
Chapter 7

Programming Fundamentals 1

INTRODUCTION TO CLASSES

Chapter 7

� Classes
� Information Hiding
� Member functions
� Dynamic Memory Allocation using new and

Programming Fundamentals 2

� Dynamic Memory Allocation using new and
delete operators

Overview

� Object-oriented programming (OOP) encapsulates
data (attributes) and functions (behavior) into
packages called classes .

� The data and functions of a class are intimately ti ed
together.

� A class is like a blueprint . Out of a blueprint, a

Programming Fundamentals 3

� A class is like a blueprint . Out of a blueprint, a
builder can build a house. Out of a class, we can
create many objects of the same class.

� Classes have the property of information hiding .
Implementation details are hidden within the classes
themselves.

CLASSES

� In C++ programming, classes are structures that contain
variables along with functions for manipulating that data.

� The functions and variables defined in a class are referred
to as class members.

Programming Fundamentals 4

� Class variables are referred to as data members, while class
functions are referred to as member functions.

� Classes are referred to as user-defined data types because
you can work with a class as a single unit, or objects, in the
same way you work with variables.

Class definition
� The most important feature of C++ programming is cl ass

definition with the class keyword. You define classes the same
way you define structures.

Example:

class Time {
public:

Time();

Programming Fundamentals 5

Time();
void setTime(int, int, int);
void printMilitary();
void printStandard();

private:
int hour;
int minute;
int second;

};

Instantiating an object

� Once the class has been defined, it can be used as a type in
object, array and pointer definitions as follows:
Time sunset, // object of type Times

ArOfTimes[5], // array of Times objects

*ptrTime; // pointer to a Times objects

Programming Fundamentals 6

� The class name becomes a new type specifier. There may
be many objects of a class, just as there may be many
variables of a type such as int.

� The programmer can create new class types as needed.

INFORMATION HIDING

� The principle of information hiding states that any class
members that other programmers do not need to access or
know about should be hidden.

� Many programmers prefer to make all of their data
member “private” in order to prevent clients from

Programming Fundamentals 7

member “private” in order to prevent clients from
accidentally assigning the wrong value to a variable or
from viewing the internal workings of their programs.

Access Specifiers

� Access specifiers control a client’s access to data members
and member functions. There are four levels of acce ss
specifiers: public , private , protected , and friend .

� The public access specifier allows anyone to call a class’s
function member or to modify a data member.

Programming Fundamentals 8

� The private access specifier is one of the key elements in
information hiding since it prevents clients from c alling
member functions or accessing data members.

Note: Class members of both access types are accessible from
any of a class’s member functions.

Example

class Time {
public:

Time();
void setTime(int, int, int);
void printMilitary();
void printStandard();

private:

Time

hour
minute

private

Programming Fundamentals 9

private:
int hour;
int minute;
int second;

};

minute
second

setTime()

printMilitary
pringStandard()

public

A class’ private data members are normally not accessible
outside the class

Interface and Implementation Files

� The separation of classes into separate interface and
implementation files is a fundamental software
development technique.

� The interface code refers to the data member and
function member declarations inside a class’s

Programming Fundamentals 10

function member declarations inside a class’s
braces.

� The implementation code refers to a class’s function
definitions and any code that assigns values to a
class’s data members.

Preventing Multiple Inclusion

� With large program, you need to ensure that you do not include
multiple instances of the same header file.

� C++ generates an error if you attempt to compile a program that
includes multiple instances of the same header file .

� To prevent this kind of error, we use the #define preprocessor
directive with the #if and #endif directives in header files.

Programming Fundamentals 11

� The #if and #endif determine which portions of a file to compile
depending on the result of a conditional expression .

� The syntax for the #if and #endif preprocessor directives:
#if conditional expression

statements to compile;
#endif

Example :
#if !defined(TIME1_H)
#define TIME1_H
class Time {
public:

Time();
void setTime(int, int, int);
void printMilitary();

Note: Common practice

Programming Fundamentals 12

void printMilitary();
void printStandard();

private:
int hour;
int minute;
int second;

};
#endif

Note: Common practice
when defining a header file’s
constant is to use the header
file’s name in uppercase
letters appended with H.

For example, the constant
for the time1.h header is
usually defined as TIME1_H.

MEMBER FUNCTIONS
� Inline functions

Although member functions are usually defined in an
implementation file, they can also be defined in an interface
file. Functions defined in an interface file are ca lled inline
functions .

