
Template

Lập trình hướng đối tượng

@ 2004 Trần Minh Châu. FOTECH. VNU 2

Tài liệu đọc
n Eckel, Bruce. Thinking in C++, 2nd Ed. Vol. 1.
¨ Chapter 16: Introduction to Templates

n Dietel. C++ How to Program, 4th Ed.
¨ Chapter 11: Templates

@ 2004 Trần Minh Châu. FOTECH. VNU 3

Giới thiệu về khuôn mẫu
n Giới thiệu
n Lập trình tổng quát (generic programming)
n Lập trình tổng quát trong C
n C++ template
n Khuôn mẫu hàm
n Khuôn mẫu lớp
n Các tham số template khác
n Template sử dụng template

@ 2004 Trần Minh Châu. FOTECH. VNU 4

Giới thiệu
n Trong suốt khoá học, ta đã nói về phương pháp hướng

đối tượng như là một cơ chế cho việc trừu tượng hoá
¨ Nhóm các đối tượng có cùng tập hành vi và thuộc tính lại với

nhau, và tương tác với chúng theo cùng kiểu

n Với đa hình và thừa kế, ta có thể biểu diễn mối quan hệ
giữa các lớp đối tượng tương tự và tương tác với chúng
một cách thống nhất
¨ Ta có thể lệnh cho một chiếc xe chạy bằng máy thực hiện việc

"drive", và hành vi thích hợp sẽ được gọi tuỳ theo loại xe đang nói
đến

n Để kết thúc, ta sẽ giới thiệu một kiểu trừu tượng hoá khác

@ 2004 Trần Minh Châu. FOTECH. VNU 5

Lập trình tổng quát
n Ta đã tập trung vào việc trừu tượng hoá các chi tiết để

tạo được các lớp đối tượng - gồm những thứ có cùng
tập thuộc tính và hành vi

n Mọi ý tưởng được bàn đến đều xoay quanh đối tượng -
biểu diễn khái niệm hoặc biểu diễn trong C++

n Bây giờ, ta nói về một phương pháp lập trình mà trừu
tượng hoá chính các lớp đối tượng.

n Đây là mức tiếp theo trong quá trình logic phát triển của
trừu tượng hoá.

@ 2004 Trần Minh Châu. FOTECH. VNU 6

Lập trình tổng quát
n Lập trình tổng quát là phương pháp lập trình độc

lập với chi tiết biểu diễn dữ liệu
¨ Tư tưởng là ta định nghĩa một khái niệm không phụ

thuộc một biểu diễn cụ thể nào, và sau đó mới chỉ ra
kiểu dữ liệu thích hợp làm tham số

n Qua các ví dụ, ta sẽ thấy đây là một phương
pháp tự nhiên tuân theo khuôn mẫu hướng đối
tượng theo nhiều kiểu

@ 2004 Trần Minh Châu. FOTECH. VNU 7

Lập trình tổng quát
n Ta đã quen với ý tưởng có một phương thức được định

nghĩa sao cho khi sử dụng với các lớp khác nhau, nó sẽ
đáp ứng một cách thích hợp
¨ Khi nói về đa hình, nếu phương thức "draw" được gọi cho một

đối tượng bất kỳ trong cây thừa kế Shape, định nghĩa tương ứng
sẽ được gọi để đối tượng được vẽ đúng

¨ Trong trường hợp này, mỗi hình đòi hỏi một định nghĩa phương
thức hơi khác nhau để đảm bảo sẽ vẽ ra hình đúng

n Nhưng nếu định nghĩa hàm cho các kiểu dữ liệu khác
nhau nhưng không cần phải khác nhau thì sao?

@ 2004 Trần Minh Châu. FOTECH. VNU 8

Lập trình tổng quát
n Ví dụ, xét hàm sau:

¨ Hàm trên chỉ cần hoán đổi giá trị chứa trong hai biến int.
¨ Nếu ta muốn thực hiện việc tương tự cho một kiểu dữ liệu khác, chẳng

hạn float?

