dFedTax;
double dStateTax;

}

Programming Fundamentals

//Payroll.cpp

#include “Payroll.h

#include <iostream.h>

Payroll::Payroll(){
dFedTax = 0.28;
dStateTax = 0.05;

1 void main(¥
’ Payroll employeeFL(0.28);
Payroll::Payroll(double dFed){ Payroll employeeMA(0.28, 0.0595);
dFedTax = dFed,; }
I3

Payroll::Payroll(double dFred, double dState){
dFedTax = dFed;
dStateTax = dState;

3

Programming Fundamentals

Initialization Lists

Initialization lists, or member initialization lists, are another way
of assigning initial values to a class’s data membe s.

An initialization list is placed after a function h eader’s closing
parenthesis, but before the function’s opening curl y braces.

Example :

Payroll::Payroll(double dFed, double dState){
dFedTax = dFed;
dStateTax = dState;

%
You can use initialization list to rewrite the abov e constructor .

Payroll::Payroll(double dFed, double dState)
:dFedTax(dFed), dStateTax(dState) {

%

Programming Fundamentals

Parameterized Constructors that Uses Default
Arguments
To create a parameterized constructor that uses def ault

arguments, we can put the default values at the constructor
prototype.

Example : The class Employee has a constructor with the
prototype:

Employee(const int id = 999, const double hourly = 5.65);

This format provides the constructor function with default
values for two arguments. When we create an Employee object,
the default values in the constructor prototype are assigned to

the class variables.

Programming Fundamentals

Example 8.1.2

#include<iostream.h>

class Employee{

private:
Int idNum;
double hourlyRate;

public:
Employee(const int id = 9999, const double hourly =
void setValues(const int id, const double hourly);
void displayValues();

%
Employee::Employee(const int id, const double hourl
{
IdNum = id;
hourlyRate = hourly;
}
void Employee::displayValues()
{

cout<<"Employee #<< idNum<<" rate $"<<
hourlyRate<< “ per hour “<<endl;

Programming Fundamentals

y)

5.65);

10

void Employee::setValues(const int id, const double

{
IdNum = id;
hourlyRate = hourly;

}

void main(){
Employee assistant;
cout<< “Before setting values with setValues()"<< e
assistant.displayValues();
assistant.setValues(4321, 12.75);
cout<< “After setting values with setValues()’<< en
assistant.displayValues();

Programming Fundamentals

hourly)

ndl;

dl;

11

The output of the above program:

Before setting values with setValues()
Employee #9999 rate $5.65 per hour
After setting values with setValues()
Employee #4321 rate $12.75 per hour

Programming Fundamentals

12

DESTRUCTORS

A default destructor cleans up any resources allocated to an
object once the object is destroyed.

To delete any heap variables declared by your class , you must
write your own destructor function.

You create a destructor function using the name of the class,
the same as a constructor function, preceded by at ilde ~.
Destructor functions cannot be overloaded or accept
parameters.

A destructor is called in two ways;

- when a stack object loses scope when the function in which it is
declared ends.

- when a heap object is destroyed with the delete operator.

Programming Fundamentals 13

Example 8.2.1

//Stocks02.h
class Stocks {
public:

Stocks(char* szName);

~Stocks(); //destructor
void setStockName(char* szName);
char* getStockName();

void setNumShares(int);

int getNumShares(int);

void setPricePerShare(double);
double getPricePerShar();

double calcTotalValue();

private:

char* szStockName;

Int INumShares;

double dCurrentValue;
double dPricePerShare;

Programming Fundamentals

14

//Stocks.cpp

#include “stocks_02.h”

#include <string.h>

#include <iostream.h>

Stocks::Stocks(char* szName){
szStockName = new char[25];
strcpy(szStockName, szName);

3
Stocks::~Stocks(){

delete[] szStockName,;
cout <<”Destructor called” << endl:

Programming Fundamentals

15

void main(){
Stocks stockPick1(*Cisco”);
stockPickl.setNumShares(100);
stockPickl.setPricePerShare(68.875);
Stocks* stockPick2 = new Stocks(“Lucent”);
stockPick2->setNumShares(200);
stockPick2->setPricePerShare(59.5);
cout << “The current value of your stock in “
<< stockPickl.getStockName() << “ is $”
<< stockPickl.calcTotalValue()
<< “" << endl;
cout << “The current value of your stock in “
<< stockPick2->getStockName() << “is $”
<< stockPick2->calcTotalValue()
<< “" << endl
delete stockPick2;

Programming Fundamentals

//heap object

16

The output of the above program:

The current value of your stock in Cisco is $6887.5
The current value of your stock in Lucent is $11900
Destructor called.
Destructor called.

The stockPickl object calls the destructor when it is
destroyed by the main() function going out of
scope.

The stockPick2 object does not call the destructor
since it is declared on the heap and must be delete d
manually.

To delete the stockPick2 object manually, we add the
statement delete stockPick2; to the main() function

Programming Fundamentals 17

CONSTANT OBJECTS

If you have any type of variable in a program that does not
change, you should always use the const keyword to declare
the variable as a constant.

