
Programming Fundamentals 1

Chapter 2

BASIC ELEMENTS IN C++ 



Programming Fundamentals 2

Chapter 2

 Program structures

 Data types and operators

 Variables, Constants and declaration 

statements

 Integer quantifiers

 Data Type Conversion



Programming Fundamentals 3

Modular programs

 A large program should be organized as several 
interrelated segments: The segments are called 
modules.

 
 A program which consists of such modules is called 

a modular program.
 
 In C++, modules can be classes or functions.

 A function is a program segment that transforms the 
data it receives into a finished result.



Programming Fundamentals 4

*.cpp

Modules

Declarations



Programming Fundamentals 5

Function
 Each function must have a name. 
 Names or identifiers in C++ can made up of any 

combination of letters, digits, or underscores selected 
according to the following rules:
-    Identifiers must begin within an uppercase or lowercase  ASCII 
letter or an underscore (_).
-     You may use digits in an identifier, but not as the first character. 
-    Some special names, i.e. reserved words, cannot be used as a 
name for a function or variable.

 
 Example:
 

DegToRad intersect addNums
FindMax1 _density slope



Function declaration

 Including a function header and a function body
 The function header contains three pieces of 

information:

1. What type of data, if any, is returned from the 
function.

2.The name of the function

3. What type of data, if any, is sent into the function.
 The function body consists of many statements 

enclosed in parentheses { }

Programming Fundamentals 6



Programming Fundamentals 7

Example

 
int  add( int a, int b)
{

int c;
c = a + b;
return c;

}

Function header

Function body



Programming Fundamentals 8

The main() function 

 The main() function is a special function that runs 
automatically when a program first executes.

 
 All C++ programs must include one main() function. All other 

functions in a C++ program are executed from the main().

 
 int main()
{
     program statements in here
    return 0;
}
The line return 0; is included at the end of every main function. C+

+ keyword return is one of several means we will use to exit a 
function. When the return statement is used at the end of 
main(), the value 0 indicates that the program has terminates 
successfully.



Programming Fundamentals 9

The cout object

 The cout object is an output object that sends data 
given to it to the standard output display device.

 
 To send a message to the cout object, you use the 

following pattern:

cout << “text”;

 The insertion operator, <<, is used for sending text 
to an output device.

 The text portion of cout statement is called a text 
string. 



Programming Fundamentals 10

A simple program
Example 2.1.1

#include <iostream>

int main()

{

  cout << "Hello world!";

  return 0;

}

header file

 A header file is a file with an extension of .h that 
is included as part of a program. It notifies the 
compiler that a program uses run-time libraries.

 All statements in C++ must end with a semicolon.



Programming Fundamentals 11

The iostream classes

 The iostream classes are used for giving C++ 
programs input capabilities and output capabilities.

 
 The header file for the iostream class is iostream.h.
 
 The #include statement is one of the several 

preprocessor directives that are used with C++.

Example: To include the iostream.h file you use the 
following preprocessor directives:

 
#include <iostream>



Programming Fundamentals 12

Preprocessor directives

 The preprocessor is a program that runs before the 
compiler. 

 When the preprocessor encounters an #include 
statement, it places the entire contents of the 
designated file into the current file.

 
 Preprocessor directives and include statements 

allow the current file to use any of the classes, 
functions, variables, and other code contained 
within the included file.



Programming Fundamentals 13

i/o manipulator

 An i/o manipulator is a special function that can be 
used with an i/o statement. 

 The endl i/o manipulator is part of iostream classes 
and represents a new line character.

 
 Example:

 

cout << “Program type: console application” << endl;

cout << “Create with: Visual C++ “<< endl;

cout << “Programmer: Don Gesselin” << endl;

 



Programming Fundamentals 14

Comments

 Comments are lines that you place in your code to 
contain various type of remarks. 

 C++ line comments are created by adding two 
slashes (// ) before the text you want to use as a 
comment.

