C02008 - KIEN TRUC MAY TiNH

BK Khoa Khoa Hoc va Ky Thuat May Tinh
‘”‘@ Pai hoc Bach Khoa - Tp.HCM
08/2019

Bai tap/Thuc hanh 2
CHUGNG 2 KIEN TRUC TAP LENH MIPS: Lénh dai s6, ludn 1y, truy xuit dit
liéu
Muc tiéu

e SU dung thanh thao céng cu mé phéng MARS. Biét cau tric mét chuong trinh hgp ngit MIPS.
e St dung lénh syscall dé xuat/nhap dit lieu, diing trong hién thi, debug
e Nam dugc cac 1énh luan ly, dai s6 trong hgp ngixt MIPS.

e Nam dudc cach khai bdo cac kiéu dit lieu va st dung dugc cac lénh vé truy xuat di liéu
(load/store).

Yéu cau
e Tim hiéu cong cu MARS va thuc hanh trén may ca nhan.
e Xem cac lénh hodp ngit trong slide/trong muc references trén bkelearning.

e Tham khao tap lénh nhanh cudi tai liéu nay [trang 2].

e NOp cac file code hgp ngir dat tén theo format [Bai*.asm] chira trong thu muc Lab2_MSSV

Bai tap va Thuc hanh

Bai 1: Syscall
Tham khao manual clia lénh syscall trong phan help ctia cong cu MARS va hién thuc cac yéu
cau dudi day dung lénh syscall.
(a) Viét chuong trinh nhap vao 3 s6 nguyén a, b, ¢ rdi xudt ra man hinh gia tri ciia ham
f(a’b’c) =a- b + C.
(b) Viét chuong trinh xuat ra chubi "Kien Truc May Tinh 2019". (gidéng vi du HelloWorld!)
(c) Viét chuong trinh doc vao mét chubi 10 ky tu sau d6 xuat ra man hinh chudi ky tu doé.
Bai 2: Cac 1énh s6 hoc luan ly.

(a) Viét chuong trinh dung cac lénh add, addi, sub, subi, or, ori ... dé thuc hién phép tinh
bén duéi.

1 100000 # This immediate number is greater than 16-bit
2 [+ 1000

3 |- 100

Két qua chura vao thanh ghi $sy va xuat két qua ra man hinh (console).

Bai 3: Cac lénh vé s6 hoc, phép nhan.

Viét chuong trinh tinh gia tri biéu thiic f(x) bén dudi. Két qua Iuu vao thanh ghi $s, va xuat ra
man hinh.

1 | £ = a.x"3 + b.x"2 - c.x - d

Dung syscall dé nhap a, b, c, d, x va xuat két qua ra man hinh.
Goi y: (theo phuong phap Horner’s Method, sinh vién cé thé lam theo cach ctia riéng minh)
e Nhan a v6i x roi luu két qua vao thanh ghi tam. t = a.x
e Thuc hién phép sob tinh gitta thanh ghitam véib. t=t+b //t=ax+b
e Nhan thanh ghi tam v6i x. t = t*x //t = (ax + b)x
e Thuc hién phép sb tinh gitta thanh ghitam véic. t=t-c¢ //t=a.x2 +b.x-c
e Nhan thanh ghi tam véi x. t =t*x // t = (ax2 + bx - ¢)x
e Thuc hién phép s6 tinh gita thanh ghitam vgid. t=t-d //t=ax3 +b.x2-cx-d

Bai 4: Lénh load/store.

(a) Cho day s6 nguyén 10 phan t, xuat ra két qua 1a HIEU ctia phan tt thit 7 va 3. Mang bat
dau tu phan ti tha 0.

(b) Chuyén ddi vi tri cudi va dau ctia chudi "MSSV - Ho-Ten". Vi du chudi "123456 - Nguyen
Van A" sé chuyén thanh "A23456 - Nguyen Van 1". Sinh vién thay tén va ma so sinh vién
ctia minh vao chudi trén

Lam thém

1.

