
CO2008 - KIẾN TRÚC MÁY TÍNH

Khoa Khoa Học và Kỹ Thuật Máy Tính
Đại học Bách Khoa – Tp.HCM

08/2019

Bài tập/Thực hành 2
CHƯƠNG 2 KIẾN TRÚC TẬP LỆNH MIPS: Lệnh đại số, luận lý, truy xuất dữ

liệu

Mục tiêu
• Sử dụng thành thạo công cụ mô phỏng MARS. Biết cấu trúc một chương trình hợp ngữ MIPS.

• Sử dụng lệnh syscall để xuất/nhập dữ liệu, dùng trong hiển thị, debug

• Nắm được các lệnh luận lý, đại số trong hợp ngữ MIPS.

• Nắm được cách khai báo các kiểu dữ liệu và sử dụng được các lệnh về truy xuất dữ liệu
(load/store).

Yêu cầu
• Tìm hiểu công cụ MARS và thực hành trên máy cá nhân.

• Xem các lệnh hợp ngữ trong slide/trong mục references trên bkelearning.

• Tham khảo tập lệnh nhanh cuối tài liệu này [trang 2].

• Nộp các file code hợp ngữ đặt tên theo format [Bai*.asm] chứa trong thư mục Lab2_MSSV

Bài tập và Thực hành
Bài 1: Syscall

Tham khảo manual của lệnh syscall trong phần help của công cụ MARS và hiện thực các yêu
cầu dưới đây dùng lệnh syscall.

(a) Viết chương trình nhập vào 3 số nguyên a, b, c rồi xuất ra màn hình giá trị của hàm
f(a,b,c) = a - b + c.

(b) Viết chương trình xuất ra chuỗi "Kien Truc May Tinh 2019". (giống ví dụ HelloWorld!)
(c) Viết chương trình đọc vào một chuỗi 10 ký tự sau đó xuất ra màn hình chuỗi ký tự đó.

Bài 2: Các lệnh số học luận lý.

(a) Viết chương trình dùng các lệnh add, addi, sub, subi, or, ori . . . để thực hiện phép tính
bên dưới.

1 100000 # This immediate number is greater than 16-bit
2 + 1000
3 - 100

Kết quả chứa vào thanh ghi $s0 và xuất kết quả ra màn hình (console).

Bài 3: Các lệnh về số học, phép nhân.
Viết chương trình tính giá trị biểu thức f(x) bên dưới. Kết quả lưu vào thanh ghi $s0 và xuất ra
màn hình.

1 f = a.x^3 + b.x^2 - c.x - d

Dùng syscall để nhập a, b, c, d, x và xuất kết quả ra màn hình.
Gợi ý: (theo phương pháp Horner’s Method, sinh viên có thể làm theo cách của riêng mình)

• Nhân a với x rồi lưu kết quả vào thanh ghi tạm. t = a.x
• Thực hiện phép số tính giữa thanh ghi tạm với b. t = t + b //t = a.x + b
• Nhân thanh ghi tạm với x. t = t*x //t = (ax + b)x
• Thực hiện phép số tính giữa thanh ghi tạm với c. t = t – c //t = a.x2 + b.x - c
• Nhân thanh ghi tạm với x. t = t*x // t = (ax2 + bx – c)x
• Thực hiện phép số tính giữa thanh ghi tạm với d. t = t - d // t = a.x3 + b.x2 – c.x - d

Bài 4: Lệnh load/store.

(a) Cho dãy số nguyên 10 phần tử, xuất ra kết quả là HIỆU của phần tử thứ 7 và 3. Mảng bắt
đầu từ phần tử thứ 0.

(b) Chuyển đổi vị trí cuối và đầu của chuỗi "MSSV - Ho-Ten". Ví dụ chuỗi "123456 - Nguyen
Van A" sẽ chuyển thành "A23456 - Nguyen Van 1". Sinh viên thay tên và mã số sinh viên
của mình vào chuỗi trên

Làm thêm
1. Xác định các trường (OP, Rs, Rt, Rd, shamt, function, immediate) của các lệnh sau và chuyển

các lệnh đó qua mã máy (dạng hex)

1 add $t0, $s0, $a0 # add register to register
2 addi $v0, $a1, 200 # add register to immediate
3 lw $t0, 4($a0) # load word
4 sw $t0, 4($a0) # store word
5 lb $t0, 4($a0) # load byte
6 sb $t0, 4($a0) # store byte
7 sll $t1, $s0, 5 # shift left logic (5-bit)