 Block comments span multiple lines. Such 
comments begin with /* and end with the symbols */.



Programming Fundamentals 15

Example:
 
int main()
{
    /*
      This line is part of the block comment.
      This line is also part of the block
       comment.
     */
     cout << “Line comment 1 “;
     cout << “Line comment 2 “;
     // This line comment takes up an entire line.
    return 0;
}



Programming Fundamentals 16

DATA TYPES AND OPERATORS 

Data Types
 
 A data type is the specific category of information 

that a variable contains.

 
 There are three basic data types used in C++: 

integers, floating point numbers and characters.



Programming Fundamentals 17

Integer data type

 An integer is a positive or negative number with no 
decimal places.

  Examples:

   - 259    -13      0       200



Programming Fundamentals 18

Floating Point Numbers 

 A floating point number contains decimal places or 
is written using exponential notations.

 

   -6.16         -4.4        2.7541      10.5

 
 Exponential notation, or scientific notation is a way 

of writing a very large numbers or numbers with 
many decimal places using a shortened format.

 

2.0e11    means    2*1011

 



Programming Fundamentals 19

The Character Data Type 
 To store text, you use the character data type. To store one 

character in a variable, you use the char keyword and place the 
character in single quotation marks.

 
 Example:

char cLetter = ‘A’;
 
 Escape Sequence
 
    The combination of a backlash (\) and a special character is 

called an escape sequence.
 
 Example:

\n move to the next line
\t move to the next tab



Programming Fundamentals 20

Arithmetic Operators 

 Arithmetic operators are used to perform mathematical 
calculations, such as addition, subtraction, multiplication, and 
division.

Operator Description
----------------------------------------------------------------------

+ Add two operands
- Subtracts one operand from another operand
* Multiplies one operand by another operand
/ Divides one operand by another operand
% Divides two operands and returns the remainder

 
 A simple arithmetic expression consists of an arithmetic 

operator connecting two operands in the form:
operand operator operand



Programming Fundamentals 21

Examples:

3 + 7

18 – 3

12.62 + 9.8

12.6/2.0

Example 2.2.1
#include <iostream>

int main()

{

  cout << "15.0 plus 2.0 equals "       << (15.0 + 2.0) << '\n'

       << "15.0 minus 2.0 equals "      << (15.0 - 2.0) << '\n'

       << "15.0 times 2.0 equals "      << (15.0 * 2.0) << '\n'

       << "15.0 divided by 2.0 equals " << (15.0 / 2.0) << '\n';

  return 0;

}



Programming Fundamentals 22

Integer Division 

 The division of two integers yields integer result. 
Thus the value of 15/2 is 7.

 
 Modulus % operator produces the remainder of an 

integer division.

 
 Example:

9%4 is 1

17%3 is 2

14%2 is 0



Programming Fundamentals 23

Operator Precedence and Associativity 

 Expressions containing multiple operators are evaluated by the 
priority, or precedence, of the operators.

 
Operator Associativity
 --------------------------------------------
unary - Right to left
* / % Left to right
+ - Left to right

 Example:
 

8 + 5*7%2*4
   ↓   ↓ ↓   ↓

       4   1  2  3



Programming Fundamentals 24

VARIABLES 

 One of the most important aspects of programming 
is storing and manipulating the values stored in 
variables.

 Variable names are also selected according to the 
rules of identifiers:

       -   Identifiers must begin with an uppercase or 
lowercase ASCII letter or an underscore (_).

       -    You may use digits in an identifier, but not as the 
first character. You are not allowed to use any other 
characters.

       -    Reserved words cannot be used for variable 
names.



Programming Fundamentals 25

Identifiers

 Example: Some valid identifiers

my_variable

Temperature

x1

x2

_my_variable

 
 Some invalid identifiers are as follows:

 

%x1 %my_var @x2



Programming Fundamentals 26

Declaration Statements 

 In C++ you can declare the data types of variables using the 
syntax:

 
type name;

 
The type portion refers to the data type of the variable.