� Example:

Programming Fundamentals 13

Stocks

iNumShares
dPurchasePricePerShare
dCurrentPricePerShare

getTotalValue()

class Stocks {
public:

double getTotalValue(int iShares, double dCurPrice) {
double dCurrentValue;

iNumShares = iShares;
dCurrentPricePerShare = dCurPrice;
dCurrentValue = iNumShares*dCurrentPricePerShare;
return dCurrentValue;

Programming Fundamentals 14

return dCurrentValue;
}

private:
int iNumShares;
double dPurchasePricePerShare;
double dCurrentPricePerShare;

};

Member functions in Implementation File

Example 7.3.1
//stocks.h
#if !defined(STOCKS_H)
#define STOCKS_H
class Stocks{
public:

double getTotalValue(int iShares, double dCurPrice) ;

Programming Fundamentals 15

double getTotalValue(int iShares, double dCurPrice) ;
private:

int iNumShares;
double dPurchasePricePerShare;
double dCurrentPricePerShare;

};
#endif

// stocks.cpp
#include “stocks.h”
#include<iostream.h>
double Stocks::getTotalValue (int iShares, double dCurPrice){

double dCurrentValue;
iNumShares = iShares;
dCurrentPricePerShare = dCurPrice;
dCurrentValue = iNumShares*dCurrentPricePerShare;
return dCurrentValue;

Programming Fundamentals 16

return dCurrentValue;
}
void main(){

Stocks stockPick;
cout << stockPick.getTotalValue(200, 64.25) << endl ;

}

Output of the above program:
12850

� The format of member functions included in the
implementation section is as follows:

return-type Class-name::functionName(parameter-list)
{

function body
}

Programming Fundamentals 17

� In order for your class to identify which functions in an
implementation section belong to it, you precede the
function name in the function header with the class name
and the scope resolution operator (::).

Access Functions
� Access to a class’ private data should be controlle d by the use

of member functions, called access functions .

� For example, to allow clients to read the value of private data,
the class can provide a get function.

� To enable clients to modify private data, the class can provide a
set function. A set member function can provide data validation

Programming Fundamentals 18

set function. A set member function can provide data validation
capabilities to ensure that the value is set proper ly.

� A set function can also translate between the form of dat a used
in the interface and the form used in the implement ation.

� A get function need not expose the data in “raw” format; rather,
it can edit data and limit the view of the data the client will see.

An example of set and get functions

// time1.h
#if !defined(TIME1_H)
#define TIME1_H
class Time {
public:

Time(); // constructor
void setTime(int, int, int); // set hour, minute, second

Programming Fundamentals 19

void printMilitary(); // print military time format
void printStandard(); // print standard time format

private:
int hour;
int minute;
int second;

};

// time1.cpp
#include “time1.h”
#include <iostream.h>
…..
void Time::setTime(int h, int m, int s){

hour = (h >= 0 && h < 24) ? h : 0;
minute = (m >= 0 && m < 60) ? m : 0;
second = (s >= 0 && s < 60) ? s : 0;

}
void Time::printMilitary(){

Programming Fundamentals 20

cout << (hour < 10 ? "0" : "") << hour << ":"
<< (minute < 10 ? "0" : "") << minute;

}
void Time::printStandard(){

cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
<< ":" << (minute < 10 ? "0" : "") << minute
<< ":" << (second < 10 ? "0" : "") << second
<< (hour < 12 ? " AM" : " PM");

}
….

Constructor Functions
� A constructor function is a special function with the same

name as its class. This function is called automati cally when an
object from a class is instantiated.

� You define and declare constructor functions the sa me way
you define other functions

� Example:
class Payroll{
public:

Programming Fundamentals 21

public:
Payroll(){ // constructor function

dFedTax = 0.28;
dStateTax = 0.05;

};
private:

double dFedTax;
double dStateTax;

}

� You also include just a function prototype in the interface file
for the constructor function and then create the function
definition in the implementation file.

Payroll::Payroll(){ // constructor function
dFedTax = 0.28;
dStateTax = 0.05;

Programming Fundamentals 22

dStateTax = 0.05;
};

� Constructor functions do not return values.

Example 7.3.3

#include <iostream.h>
#include <iomanip.h>
// class declaration section
class Date
{
private:
int month;
int day;

// implementation section
Date::Date(int mm, int dd, int yyyy)
//constructor
{
month = mm;
day = dd;

Programming Fundamentals 23

int day;
int year;

public:
Date(int = 7, int = 4, int = 2001);

// constructor with default values
};

year = yyyy;
cout << "Created a new data object

with data values "
<< month << ", " << day << ", "
<< year << endl;

}

int main()
{
Date a; // declare an object without par ameters
Date b; // declare an object without par ameters
Date c(4,1,2002); // declare an object with parame ters
return 0;

}
The output of the above program:

Programming Fundamentals 24

Created a new data object with data values 7, 4, 2001
Created a new data object with data values 7, 4, 2001
Created a new data object with data values 4,1, 2001

� Default constructor refers to any constructor that does not
require any parameters when it is called.

DYNAMIC MEMORY ALLOCATION WITH
OPERATORS new AND delete

� The new and delete operators provides a nice means of
performing dynamic memory allocation (for any built-in or u ser-
defined type).