2

MIPS32® Instruction Set
Quick Reference

RD  DESTINATION REGISTER

RS, RT  SOURCE OPERAND REGISTERS

RA  RETURN ADDRESS REGISTER (R31)
PC  PROGRAM COUNTER

ACC  64-BIT ACCUMULATOR

LO, HI  ACCUMULATOR LOW (ACC31:0) AND HIGH (ACC63:32) PARTS

±  SIGNED OPERAND OR SIGN EXTENSION

∅  UNSIGNED OPERAND OR ZERO EXTENSION

::  CONCATENATION OF BIT FIELDS

R2  MIPS32 RELEASE 2 INSTRUCTION

DOTTED  ASSEMBLER PSEUDO-INSTRUCTION

PLEASE REFER TO “MIPS32 ARCHITECTURE FOR PROGRAMMERS VOLUME II:
THE MIPS32 INSTRUCTION SET” FOR COMPLETE INSTRUCTION SET INFORMATION.

ARITHMETIC OPERATIONS

ADD RD, RS, RT RD = RS + RT (OVERFLOW TRAP)

ADDI RD, RS, CONST16 RD = RS + CONST16± (OVERFLOW TRAP)

ADDIU RD, RS, CONST16 RD = RS + CONST16±

ADDU RD, RS, RT RD = RS + RT

CLO RD, RS RD = COUNTLEADINGONES(RS)

CLZ RD, RS RD = COUNTLEADINGZEROS(RS)

LA RD, LABEL RD = ADDRESS(LABEL)

LI RD, IMM32 RD = IMM32

LUI RD, CONST16 RD = CONST16 << 16

MOVE RD, RS RD = RS

NEGU RD, RS RD = –RS

SEBR2 RD, RS RD = RS7:0
±

SEHR2 RD, RS RD = RS15:0
±

SUB RD, RS, RT RD = RS – RT (OVERFLOW TRAP)

SUBU RD, RS, RT RD = RS – RT

SHIFT AND ROTATE OPERATIONS

ROTRR2 RD, RS, BITS5 RD = RSBITS5–1:0 :: RS31:BITS5

ROTRVR2 RD, RS, RT RD = RSRT4:0–1:0 :: RS31:RT4:0

SLL RD, RS, SHIFT5 RD = RS << SHIFT5

SLLV RD, RS, RT RD = RS << RT4:0

SRA RD, RS, SHIFT5 RD = RS
± >> SHIFT5

SRAV RD, RS, RT RD = RS
± >> RT4:0

SRL RD, RS, SHIFT5 RD = RS
∅ >> SHIFT5

SRLV RD, RS, RT RD = RS
∅ >> RT4:0

LOGICAL AND BIT-FIELD OPERATIONS

AND RD, RS, RT RD = RS & RT

ANDI RD, RS, CONST16 RD = RS & CONST16∅

EXTR2 RD, RS, P, S RS = RSP+S-1:P
∅

INSR2 RD, RS, P, S RDP+S-1:P = RSS-1:0

NOP NO-OP

NOR RD, RS, RT RD = ~(RS | RT)