¨ Có thực sự cần đến cả hai phiên bản không?

void swap(int& a, int& b) {
int temp;
temp = a; a = b; b = temp;

}

void swap(float& a, float& b) {
float temp;
temp = a; a = b; b = temp;

}

@ 2004 Trần Minh Châu. FOTECH. VNU 9

Lập trình tổng quát

n Ví dụ khác: ta định nghĩa một lớp
biểu diễn cấu trúc ngăn xếp cho kiểu int

n Ta thấy khai báo và định nghĩa của Stack phụ thuộc tại một mức độ nào đó
vào kiểu dữ liệu int
¨ Một số phương thức lấy tham số và trả về kiểu int
¨ Nếu ta muốn tạo ngăn xếp cho một kiểu dữ liệu khác thì sao?
¨ Ta có nên định nghĩa lại hoàn toàn lớp Stack (kết quả sẽ tạo ra nhiều lớp chẳng

hạn IntStack, FloatStack, …) hay không?

class Stack {
public:

Stack();
~Stack();
void push(const int& i);
void pop(int& i);
bool isEmpty() const;

...
};

@ 2004 Trần Minh Châu. FOTECH. VNU 10

Lập trình tổng quát
n Ta thấy, trong một số trường hợp, đưa chi tiết về kiểu dữ liệu vào

trong định nghĩa hàm hoặc lớp là điều không có lợi
¨ Trong khi ta cần các định nghĩa khác nhau cho "draw" của Point hay

Circle, vấn đề khác hẳn với trường hợp một hàm chỉ có nhiệm vụ hoán
đổi hai giá trị

n Thực ra, khái niệm lập trình tổng quát học theo sự sử dụng một
phương pháp của lớp cơ sở cho các thể hiện của các lớp dẫn xuất
¨ Ví dụ, trong cây thừa kế khỉ, ta muốn cùng một phương thức

eatBanana() được thực thi, bất kể con trỏ/tham chiếu đang chỉ tới một
Monkey hay LazyMonkey

n Với lập trình tổng quát, ta tìm cách mở rộng sự trừu tượng hoá ra
ngoài địa hạt của các cây thừa kế

@ 2004 Trần Minh Châu. FOTECH. VNU 11

Lập trình tổng quát trong C
Sử dụng trình tiền xử lý của C

¨ Trình tiền xử lý thực hiện thay thế text trước khi dịch
¨ Do đó, ta có thể dùng #define để chỉ ra kiểu dữ liệu và thay đổi tại chỗ

khi cần

#define TYPE int

void swap(TYPE & a, TYPE & b) {
TYPE temp;
temp = a; a = b; b = temp;

} Trình tiền xử lý sẽ thay
mọi "TYPE" bằng "int"
trước khi thực hiện biên dịchHai hạn chế:

¨ nhàm chán và dễ lỗi
¨ chỉ cho phép đúng một định nghĩa trong một chương trình

@ 2004 Trần Minh Châu. FOTECH. VNU 12

C++ template
n Template (khuôn mẫu) là một cơ chế thay thế mã cho phép tạo các

cấu trúc mà không phải chỉ rõ kiểu dữ liệu
n Từ khoá template được dùng trong C++ để báo cho trình biên dịch

rằng đoạn mã theo sau sẽ thao tác một hoặc nhiều kiểu dữ liệu
chưa xác định
¨ Từ khoá template được theo sau bởi một cặp ngoặc nhọn chứa tên của

các kiểu dữ liệu tuỳ ý được cung cấp

template <typename T>
// Declaration that makes reference to a data type "T"

template <typename T, typename U>
// Declaration that makes reference to a data type "T"
// and a datatype "U"

Chú ý:
Một lệnh template
chỉ có hiệu quả đối
với khai báo
ngay sau nó

@ 2004 Trần Minh Châu. FOTECH. VNU 13

C++ template
n Hai loại khuôn mẫu cơ bản:
¨ Function template – khuôn mẫu hàm cho phép định

nghĩa các hàm tổng quát dùng đến các kiểu dữ liệu
tuỳ ý

¨ Class template – khuôn mẫu lớp cho phép định nghĩa
các lớp tổng quát dùng đến các kiểu dữ liệu tuỳ ý

n Ta sẽ mô tả từng loại trước khi đi bàn đến
những phức tạp của lập trình khuôn mẫu

@ 2004 Trần Minh Châu. FOTECH. VNU 14

Khuôn mẫu hàm
n Khuôn mẫu hàm là dạng khuôn mẫu đơn giản nhất cho

phép ta định nghĩa các hàm dùng đến các kiểu dữ liệu
tuỳ ý

n Định nghĩa hàm swap() bằng khuôn mẫu:

n Phiên bản trên trông khá giống với phiên bản swap()
bằng C sử dụng #define, nhưng nó mạnh hơn nhiều

template <typename T>
void swap(T & a, T & b) {

T temp;
temp = a; a = b; b = temp;