TypeName *typeNamPtr;
typeNamePtr = new TypeName;

Programming Fundamentals 25

� The new operator automatically creates an object of the pro per
size, calls the constructor for the object and retu rns a pointer
of the correct type.

� To destroy the object and free the space for this o bject you
must use the delete operator:

delete typeNamePtr;

� For built-in data types, we also can use the new and delete
operators.

� Example 1:

int *pPointer;
pPointer = new int;

� Example 2:

delete pPointer;

Programming Fundamentals 26

delete pPointer;
� Example 3: A 10-element integer array can be create d and

assigned to arrayPtr as follows:

int *arrayPtr = new int[10];
This array is deleted with the statement

delete [] arrayPtr;

Stack versus heap

� A stack is a region of memory where applications can store
data such as local variables, function calls, and p arameters.

� The programmers have no control over the stack. C++
automatically handles placing and removing data to and from
stack.

Programming Fundamentals 27

� The heap or free store, is an area of memory that is availab le to
application for storing data whose existence and si ze are not
known until run-time.

� Note: When we use new operator, we can allocate a piece of
memory on the heap and when we use delete operator, we can
deallocate (free) a piece of memory on the heap.

Example 7.4.1
#include<iostream.h>
void main()
{

double* pPrimeInterest = new double;
*pPrimeInterest = 0.065;
cout << “The value of pPrimeInterest is: “

<< *pPrimeInterest << endl;
cout << “The memory address of pPimeInterest is:”

Programming Fundamentals 28

cout << “The memory address of pPimeInterest is:”
<< &pPrimeInterest << endl;
delete pPrimeInterest;
*pPimeInterest = 0.070;
cout << “The value of pPrimeInterest is: “

<< *pPrimeInterest << endl;
cout << “The memory address of pPrimeInterest is: “
<< &pPrimeInterest << endl;

}

� The output of the above program:

The value of pPrimeInterest is: 0.065
The memory address of pPrimeInterest is: 0x0066FD74
The value of pPrimeInterest is: 0.070
The memory address of pPrimeInterest is: 0x0066FD74.

Note: You can see that after the delete statement

Programming Fundamentals 29

� Note: You can see that after the delete statement
executes, the pPimeInterest pointer still point to the
same memory address!!!

� Example 7.4.2
� In the following program, we can create some object s of the

class Stocks on the stack or on the heap and then manipulate
them.

#include<iostream.h>
class Stocks{
public:

int iNumShares;
double dPurchasePricePerShare;
double dCurrentPricePerShare;

Programming Fundamentals 30

double dCurrentPricePerShare;
};
double totalValue(Stocks* pCurStock){

double dTotalValue;
dTotalValue = pCurStock->dCurrentPricePerShar*

pCurStock->iNumShares;
return dTotalValue;

}

void main(){
//allocated on the stack with a pointer to the stac k object
Stocks stockPick;
Stocks* pStackStock = &stockPick;
pStackStock->iNumShares = 500;
pStackStock-> dPurchasePricePerShare = 10.785;
pStackStock-> dCurrentPricePerShare = 6.5;
cout << totalValue(pStackStock) << endl;
//allocated on the heap
Stocks* pHeapStock = new Stocks;
pHeapStock ->iNumShares = 200;

Programming Fundamentals 31

pHeapStock ->iNumShares = 200;
pHeapStock-> dPurchasePricePerShare = 32.5;
pHeapStock-> dCurrentPricePerShare = 48.25;
cout << totalValue(pHeapStock) << endl;

}
The output of the above program:

3250
9650

Note

� When declaring and using pointers and references to
class objects, follow the same rules as you would
when declaring and using pointers and references to
structures.

� You can use the indirect member selection operator

Programming Fundamentals 32

� You can use the indirect member selection operator
(->) to access class members through a pointer to a n
object either on stack or on the heap.

� As we will see, using new and delete offers other
benefits as well. In particular, new invokes the
constructor and delete invokes the class’destructor.

POINTERS AS CLASS MEMBERS

� A class can contain any C++ data type. Thus, the in clusion of a
pointer variable in a class should not seem surpris ing.

Example 7.5.1
#include <iostream.h>
#include <string.h>
// class declaration
class Book

Programming Fundamentals 33

class Book
{
private:
char *title; // a pointer to a book title

public:
Book(char * = NULL); // constructor with a defaul t value
void showtitle(); // display the title

};

// class implementation
Book::Book(char *strng)
{

title = new char[strlen(strng)+1]; // allocate memory
strcpy(title,strng); // store the st ring

}
void Book::showtitle()
{

cout << title << endl;
return;

}

Programming Fundamentals 34

}
int main()
{

Book book1("DOS Primer"); // create 1st title
Book book2("A Brief History of Western Civilizatio n");
book1.showtitle(); // display book1's title
book2.showtitle(); // display book2's title
return 0;

} The output of the above program:

DOS Primer
A Brief History of Western Civilization