NOT RD, RS RD = ~RS

OR RD, RS, RT RD = RS | RT

ORI RD, RS, CONST16 RD = RS | CONST16∅

WSBHR2 RD, RS RD = RS23:16 :: RS31:24 :: RS7:0 :: RS15:8

XOR RD, RS, RT RD = RS ⊕ RT

XORI RD, RS, CONST16 RD = RS ⊕ CONST16∅

CONDITION TESTING AND CONDITIONAL MOVE OPERATIONS

MOVN RD, RS, RT IF RT ≠ 0, RD = RS

MOVZ RD, RS, RT IF RT = 0, RD = RS

SLT RD, RS, RT RD = (RS
± < RT

±) ? 1 : 0

SLTI RD, RS, CONST16 RD = (RS
± < CONST16±) ? 1 : 0

SLTIU RD, RS, CONST16 RD = (RS
∅ < CONST16∅) ? 1 : 0

SLTU RD, RS, RT RD = (RS
∅ < RT

∅) ? 1 : 0

MULTIPLY AND DIVIDE OPERATIONS

DIV RS, RT LO = RS
± / RT

±; ΗΙ = RS
± MOD RT

±

DIVU RS, RT LO = RS
∅ / RT

∅; ΗΙ = RS
∅ MOD RT

∅

MADD RS, RT ACC += RS
± × RT

±

MADDU RS, RT ACC += RS
∅ × RT

∅

MSUB RS, RT ACC −= RS
± × RT

±

MSUBU RS, RT ACC −= RS
∅ × RT

∅

MUL RD, RS, RT RD = RS
± × RT

±

MULT RS, RT ACC = RS
± × RT

±

MULTU RS, RT ACC = RS
∅ × RT

∅

ACCUMULATOR ACCESS OPERATIONS

MFHI RD RD = HI

MFLO RD RD = LO

MTHI RS HI = RS

MTLO RS LO = RS

JUMPS AND BRANCHES (NOTE: ONE DELAY SLOT)

B OFF18 PC += OFF18±

BAL OFF18 RA = PC + 8, PC += OFF18±

BEQ RS, RT, OFF18 IF RS = RT, PC += OFF18±

BEQZ RS, OFF18 IF RS = 0, PC += OFF18±

BGEZ RS, OFF18 IF RS ≥ 0, PC += OFF18±

BGEZAL RS, OFF18 RA = PC + 8; IF RS ≥ 0, PC += OFF18±

BGTZ RS, OFF18 IF RS > 0, PC += OFF18±

BLEZ RS, OFF18 IF RS ≤ 0, PC += OFF18±

BLTZ RS, OFF18 IF RS < 0, PC += OFF18±

BLTZAL RS, OFF18 RA = PC + 8; IF RS < 0, PC += OFF18±

BNE RS, RT, OFF18 IF RS ≠ RT, PC += OFF18±

BNEZ RS, OFF18 IF RS ≠ 0, PC += OFF18±

J ADDR28 PC = PC31:28 :: ADDR28∅

JAL ADDR28 RA = PC + 8; PC = PC31:28 :: ADDR28∅

JALR RD, RS RD = PC + 8; PC = RS

JR RS PC = RS

LOAD AND STORE OPERATIONS

LB RD, OFF16(RS) RD = MEM8(RS + OFF16±)±

LBU RD, OFF16(RS) RD = MEM8(RS + OFF16±)∅

LH RD, OFF16(RS) RD = MEM16(RS + OFF16±)±

LHU RD, OFF16(RS) RD = MEM16(RS + OFF16±)∅

LW RD, OFF16(RS) RD = MEM32(RS + OFF16±)

LWL RD, OFF16(RS) RD = LOADWORDLEFT(RS + OFF16±)

LWR RD, OFF16(RS) RD = LOADWORDRIGHT(RS + OFF16±)

SB RS, OFF16(RT) MEM8(RT + OFF16±) = RS7:0

SH RS, OFF16(RT) MEM16(RT + OFF16±) = RS15:0

SW RS, OFF16(RT) MEM32(RT + OFF16±) = RS

SWL RS, OFF16(RT) STOREWORDLEFT(RT + OFF16±, RS)

SWR RS, OFF16(RT) STOREWORDRIGHT(RT + OFF16±, RS)

ULW RD, OFF16(RS) RD = UNALIGNED_MEM32(RS + OFF16 ±)

USW RS, OFF16(RT) UNALIGNED_MEM32(RT + OFF16±) = RS

ATOMIC READ-MODIFY-WRITE OPERATIONS

LL RD, OFF16(RS) RD = MEM32(RS + OFF16±); LINK

SC RD, OFF16(RS) IF ATOMIC, MEM32(RS + OFF16±) = RD;
RD = ATOMIC ? 1 : 0

Copyright © 2008 MIPS Technologies, Inc. All rights reserved. MD00565 Revision 01.01

REGISTERS

0 zero Always equal to zero

1 at Assembler temporary; used by the assembler

2-3 v0-v1 Return value from a function call

4-7 a0-a3 First four parameters for a function call

8-15 t0-t7 Temporary variables; need not be preserved

16-23 s0-s7 Function variables; must be preserved

24-25 t8-t9 Two more temporary variables

26-27 k0-k1 Kernel use registers; may change unexpectedly

28 gp Global pointer

29 sp Stack pointer

30 fp/s8 Stack frame pointer or subroutine variable

31 ra Return address of the last subroutine call

DEFAULT C CALLING CONVENTION (O32)

Stack Management
• The stack grows down.

• Subtract from $sp to allocate local storage space.
• Restore $sp by adding the same amount at function exit.

• The stack must be 8-byte aligned.
• Modify $sp only in multiples of eight.

