Chapter 7

INTRODUCTION TO CLASSES

Programming Fundamentals

Chapter 7

Classes
Information Hiding
Member functions

Dynamic Memory Allocation using new and
delete operators

Programming Fundamentals

Overview

Object-oriented programming (OOP) encapsulates
data (attributes) and functions (behavior) Into
packages called classes.

The data and functions of a class are intimately ti ed
together.

A class is like a Dblueprint . Out of a blueprint, a
builder can build a house. Out of a class, we can
create many objects of the same class.

Classes have the property of information hiding
Implementation details are hidden within the classes
themselves.

Programming Fundamentals 3

CLASSES

In C++ programming, classes are structures that contain
variables along with functions for manipulating that data.

The functions and variables defined in a class are referred
to asclass members.

Class variables are referred to aslata members, while class
functions are referred to asmember functions.

Classes are referred to as user-defined data types because

you can work with a class as a single unit, or objects, in the
same way you work with variables.

Programming Fundamentals 4

Class definition

The most important feature of C++ programming is cl ass
definition with the class keyword. You define classes the same
way you define structures.

Example:

class Time {
public:

Time();

void setTime(int, int, int);

void printMilitary();

void printStandard();
private:

Int hour;

iInt minute;

Int second,;

Programming Fundamentals

Instantiating an object

Once the class has been defined, it can be used as a type In
object, array and pointer definitions as follows:

Time sunset, // object of type Times
ArOfTimeg[5], // array of Times objects
*ptrTime; // pointer to a Times objects

The class name becomes a new type specifier. There may
be many objects of a class, just as there may be many
variables of a type such ast.

The programmer can create new class types as needed.

Programming Fundamentals 6

INFORMATION HIDING

The principle of information hiding states that any class
members that other programmers do not need to access or
know about should be hidden.

Many programmers prefer to make all of their data

member “private” in order to prevent clients from

accidentally assigning the wrong value to a variable or
from viewing the internal workings of their programs.

Programming Fundamentals 7

Access Specifiers

Access specifiers control a client’s access to data members
and member functions. There are four levels of acce ss
specifiers: public , private , protected , and friend .

The public access specifier allows anyone to call a class’s
function member or to modify a data member.

The private access specifier is one of the key elements in
information hiding since it prevents clients from c alling
member functions or accessing data members.

Note : Class members of both access types are accessible from
any of a class’s member functions.

Programming Fundamentals

Example

class Time {
public:
Time();
void setTime(int, int, int);
void printMilitary();
void printStandard();
private:
Int hour;
Int minute;
Int second;

3

Time

hour
minute
second

A

setTime()
printMilitary
pringStandard()

i

private

public

A class’ private data members are normally not accessible

outside the class

Programming Fundamentals

Interface and Implementation Files

The separation of classes into separate interface and
Implementation files is a fundamental software
development technique.

The Iinterface code refers to the data member and
function member declarations inside a class’s
braces.

The implementation code refers to a class’s function
definitions and any code that assigns values to a
class’s data members.

Programming Fundamentals 10

Preventing Multiple Inclusion

With large program, you need to ensure that you do not include
multiple instances of the same header file.

C++ generates an error if you attempt to compile a program that
includes multiple instances of the same header file

To prevent this kind of error, we use the #define preprocessor
directive with the #if and #endif directives in header files.

The #if and #endif determine which portions of a file to compile
depending on the result of a conditional expression

The syntax for the #if and #endif preprocessor directives:
#if conditional expression
statements to compile;
#endif

Programming Fundamentals 11

Example :
#if Idefined(TIME1_H)
#define TIMEL1_H
class Time {
public:
Time();
void setTime(int, int, int);
void printMilitary();
void printStandard();

Note: Common practice
when defining a header file’s

pr-|vate. constant is to use the header
int hour; file’s name in uppercase
Int minute; letters appended with H.
Int second;

For example, the constant
¥ for the timel.h headeris
#endif usually defined as TIME1 H.

Programming Fundamentals 12

MEMBER FUNCTIONS

Inline functions

Although member functions are usually defined in an
Implementation file, they can also be defined in an Interface
file. Functions defined in an interface file are ca lled inline

functions .