}

@ 2004 Trần Minh Châu. FOTECH. VNU 15

Khuôn mẫu hàm
n Thực chất, khi sử dụng template, ta đã định nghĩa một

tập vô hạn các hàm chồng nhau với tên swap()
n Để gọi một trong các phiên bản này, ta chỉ cần gọi nó

với kiểu dữ liệu tương ứng

int x = 1, y = 2;
float a = 1.1, b = 2.2;
...
swap(x, y); // Invokes int version of swap()
swap(a, b); // Invokes float version of swap()

@ 2004 Trần Minh Châu. FOTECH. VNU 16

Khuôn mẫu hàm
n Chuyện gì xảy ra khi ta biên dịch mã?
¨ Trước hết, sự thay thế "T" trong khai báo/định nghĩa

hàm swap() không phải thay thế text đơn giản và
cũng không được thực hiện bởi trình tiền xử lý

¨ Việc chuyển phiên bản mẫu của swap() thành các
cài đặt cụ thể cho int và float được thực hiện bởi
trình biên dịch

@ 2004 Trần Minh Châu. FOTECH. VNU 17

Khuôn mẫu hàm

n Hãy xem xét hoạt động của trình biên dịch khi gặp lời gọi
swap() thứ nhất (với hai tham số int)
¨ Trước hết, trình biên dịch tìm xem có một hàm swap() được

khai báo với 2 tham số kiểu int hay không
n Nó không tìm thấy một hàm thích hợp, nhưng tìm thấy một template

có thể dùng được
¨ Tiếp theo, nó xem xét khai báo của template swap() để xem có

thể khớp được với lời gọi hàm hay không
n Lời gọi hàm cung cấp hai tham số thuộc cùng một kiểu (int)
n Trình biên dịch thấy template chỉ ra hai tham số thuộc cùng kiểu T,

nên nó kết luận rằng T phải là kiểu int
n Do đó, trình biên dịch kết luận rằng template khớp với lời gọi hàm

@ 2004 Trần Minh Châu. FOTECH. VNU 18

Khuôn mẫu hàm

n Khi đã xác định được template khớp với lời gọi hàm,
trình biên dịch kiểm tra xem đã có một phiên bản của
swap() với hai tham số kiểu int được sinh ra từ
template hay chưa
¨ Nếu đã có, lời gọi được liên kết (bind) với phiên bản đã được

sinh (lưu ý: khái niệm liên kết này giống với khái niệm ta đã nói
đến trong đa hình tĩnh)

¨ Nếu không, trình biên dịch sẽ sinh một cài đặt của swap() lấy
hai tham số kiểu int (thực ra là viết đoạn mã mà ta sẽ tạo nếu
ta tự mình viết) – và liên kết lời gọi hàm với phiên bản vừa sinh.

@ 2004 Trần Minh Châu. FOTECH. VNU 19

Khuôn mẫu hàm

n Vậy, đến cuối quy trình biên dịch đoạn mã trong ví dụ,
sẽ có hai phiên bản của swap() được tạo (một cho hai
tham số kiểu int, một cho hai tham số kiểu float) với
các lời gọi hàm của ta được liên kết với phiên bản thích
hợp
¨ Vậy, ta có thể đoán rằng có chi phí phụ về thời gian biên dịch đối

với việc sử dụng template
¨ Ngoài ra còn có chi phí phụ về không gian liên quan đến mỗi cài

đặt của swap() được tạo trong khi biên dịch
¨ Tuy nhiên, tính hiệu quả của các cài đặt đó cũng không khác với

khi ta tự cài đặt chúng.

@ 2004 Trần Minh Châu. FOTECH. VNU 20

Khuôn mẫu hàm
n Cần ghi nhớ rằng tuy trình biên dịch đã tạo các phiên bản của

swap() cho các tham số int và float, không tồn tại các hàm
swap(int,int) hay swap(float, float)
¨ Thay vào đó, có một hàm swap<>() được dùng để tạo hai hàm

swap<int>() và swap<float>()
n Khi được dùng với một cấu trúc template, cặp ngoặc nhọn được

dùng để chỉ rõ kiểu dữ liệu cần đến
n Thực tế, ta có thể sửa đoạn mã trước để gọi các hàm trên một cách

tường minh:

int x = 1, y = 2;
float a = 1.1, b = 2.2;
...
swap<int>(x, y); // Invokes int version of Swap()
swap<float>(a, b); // Invokes float version of Swap()