Function Parameters
• Every parameter smaller than 32 bits is promoted to 32 bits.
• First four parameters are passed in registers $a0−$a3.

• 64-bit parameters are passed in register pairs:
• Little-endian mode: $a1:$a0 or $a3:$a2.
• Big-endian mode: $a0:$a1 or $a2:$a3.

• Every subsequent parameter is passed through the stack.
• First 16 bytes on the stack are not used.
• Assuming $sp was not modified at function entry:

• The 1st stack parameter is located at 16($sp).
• The 2nd stack parameter is located at 20($sp), etc.

• 64-bit parameters are 8-byte aligned.

Return Values
• 32-bit and smaller values are returned in register $v0.
• 64-bit values are returned in registers $v0 and $v1:

• Little-endian mode: $v1:$v0.
• Big-endian mode: $v0:$v1.

MIPS32 VIRTUAL ADDRESS SPACE

kseg3 0xE000.0000 0xFFFF.FFFF Mapped Cached

ksseg 0xC000.0000 0xDFFF.FFFF Mapped Cached

kseg1 0xA000.0000 0xBFFF.FFFF Unmapped Uncached

kseg0 0x8000.0000 0x9FFF.FFFF Unmapped Cached

useg 0x0000.0000 0x7FFF.FFFF Mapped Cached

READING THE CYCLE COUNT REGISTER FROM C

unsigned mips_cycle_counter_read()
{

unsigned cc;
asm volatile("mfc0 %0, $9" : "=r" (cc));
return (cc << 1);

}

ASSEMBLY-LANGUAGE FUNCTION EXAMPLE

int asm_max(int a, int b)
{
int r = (a < b) ? b : a;
return r;
}

.text

.set nomacro

.set noreorder

.global asm_max

.ent asm_max
asm_max:

move $v0, $a0 # r = a
slt $t0, $a0, $a1 # a < b ?
jr $ra # return
movn $v0, $a1, $t0 # if yes, r = b
.end asm_max

C / ASSEMBLY-LANGUAGE FUNCTION INTERFACE

#include <stdio.h>
int asm_max(int a, int b);
int main()
{

int x = asm_max(10, 100);
int y = asm_max(200, 20);
printf("%d %d\n", x, y);

}

INVOKING MULT AND MADD INSTRUCTIONS FROM C

int dp(int a[], int b[], int n)
{

int i;
long long acc = (long long) a[0] * b[0];
for (i = 1; i < n; i++)

acc += (long long) a[i] * b[i];
return (acc >> 31);

}

ATOMIC READ-MODIFY-WRITE EXAMPLE

atomic_inc:
ll $t0, 0($a0) # load linked
addiu $t1, $t0, 1 # increment
sc $t1, 0($a0) # store cond'l
beqz $t1, atomic_inc # loop if failed
nop

ACCESSING UNALIGNED DATA
NOTE: ULW AND USW AUTOMATICALLY GENERATE APPROPRIATE CODE

LITTLE-ENDIAN MODE BIG-ENDIAN MODE

LWR RD, OFF16(RS)
LWL RD, OFF16+3(RS)

LWL RD, OFF16(RS)
LWR RD, OFF16+3(RS)

SWR RD, OFF16(RS)
SWL RD, OFF16+3(RS)

SWL RD, OFF16(RS)
SWR RD, OFF16+3(RS)

ACCESSING UNALIGNED DATA FROM C

typedef struct
{

int u;
} __attribute__((packed)) unaligned;

int unaligned_load(void *ptr)
{

unaligned *uptr = (unaligned *)ptr;
return uptr->u;

}

MIPS SDE-GCC COMPILER DEFINES

__mips MIPS ISA (= 32 for MIPS32)

__mips_isa_rev MIPS ISA Revision (= 2 for MIPS32 R2)

__mips_dsp DSP ASE extensions enabled

_MIPSEB Big-endian target CPU

_MIPSEL Little-endian target CPU

_MIPS_ARCH_CPU Target CPU specified by -march=CPU
_MIPS_TUNE_CPU Pipeline tuning selected by -mtune=CPU

NOTES

• Many assembler pseudo-instructions and some rarely used
machine instructions are omitted.

• The C calling convention is simplified. Additional rules apply
when passing complex data structures as function parameters.

• The examples illustrate syntax used by GCC compilers.
• Most MIPS processors increment the cycle counter every other

cycle. Please check your processor documentation.

MD00565 Revision 01.01Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