Example:

Stocks

INumShares
dPurchasePricePerShare
dCurrentPricePerShare

getTotalValue()

Programming Fundamentals

class Stocks {
public:

double getTotalValue(int iIShares, double dCurPrice)

double dCurrentValue;

INumShares = iShares;

dCurrentPricePerShare = dCurPrice;

dCurrentValue = INumShares*dCurrentPricePerShare;

return dCurrentValue;

}
private:

int INumShares;

double dPurchasePricePerShare;

double dCurrentPricePerShare;

J

{

Programming Fundamentals

14

Member functions in Implementation File

Example 7.3.1
//stocks.h
#if |defined(STOCKS _H)
#define STOCKS H
class Stocks{
public:
double getTotalValue(int iShares, double dCurPrice)
private:
iInt INumShares;
double dPurchasePricePerShare;
double dCurrentPricePerShare;
I3
#endif

Programming Fundamentals

15

I/ stocks.cpp
#include “stocks.h”
#include<iostream.h>
double Stocks::getTotalValue (intiShares, double dCurPrice){
double dCurrentValue;
INumShares = iShares;
dCurrentPricePerShare = dCurPrice;
dCurrentValue = iINumShares*dCurrentPricePerShare;
return dCurrentValue;
}
void main(){
Stocks stockPick;
cout << stockPick.getTotalValue(200, 64.25) << endl ;

}

Output of the above program:
12850

Programming Fundamentals

16

The format of member functions included in the
Implementation section is as follows:

return-type Class-name::functionName(parameter-list)

{

function body

}

In order for your class to identify which functions in an
Implementation section belong to it, you precede the
function name in the function header with the class name
and the scope resolution operator (::).

Programming Fundamentals 17

Access Functions

Access to a class’ private data should be controlle d by the use
of member functions, called access functions

For example, to allow clients to read the value of private data,
the class can provide a get function.

To enable clients to modify private data, the class can provide a
set function. A set member function can provide data validation
capabilities to ensure that the value is set proper ly.

A set function can also translate between the form of dat a used
in the interface and the form used in the implement ation.

A get function need not expose the data in “raw” format; rather,
it can edit data and limit the view of the data the client will see.

Programming Fundamentals 18

An example of set and get functions

/[timel.h

#if !defined(TIMEL1_H)

#define TIME1 H

class Time {

public:
Time(); I/ constructor
void setTime(int, int, int); // set hour, minute, second
void printMilitary(); I/ print military time format

void printStandard(); // print standard time format
private:

Int hour:
Int minute;
Int second;

J

Programming Fundamentals

19

/[timel.cpp
#include “timel.h”
#include <iostream.h>
void Time::setTime(int h, int m, int s {
hour=(h>=0&&h<24)7?h:0;
minute=(M>=0&& MmM<60)?m:O;
second =(s>=0&&s<60)?s:0;
}
void Time::printMilitary(){
cout << (hour<10?"0":") << hour << ™"
<< (minute <10 ?"0": ™) << minute;
}
void Time::printStandard(){
cout<< ((hour==0|| hour==12)7? 12 : hour % 12)
<<"" << (minute <10 ?"0": ") << minute
<<""<<(second<10?"0":"™) << second
<< (hour<12?"AM":"PM");

Programming Fundamentals

20

Constructor Functions

A constructor function is a special function with the same

name as its class. This function is called automati
object from a class is instantiated.

You define and declare constructor functions the sa
you define other functions

Example:
class Payroll{
public:
Payroll(){ // constructor function
dFedTax = 0.28;
dStateTax = 0.05;
I3
private:
double dFedTax;
double dStateTax;

Programming Fundamentals

cally when an

me way

21

You also include justa function prototype

in the interface file

for the constructor function and then create the function

definition in the implementation file.

Payroll::Payroll(){ // constructor function
dFedTax = 0.28;
dStateTax = 0.05;

3

Constructor functions do not return values.

Programming Fundamentals

22

Example 7.3.3

#include <iostream.h>
#include <iomanip.h>
/] class declaration section
class Date
{
private:
int month;
int day;
int year,
public:
Date(int =7, int = 4, int = 2001);
/I constructor with default values

I

// implementation section

Date::Date(int mm, int dd, int yyyy)
/lconstructor

{
month = mm;
day = dd;
year = Yyyyy,

cout << "Created a new data object
with data values "

<< month << ll’ 1 << day << II’ "
<< year << endl;

Programming Fundamentals 23

iInt main()

{
Date a; /[declare an object without par ameters
Date b; /[declare an object without par ameters
Date c(4,1,2002); // declare an object with parame ters
return O;

}

The output of the above program:

Created a new data object with data values 7, 4, 2001
Created a new data object with data values 7, 4, 2001
Created a new data object with data values 4,1, 2001

Default constructor refers to any constructor that does not

require any parameters when it is called.

Programming Fundamentals

24

DYNAMIC MEMORY ALLOCATION WITH
OPERATORS new AND delete

The new and delete operators provides a nice means of
performing dynamic memory allocation (for any built-in or u ser-
defined type).