 The data type determines the type of information that can be 
stored in the variable.

 
 Example:

int sum;
long datenem;
double secnum;



Programming Fundamentals 27

Rules of variable declaration
 Rules:
       1. A variable must be declared before it can be 

used.
       2. Declaration statements can also be used to store 

an initial value into declared variables.
 
    Example:

int num = 15;
float grade1 = 87.0;

 
 Note: Declaration statement gives information to the 

compiler 
 rather than a step in the algorithm.



Programming Fundamentals 28

Example 2.2.1

#include <iostream.h>
int main()
{
  float grade1 = 85.5; 
  float grade2 = 97.0;
  float total, average;
 
  total = grade1 + grade2;
  average = total/2.0;  // divide the total by 2.0
  cout << "The average grade is " << average << endl;
  return 0;
}

The output of the above program:
 

The average grade is 91.25



Programming Fundamentals 29

Assignment statement

 Let notice the two statements in the above program:

      total = grade1 + grade2;

      average = total/2.0;  

 
 Each of these statement is called an assignment 

statement because it tells the computer to assign 
(store) a value into a variable. 

 Assignment statements always have an equal (=) 
sign and one variable name on the left of this sign. 

 The value on the right of the equal sign is assigned 
to the variable on the left of the equal sign.



Programming Fundamentals 30

Display a Variable’s Address 

 Every variable has three major items associated with 
it:

       -     its data type

       -     value

       -     the address of the variable.

 
 To see the address of a variable, we can use address 

operator, &, which means “the address of “. 

 For example, &num means the address of num.



Programming Fundamentals 31

Example 2.2.2

#include <iostream.h>
int main()
{
  int num;
  num = 22;
  cout << "The value stored in num is " << num << endl;
  cout << "The address of num = " << &num << endl;
  return 0;
}
 
The output of the above program:
 
The value stored in num is 22
The address of num = 0x8f5afff4

The display of addresses is in hexadecimal notation. 



Programming Fundamentals with C++ 32

Constant and the const qualifier 

 A constant represents a value provided in a constant 
definition and cannot change the value.

 To define a constant in a program, we use const 
declaration qualifier.

 Example:

 

const float PI = 3.1416;

const double SALESTAX = 0.05;

const int MAXNUM = 100;

 
 Once defined, a constant can be used in any C++ 

statement in place of the value it represents.



Programming Fundamentals 33

INTEGER QUANTIFIERS 

 C++ provides long integer, short integer, and 
unsigned integer data types. 

 These three additional integer data types are 
obtained by adding the quantifier long, short or 
unsigned to the integer declaration statements.

 
 Example:

long int days;

unsigned int num_of_days;

 



Programming Fundamentals 34

Unsigned integers

 The reserved words unsigned int are used to specify 
an integer that can only store nonnegative numbers.

 

Data type    Storage Number Range

-------------------------------------------------------------------

short int     2 bytes -32768 to 32767

unsigned int    2 bytes 0 to 65535



Programming Fundamentals 35

Data Type Conversions 

 An expression that contains only integer operands is called an 
integer expression, and the result of the expression is an 
integer value.

 
 An expression that contains only floating point operands 

(single and double precision) is called a floating point 
expression, and the result of such an expression is a floating 
point value.

 An expression containing both integer and floating point 
operands is called a mixed mode expression.

 Example:
          int a;

     float x = 2.5;
          a = x + 6;             // x + 6 is a mixed mode expression



Programming Fundamentals 36

Data Type Conversion Rules

The general rules for converting integer and floating point 
operands in mixed mode expressions were as follows:

 
    1.      If both operands are either character or integer operands:
        •    when both operands are character, short or integer data types, 

the result of the expression is an integer value.
        •    when one of the operand is a long integer, the result is a long 

integer, unless one of the operand is an unsigned integer. In the 
later case, the other operand is converted to an unsigned integer 
value and the resulting value of the expression is an unsigned 
value.