@ 2004 Trần Minh Châu. FOTECH. VNU 21

Khuôn mẫu lớp

n Tương tự với khuôn mẫu hàm với tham số thuộc
các kiểu tuỳ ý, ta cũng có thể định nghĩa khuôn
mẫu lớp (class template) sử dụng các thể hiện
của một hoặc nhiều kiểu dữ liệu tuỳ ý
¨ Ta cũng có thể định nghĩa template cho struct và
union

n Khai báo một khuôn mẫu lớp cũng tương tự với
khuôn mẫu hàm

@ 2004 Trần Minh Châu. FOTECH. VNU 22

Khuôn mẫu lớp
Ví dụ, ta sẽ tạo một cấu trúc cặp đôi giữ một cặp giá trị thuộc kiểu tuỳ ý

struct Pair {
int first;
int second;

};
n Trước hết, xét khai báo Pair

cho một cặp giá trị kiểu int:

template <typename T>
struct Pair {

T first;
T second;

};

n Ta có thể sửa khai báo trên thành
một khuôn mẫu lấy kiểu tuỳ ý:
Tuy nhiên hai thành viên first và second
phải thuộc cùng kiểu

template <typename T, typename U>
struct Pair {

T first;
U second;

};

n Hoặc ta có thể cho phép hai
thành viên nhận các kiểu dữ
liệu khác nhau:

@ 2004 Trần Minh Châu. FOTECH. VNU 23

Khuôn mẫu lớp
n Để tạo các thể hiện của template Pair, ta phải dùng ký

hiệu cặp ngoặc nhọn
¨ Khác với khuôn mẫu hàm khi ta có thể bỏ qua kiểu dữ liệu cho

các tham số, đối với khuôn mẫu class/struct/union, chúng phải
được cung cấp tường minh

Pair p; // Not permitted
Pair<int, int> q; // Creates a pair of ints
Pair<int, float> r; // Creates a pair with an int and a float

n Tại sao đòi hỏi kiểu tường minh?
¨ Các lệnh trên làm gì? - cấp phát bộ nhớ cho đối tượng
¨ Nếu không biết các kiểu dữ liệu được sử dụng, trình biên dịch làm thế

nào để biết cần đến bao nhiêu bộ nhớ?

@ 2004 Trần Minh Châu. FOTECH. VNU 24

Khuôn mẫu lớp
n Cũng như khuôn mẫu hàm, không có struct Pair mà chỉ có các

struct có tên Pair<int, int>, Pair<int,float>,
Pair<int,char>,…

n Quy trình tạo các phiên bản struct Pair từ khuôn mẫu cũng
giống như đối với khuôn mẫu hàm

n Khi trình biên dịch lần đầu gặp khai báo dùng Pair<int, int>,
nó kiểm tra xem struct đó đã tồn tại chưa, nếu chưa, nó sinh một
khai báo tương ứng.
¨ Đối với các khuôn mẫu cho class, trình biên dịch sẽ sinh cả các định

nghĩa phương thức cần thiết để khớp với khai báo class.

@ 2004 Trần Minh Châu. FOTECH. VNU 25

Khuôn mẫu lớp
n Một khi đã tạo được một thể hiện của một khuôn mẫu

class/struct/union, ta có thể tương tác với nó như thể nó
là thể hiện của một class/struct/union thông thường.

n Tiếp theo, ta sẽ tạo một template cho lớp Stack đã được
mô tả trong các slice trước

Pair<int, int> q;
Pair<int, float> r;
q.first = 5;
q.second = 10;
r.first = 15;
r.second = 2.5;

@ 2004 Trần Minh Châu. FOTECH. VNU 26

Khuôn mẫu lớp
n Khi thiết kế khuôn mẫu (cho lớp hoặc hàm), thông

thường, ta nên tạo một phiên bản cụ thể trước, sau đó
mới chuyển nó thành một template
¨ Ví dụ, ta sẽ bắt đầu bằng việc cài đặt hoàn chỉnh Stack cho số

nguyên

n Điều đó cho phép phát hiện các vấn đề về khái niệm
trước khi chuyển thành phiên bản cho sử dụng tổng quát
¨ khi đó, ta có thể test tương đối đầy đủ lớp Stack cho số nguyên

để tìm các lỗi tổng quát mà không phải quan tâm đến các vấn đề
liên quan đến template