TypeName *typeNampPtr;
typeNamePtr = new TypeName;

The new operator automatically creates an object of the pro per
size, calls the constructor for the object and retu rns a pointer
of the correct type.

To destroy the object and free the space forthiso bject you
must use the delete operator:

delete typeNamePtr;

Programming Fundamentals 25

For built-in data types, we also can use the new and delete
operators.

Example 1:
Int *pPointer;
pPointer = new int;

Example 2:

delete pPointer;

Example 3: A 10-element integer array can be create dand
assigned to arrayPtr as follows:

int *arrayPtr = new int[10];
This array is deleted with the statement

delete [] arrayPtr;

Programming Fundamentals

26

Stack versus heap

A stack is a region of memory where applications can store
data such as local variables, function calls,and p arameters.

The programmers have no control over the stack. C++
automatically handles placing and removing data to and from
stack.

The heap or free store, is an area of memory that is availab le to
application for storing data whose existence and si ze are not
known until run-time.

Note: When we use new operator, we can allocate a piece of
memory on the heap and when we use delete operator, we can
deallocate (free) a piece of memory on the heap.

Programming Fundamentals 27

Example 7.4.1

#include<iostream.h>
void main()

{

double* pPrimelnterest = new double;
*pPrimelnterest = 0.065;
cout << “The value of pPrimelnterest is: “
<< *pPrimelnterest << endl;
cout << “The memory address of pPimelnterest is:
<< &pPrimelnterest << endl;
delete pPrimelnterest;
*pPimelnterest = 0.070;
cout << “The value of pPrimelnterest is: “
<< *pPrimelnterest << endl;
cout << “The memory address of pPrimelnterest is: “
<< &pPrimelnterest << endl;

Programming Fundamentals

28

The output of the above program:

The value of pPrimeinterest is: 0.065
The memory address of pPrimelinterest is: 0x0066FD74
The value of pPrimeinterest is: 0.070
The memory address of pPrimeinterest is: 0Ox0066FD74.

Note: You can see that after the delete statement
executes, the pPimelinterest pointer still point to the
same memory address!!!

Programming Fundamentals 29

Example 7.4.2

In the following program, we can create some object s of the
class Stocks on the stack or on the heap and then manipulate
them.

#include<iostream.h>
class Stocks{
public:
iInt INumShares;
double dPurchasePricePerShare;
double dCurrentPricePerShare;
I3
double totalValue(Stocks* pCurStock){
double dTotalValue;
dTotalValue = pCurStock->dCurrentPricePerShar*
pCurStock->INumShares;

return dTotalValue:

Programming Fundamentals 30

void main({

}

//allocated on the stack with a pointer to the stac k object
Stocks stockPick;

Stocks* pStackStock = &stockPick;
pStackStock->INumShares = 500;

pStackStock-> dPurchasePricePerShare = 10.785;
pStackStock-> dCurrentPricePerShare = 6.5;

cout << totalValue(pStackStock) << endl;
//allocated on the heap

Stocks* pHeapStock = new Stocks;

pHeapStock ->INumShares = 200;

pHeapStock-> dPurchasePricePerShare = 32.5;
pHeapStock-> dCurrentPricePerShare = 48.25;
cout << totalValue(pHeapStock) << endl;

The output of the above program:

3250
9650

Programming Fundamentals

31

Note

When declaring and using pointers and references to
class objects, follow the same rules as you would

when declaring and using pointers and references to
structures.

You can use the indirect member selection operator
(->) to access class members through a pointertoa n
object either on stack or on the heap.

As we will see, using new and delete offers other
benefits as well. In particular, new invokes the
constructor and delete invokes the class’destructor.

Programming Fundamentals 32

POINTERS AS CLASS MEMBERS

A class can contain any C++ data type. Thus, the in clusion of a
pointer variable in a class should not seem surpris Ing.

Example 7.5.1
#include <iostream.h>
#include <string.h>
// class declaration
class Book
{
private:
char *title; // a pointer to a book title
public:
Book(char * = NULL); // constructor with a defaul t value
void showtitle(); // display the title

3

Programming Fundamentals 33

I/ class implementation

Book::Book(char *strng)

{
title = new char[strlen(strng)+1]; // allocate memory
strcpy(title,strng); /[store the st ring

}

void Book::showtitle()
{
cout << title << endl:
return:

}

Int main()

{
Book bookl1("DOS Primer"); /I create 1st title
Book book2("A Brief History of Western Civilizatio n");
bookl.showtitle(); // display bookl's title
book2.showtitle(); // display book2's title

) return 0; The output of the above program:

DOS Primer
A Brief History of Western Civilization

Programming Fundamentals 34