To declare an object as contant, place the const keyword in
front of the object declaration.

Examle:
const Date currentDate;

Note: Constant data members in a class can not be assigned
values using a standard assignment statement. You m ust use
an initialization list to assign initial values to constant data
members.

Programming Fundamentals

18

Example:
//Payroll.h
class Payroll
public:
Payroll();
private:
const double dFedTax;

const double dStateTax;

I3

//Payroll.cpp

#include “Payroll.h”

#include <iostream.h>

Payroll::Payroll(){
dFedTax = 0.28;
dStateTax = 0.05;

3

Using an initialization list

/

Payroll::Payroll()
:dFedTax(0.28), dStateTax(0.05){

3

/lllegal
/lllegal

Programming Fundamentals 19

Constant Functions

Another good programming technigue is to use the
const keyword to declare get functions as constant
function.

The const keyword makes your programs more
reliable by ensuring that functions that are not
supposed to modify data cannot modify data.

To declare a function as constant, you add the const
keyword after a function’s parentheses in both the
function declaration and definition.

Programming Fundamentals 20

Example :
//Payroll.h
double getStateTax(Payroll* pStateTax) const;
[/Payroll.cpp

double Payroll::getStateTax(Payroll* pStateTax)
const {

return pStateTax->dStateTax;

%

Programming Fundamentals

21

INHERITANE

Inheritance is a form of software reusabillity in
which new classes are created from existing
classes by inheriting their attributes and

behaviors, and overriding these with capabillities
the new classes require.

Software reusability saves time in programming
development.

Programming Fundamentals 22

BASIC INHERITANCE

Inheritance refers to the ability of one class to take on
the characteristics of another class.

Base Classes and Derived Classes

When you write a new class that inherits the charac teristics of
another class, you are deriving or subclassing a class.

An inherited class is called the base class, or superclass and
the class that inherits a base class is called a derived class or
subclass.

A class that inherits the characteristics of a base class is said
to be extending the base class since you often extend the class
by adding your own class members.

Programming Fundamentals

Base Classes and Derived Classes

When a class is derived from a base class, the deri ved class
inherits all of the base class members and all of | ts member
functions, with the exception of: constructor functions, copy
constructor functions, destructor functions and overloaded
assignment (=) functions

A derived class must provide its own implementation of these
functions.

The class header declaration for a derived class Customer
which inherits the characteristics of the Person class is as
follows:

class Customer: public Person

Programming Fundamentals 24

Once you extend a base class, you can access its cl

member directly through objects instantiated from t
derived class.

Example 8.4.1
#include<iostream.h>
#include<string.h>
class Person
{
private:

Int idnum;
char lastName[20];
char firstName[15];
public:
void setFields(int, char[], char[]);
void outputData();

3

Programming Fundamentals

ass
he

25

void Person::setFields(int num, char last[], char f Irst[])
{
idnum = num;
strcpy(lastName, last);
strepy(firstName, first);
}
void Person::outputData(){

cout<< “ID#"'<< idnum << “ Name: “<< firstName << *“
lastName << endl;

}

class Customer:public Person
{
private:
double balanceDue;
public:
void setBalDue;
void outputBalDue();

}

Programming Fundamentals

“<<

26

void Customer::setBalDue(double bal)

{
}

balanceDue = bal:

void Customer::outputBalDue()

{
}

cout<< “Balance due $”

void main()

{

Customer cust;

<< pbalanceDue<< endl:

cust.setFields(215, “Santini”, “Linda”);

cust.outputData();
cust.setBalDue(147.95);
cust.outputBalDue();

The output of the above program:

ID#215 Name: Linda Santini
Balance due $147.95

Programming Fundamentals

27

Class Hierarchy

Person class

Employee class

Worker class Secretary class

Derived classes themselves can serve as base classe s for other
derived classes. When you build a series of base cl asses and
derived classes, the chain of inherited classes is known as a

class hierarchy

Programming Fundamentals

Class hierarchy (cont.)

Each class in a class hierarchy cummulatively
Inherits the class members of all classes that
precede it in the hierarchy chain.

A class that directly precedes another class in a
class hierarchy, and is included in the derived
class’s base list, is called the direct base class.

A class that does not directly precedes another
class in a class hierarchy, and that not included i

the derived class’s base list, is called the Indirect
base class.

Programming Fundamentals

n

29

Access Specifiers and Inheritance

Even though a derived class inherits the class memb ers of a
base class, the base class’s members are still bound by its
access specifiers.

Private class members in the base class can be accessedonl vy
by the base class’s member functions.

For example, the idNum data member in the Person class is
private. If you write the following member function in the
Customer class, which attempts to directly access to the IdNum
data member, you will get a compiler error.

void Customer::outputBalDue(){

cout << “ID #'<< idNum << “ Balance due $”
<< palanceDue<<endl;

Programming Fundamentals 30

Proteced access specifier

You can declare the 1dNum data member with the
protected access specifier.