@ 2004 Trần Minh Châu. FOTECH. VNU 27

Stack cho số nguyên
n Khai báo và định nghĩa lớp Stack cho kiểu int
¨ Bắt đầu bằng một ngăn xếp đơn giản

class Stack {
public:

Stack();
~Stack();
void push(const int& i) throw (logic_error);
void pop(int& i) throw (logic_error);
bool isEmpty() const;
bool isFull() const;

private:
static const int max = 10;
int contents[max];
int current;

};

@ 2004 Trần Minh Châu. FOTECH. VNU 28

Stack::Stack() { this->current = 0; }

Stack::~Stack() {}

void Stack::push(const int& i) throw(logic_error) {
if (this->current < this->max) {

this->contents[this->current++] = i;
}
else {

throw logic_error(“Stack is full.”);
}

}

void Stack::pop(int& i) throw(logic_error) {
if (this->current > 0) {

i = this->contents[--this->current];
} else {

throw logic_error(“Stack is empty.”);
}

}

bool Stack::isEmpty() const { return (this->current == 0;) }

bool Stack::isFull() const { return (this->current == this->max); }

@ 2004 Trần Minh Châu. FOTECH. VNU 29

Template Stack
n Chuyển khai báo và định nghĩa trước thành một phiên

bản tổng quát:

template <typename T>
class Stack {

public:
Stack();
~Stack();
void push(const T& i) throw (logic_error);
void pop(T& i) throw (logic_error);
bool isEmpty() const;
bool isFull() const;

private:
static const int max = 10;
T contents[max];
int current;

};

Thêm lệnh template để
nói rằng một phần của kiểu
sẽ được chỉ rõ sau

@ 2004 Trần Minh Châu. FOTECH. VNU 30

template <typename T>
Stack<T>::Stack() { this->current = 0; }

template <typename T>
Stack<T>::~Stack() {}

template <typename T>
void Stack<T>::push(const T& i) {

if (this->current < this->max) {
this->contents[this->current++] = i;

}
else {

throw logic_error(“Stack is full.”);
}

}

template <typename T>
void Stack<T>::pop(T& i) {

if (this->current > 0) {
i = this->contents[--this->current];

} else {
throw logic_error(“Stack is empty.”);

}
}

template <typename T>
bool Stack<T>::isEmpty() const { return (this->current == 0;) }

template <typename T>
bool Stack<T>::isFull() const { return (this->current == this->max); }

Mỗi phương thức cần một
lệnh template đặt trước

Mỗi khi dùng toán tử phạm vi,
cần một ký hiệu ngoặc nhọn kèm
theo tên kiểu

Ta đang định nghĩa một lớp
Stack<type>, chứ không định
nghĩa lớp Stack

Thay thế kiểu của đối tượng
được lưu trong ngăn xếp
(trước là int) bằng kiểu tuỳ
ý T

@ 2004 Trần Minh Châu. FOTECH. VNU 31

Template Stack

n Sau đó, ta có thể tạo và sử dụng các thể hiện của các
lớp được định nghĩa bởi template của ta:

int x = 5, y;
char c = 'a', d;

Stack<int> s;
Stack<char> t;

s.push(x);
t.push(c);
s.pop(y);
t.pop(d);

@ 2004 Trần Minh Châu. FOTECH. VNU 32

Các tham số khuôn mẫu khác
n Ta mới nói đến các lệnh template với tham số

thuộc "kiểu" typename
n Tuy nhiên, còn có hai "kiểu" tham số khác
¨ Kiểu thực sự (ví dụ: int)
¨ Các template

@ 2004 Trần Minh Châu. FOTECH. VNU 33

Các tham số khuôn mẫu khác

n Nhớ lại rằng trong cài đặt Stack, ta có một hằng max quy định số
lượng tối đa các đối tượng mà ngăn xếp có thể chứa
¨ Như vậy, mỗi thể hiện sẽ có cùng kích thước đối với mọi kiểu của đối

tượng được chứa
n Nếu ta không muốn đòi hỏi mọi Stack đều có kích thước tối đa như

nhau?
n Ta có thể thêm một tham số vào lệnh template chỉ ra một số int

(giá trị này sẽ được dùng để xác định giá trị cho max)

¨ Lưu ý: ta khai báo tham số int giống như trong các khai báo khác

template <typename T, int I>
// Specifies that one arbitrary type T and one int I
// will be parameters in the following statement