     2.      If any one operand is a floating point value:
         •     when one or both operands are floats, the result of the 

operation is a float value;
         •    when one or both operands are doubles, the result of the 

operation is a double value;
         •     when one or both operands are long doubles, the result of the 

operation is a long double value;
 



Programming Fundamentals 37

 Note: Converting values to lower types can result in incorrect 
values. For example, the floating point value 4.5 gives the value 
4 when it is converted to an integer value.  

Data types

--------------

long double ← highest type

double

float

unsigned long

long int

unsigned int

int

short int

char ← lowest type



Programming Fundamentals 38

Determining Storage Size 

 C++ provides an operator for determining the 
amount of storage your compiler allocates for each 
data type. This operator is the sizeof() operator.

 
 Example:

        sizeof(num1)

        sizeof(int)

        sizeof(float)

   The item in parentheses can be a variable or a data 
type.



Programming Fundamentals 39

Example 2.4.1

#include <iostream.h>

int main()

{

   char c;

   short s;

   int i;

   long l;

   float f;

   double d;

   long double ld;

   cout << "sizeof c = " << sizeof(c)

           << "\tsizeof(char) = " << sizeof( char )

                



Programming Fundamentals 40

        << "\nsizeof s = " << sizeof(s)

        << "\tsizeof(short) = " << sizeof( short )

        << "\nsizeof i = " << sizeof (i)

        << "\tsizeof(int) = " << sizeof( int )

        << "\nsizeof l = " << sizeof(l)

        << "\tsizeof(long) = " << sizeof( long )

        << "\nsizeof f = " << sizeof (f)

        << "\tsizeof(float) = " << sizeof(float)

        << "\nsizeof d = " << sizeof (d)

        << "\tsizeof(double) = " << sizeof(double)

        << endl;

   return 0;

}



Programming Fundamentals 41

The output of the above program:

 

sizeof c = 1 sizeof(char) = 1

sizeof s = 2 sizeof(short) =  2

sizeof i = 4 sizeof(int) =  4 

sizeof l = 4 sizeof(long) =  4

sizeof f = 4 sizeof(float) =  4

sizeof d = 8 sizeof(double) =  8

 



Programming Fundamentals with C++ 42

 Example 3.5.1
// this program calculates the circumference of a circle given its radius
#include <iostream.h>
 
int main()
{
  const float PI = 3.1416
  float radius, circumference;
 
  radius = 2.0;
  circumference = 2.0 * PI * radius;
  cout << "The circumference of the circle is "
       << circumference << endl;
 
  return 0;
}
 
The output of the above program:
 
The circumference of the circle is  12.5664
 



Summary

 A C/C++ program consists of many modules that can 
be functions or classes

 A function  declaration includes a function header 
and a function body

 A function body contains many statements
 We can use variables and constants in statements
 Variables are used to store and manipulate data
 Constants are used to represent value
 Variables are associated with type

Programming Fundamentals 43


	Chapter 2
	Chapter 2
	Modular programs
	Slide 4
	Function
	Function declaration
	Example
	The main() function
	The cout object
	A simple program
	The iostream classes
	Preprocessor directives
	i/o manipulator
	Comments
	Slide 15
	DATA TYPES AND OPERATORS
	Integer data type
	Floating Point Numbers
	The Character Data Type
	Arithmetic Operators
	Slide 21
	Integer Division
	Operator Precedence and Associativity
	VARIABLES
	Identifiers
	Declaration Statements
	Rules of variable declaration
	Slide 28
	Assignment statement
	Display a Variable’s Address
	Slide 31
	Constant and the const qualifier
	INTEGER QUANTIFIERS
	Unsigned integers
	Data Type Conversions
	Data Type Conversion Rules
	Slide 37
	Determining Storage Size
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Summary