The protected access modifier restricts class
member access to

1. the class itself
2. to classes derived from the class.

The following code shows a modified version of the
Person class declaration in which the private access
modifier has been changed to protected.

Programming Fundamentals 31

Example :

class Person {
protected:
Int idNum;
char lastName[20];
char firstName[15];
public:
void setFields(int num, char last[], char first[]);
void outputData();

A member function in Customer class that attempts to directly
access to the idNum data member will work correctly since the
Customer class is a derived class of the Person class and th
IdNum data member is now declared as protected.

Programming Fundamentals

e

32

OVERRIDDING BASE CLASS MEMBER
FUNCTIONS

Derived classes are not required to use a base
class’s member functions. You can write a more
suitable version of a member function for a derived
class when necessary.

Writing a member function in a derived class to
replace a base class member function is called
function overridding.

To overrid a base class function, the derived

member function declaration must exactly match the
base class member function declaration, including

the function name, return type and parameters.

Programming Fundamentals 33

To force an object of a derived class to use the ba se
class version of an overriden function, you precede

the function name with the base class name and the
scope resolution operator using the syntax:

object.base_class::function();

Example 8.4.2

In the following code, the base class Person and the
derived class Employee have their own function
member with the same name setFields().

Programming Fundamentals 34

#include<iostream.h>
#include<string.h>
class Person
{
private:
int idnum;
char lastName|[20];
char firstName[15];
public:
void setFields(int, char[], char[)]);
void outputData();

I

void Person::setFields(int num, char last[], char f irst[])

{

iIdnum = num;
strcpy(lastName, last);
strcpy(firstName, first);

Programming Fundamentals 35

void Person::outputData()

{
cout<< “ID#"’<< idnum << “ Name: “<< firstName << * “<</|
endl;
}
class Employee: public Person
{
private:
int dept;
double hourlyRate;
public:
void setFields(int, char[], char[], int, double);
I3

void Employee::setFields(int num, char last[], char

{

Person::setFields(num, last, first);
dept = dep; hourlyRate = sal;

Programming Fundamentals

first[], int dept,
double sal)

astName <<

36

void main()

{
Person aPerson;
aPerson.setFields(123, “Kroening”, “Ginny");
aPerson.outputData();
cout<< endl<<endl;
Employee worker;
worker.Person::setFields(777, “Smith”, “John”);
worket.outputData();
worker.setFields(987,’Lewis”, “Kathy”, 6, 23.55);
worker.outputData();

}

The output of the above program:
ID # 123 Name: Ginny Kroening

ID # 777 Name: John Smith
ID # 987 Name: Kathy Lewis

Programming Fundamentals

37

CONSTRUCTORS AND DESTRUCTORS IN
DERIVED CLASSES

When you derive one class from another class, you
can think of any instantiated object of the derived
class as having two portions:

- the base class portion and
- the derived class portion.

During the instantiating process, the base class
portion of the object is instantiated, and then the
derived class portion of the object is instantiated

Programming Fundamentals 38

So, two constructors execute for a single derived
class object: the base class constructor and the
derived class constructor.

When a derived class object instantiates,
constructors begin executing at the top of the clas
hierarchy. First, the base constructor executes, th
any indirect base class’s constructors execute.
Finally, the derived class’ constructor executes.

When an object is destroyed, class destructors are
executed in the reverse order

Programming Fundamentals

en

39

Class D object Instantiated
Order of Construction
1.Class A

2. Class B

3. Class C

4. Class D

Class A

ClassB

ClassC

ClassD

Order of Destruction

Programming Fundamentals

1. Class D
2. Class C
3. Class B
4. Class A

40

Example 8.4.3
#include<iostream.h>
#include<string.h>
class Person
{
private:
int idnum;
char lastName|[20];
char firstName[15];
public:
Person();
void setFields(int, char[], char[)]);
void outputData();
I3
Person::Person(){
cout << “Base class constructor call “<< endl;

Programming Fundamentals 41

void Person::setFields(int num, char last[], char f irst[])
{

iIdnum = num;

strcpy(lastName, last);

strcpy(firstName, first);
}

void Person::outputData()

{

cout<< “ID#"<< idnum << “ Name: “<< firstName << * “<<|
endl;

}

class Customer: public Person
{
private:
double balanceDue;
public:
Customer();
void setBalDue;
void outputBalDue();
I

Programming Fundamentals

astName <<

42

Customer::Customer(){

cout << “Derived constructor called” <<
endl;

}

void Customer::setBalDue(double bal)

{

balanceDue = bal;

}

void Customer::outputBalDue()

{

cout<< “Balance due $"
<< balanceDue<< endl;

}

void main()

{
Customer cust;
cust.setFields(215, “Santini”, “Linda”);
cust.outputData();
cust.setBalDue(147.95);
cust.outputBalbue();

The output of the above program:

Base class constructor called

Derived class constructor called

ID #215 Name: Linda Santini
Balance due $147.95

} Programming Fundamentals 43