@ 2004 Trần Minh Châu. FOTECH. VNU 34

Các tham số khuôn mẫu khác
n Sửa khai báo và định nghĩa trước để sử dụng tham số mới:

template <typename T, int I>
class Stack {

public:
Stack();
~Stack();
void push(const T& i) throw (logic_error);
void pop(T& i) throw (logic_error);
bool isEmpty() const;
bool isFull() const;

private:
static const int max = I;
T contents[max];
int current;

};

Khai báo tham số mới

Sử dụng tham số mới để
xác định giá trị max của
một lớp thuộc một kiểu
nào đó

@ 2004 Trần Minh Châu. FOTECH. VNU 35

template <typename T, int I>
Stack<T, I>::Stack() { this->current = 0; }

template <typename T, int I>
Stack<T, I>::~Stack() {}

template <typename T, int I>
void Stack<T, I>::push(const T& i) {

if (this->current < this->max) {
this->contents[this->current++] = i;

}
else {

throw logic_error(“Stack is full.”);
}

}
...

Sửa tên lớp
dùng cho các
toán tử phạm vi

Sửa các lệnh
template

Các tham số khuôn mẫu khác

@ 2004 Trần Minh Châu. FOTECH. VNU 36

Các tham số khuôn mẫu khác
n Giờ ta có thể tạo các thể hiện của các lớp Stack

với các kiểu dữ liệu và kích thước đa dạng

¨ Lưu ý rằng các lệnh trên tạo thể hiện của 3 lớp khác
nhau

Stack<int, 5> s; // Creates an instance of a Stack
// class of ints with max = 5

Stack<int, 10> t; // Creates an instance of a Stack
// class of ints with max = 10

Stack<char, 5> u; // Creates an instance of a Stack
// class of chars with max = 5

@ 2004 Trần Minh Châu. FOTECH. VNU 37

Các tham số khuôn mẫu khác
n Các ràng buộc khi sử dụng các kiểu thực

sự làm tham số cho lệnh template:
¨Chỉ có thể dùng các kiểu số nguyên, con trỏ,

hoặc tham chiếu
¨Không được gán trị cho tham số hoặc lấy địa

chỉ của tham số

@ 2004 Trần Minh Châu. FOTECH. VNU 38

Các tham số khuôn mẫu khác
n Loại tham số thứ ba cho lệnh template chính là một

template
n Ví dụ, xét thiết kế khuôn mẫu cho một lớp Map (ánh xạ)

ánh xạ các khoá tới các giá trị
¨ Lớp này cần lưu các ánh xạ từ khoá tới giá trị, nhưng ta không

muốn chỉ ra kiểu của các đối tượng được lưu trữ ngay từ đầu
¨ Ta sẽ tạo Map là một khuôn mẫu sao cho có thể sử dụng các

kiểu khác nhau cho khoá và giá trị
¨ Tuy nhiên, ta cần chỉ ra lớp chứa (container) là một template, để

nó có thể lưu trữ các khoá và giá trị là các kiểu tuỳ ý

@ 2004 Trần Minh Châu. FOTECH. VNU 39

Các tham số khuôn mẫu khác
n Ta có thể khai báo lớp Map:

template< typename Key, typename Value,
template <typename T> Container>

class Map {
...
private:

Container<Key> keys;
Container<Value> values;
...

};

n Sau đó có thể tạo các thể hiện của Map như sau:

¨ Lệnh trên tạo một thể hiện của lớp Map<string, int, Stack> chứa các
thành viên là một tập các string và một tập các int (giả sử còn có các đoạn
mã thực hiện ánh xạ mỗi từ tới một số int biểu diễn số lần xuất hiện của từ đó)

¨ Ta đã dùng template Stack để làm container lưu trữ các thông tin trên

Map< string, int, Stack> wordcount;

@ 2004 Trần Minh Châu. FOTECH. VNU 40

Các tham số khuôn mẫu khác
¨ Như vậy, khi trình biên dịch sinh các khai báo và định

nghĩa thực sự cho các lớp Map, nó sẽ đọc các tham
số mô tả các thành viên dữ liệu

¨ Khi đó, nó sẽ sử dụng khuôn mẫu Stack để sinh mã
cho hai lớp Stack<string> và Stack<int>

¨ Đến đây, ta phải hiểu rõ tại sao container phải là một
khuôn mẫu, nếu không, làm thế nào để có thể dùng
nó để tạo các loại stack khác nhau?