N o o s W N =

Xac dinh cac truong (OP, Rs, Rt, Rd, shamt, function, immediate) ctia cac 1énh sau va chuyén
cac lénh dé qua ma may (dang hex)

add s$t0, $s0, $Sao0
addi sv0, $Sal, 200
1w St0, 4(S$Sa0)
sw sSt0, 4(sa0)
1b $t0, 4(sa0)
sb s$t0, 4(sa0)
sll s$tl, $s0, 5

add register to register

add register to immediate
load word

store word

load byte

store byte

shift left logic (5-bit)

HH FHR H KR R R K

Rp

Rs, Rt
Ra

PC
Acc
Lo, Hi
+

]

R2

DOTTED

MIPS32® Instruction Set
Quick Reference

— DESTINATION REGISTER

— SOURCE OPERAND REGISTERS

— RETURN ADDRESS REGISTER (R31)

— PRrROGRAM COUNTER

— 64-BIT ACCUMULATOR

— ACCUMULATOR LOW (ACC310) AND HIGH (ACCg332) PARTS
— SIGNED OPERAND OR SIGN EXTENSION

— UNSIGNED OPERAND OR ZERO EXTE!
- C()NL‘A'I‘H\'/\'I'I()N OF BIT FIELDS

— MIPS32 RELEASE 2 INSTRUCTION
— ASSEMBLER PSEUDO=INSTRUCTION

SION

PLEASE REFER TO “MIPS32 Arcrirecture For PrRoGrammERs VoLume I1:

THe MIPS32 INSTRUCTION SET” FOR COMPLETE INSTRUCTION SET INFORMATION.

ADD
ADDI
ADDIU
ADDU
CLO
CLZ
LA

9]

LUI
MOVE
NEGU
SEB®
SEH®
SUB
SUBU

ROTR®
ROTRV*
SLL
SLLV
SRA
SRAV
SRL
SRLV

ARITHMETIC OPERATIONS

Rbp, Rs, RT Rp = Rs + Rt (OVERFLOW TRAP)
Rp, Rs, consT16 | Rp = Rs + consT16® (OVERFLOW TRAP)

R, Rs, constl6 | Rp = Rs + const16*

Rp, Rs, Rt Rp=Rs+Rr

Rb, Rs Rb = CountLEADINGONES(RS)
Rb, Rs Rb = CountLEADINGZEROS(RS)
RD, LABEL Rb = ADDRESS(LABEL)

Rb, Mm32 Rbp = mm32

Rb, constl6 Rbp = consTl6 << 16

Rp, Rs Rp =Rs

Rp, Rs Rp =-Rs

Rb, Rs Rb = Rsz6"

Rb, Rs Rb = Rs)s0*

Rbp, Rs, RT Rp =Rs — Rt (OVERFLOW TRAP)
Rbp, Rs, RT Rp =Rs — Rt

SHIFT AND ROTATE OPERATIONS

Rb, Rs, BITSS RD = Rspirss 10 :: RS31pirss
Rp, Rs, RT RD = Rsprao-10 11 RSs1rra0
Rb, Rs, sHIFtS Rp = Rs << suirt5

Rbp, Rs, RT Rp = Rs << Ry

Rb, Rs, sHIFTS Rp = Rs* >> suiers

Rp, Rs, RT Rp = Rs* >> Ry

Rb, Rs, sHiFtS Rp = Rs" >> suirr5

Rb, Rs, RT Rp = Rs” >> Ry

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

AND
ANDI
EXT®
INS®

WSBH® Rbp, Rs

MOVN
MOVZ
SLT
SLTI
SLTIU
SLTU

DIV
DIVU
MADD

MADDU Rs, Rt

Locicar aNp Bir-FiELD OPERATIONS
Rp, Rs, Rt Rp=Rs & Rt

Rb, Rs, const16 Rp = Rs & const16”

Rp, Rs, P, S Rs = Rspisp”

Rp, Rs, P, S Rop:s.p = Rss. 10
No-op

Rp, Rs, Rt Rp =~(Rs | Rr)

Rp, Rs Rp =~Rs

Rp, Rs, Rt Rp =Rs|Rr

RD, Rs, const16 Rp=Rs | const16"
RD = Rsauie i Rssiaq 1 Rz 1 Rsyss
Rp, Rs, Rt Rp=Rs Rt

Rb, Rs, const16 Rp = Rs [const16"”

Conorrion TESTING AND CoNDITIONAL MOVE OPERATIONS

Rp, Rs, Rt iIF Rt #0, Rp = Rs
Rp, Rs, Rt F Rr=0, Rp=Rs
Rbp, Rs, Rt Rp=(Rs*<R1%)?1:0

Rp, Rs, const16 Rp = (Rs* < const16%) 21: 0

Rb, Rs, const16 Rp = (Rs” < const16”) 2 1:0
Rp, Rs, Rt Rp=(Rs”" <R1")?1:0

MurripLy AND DivibE OPERATIONS

Rs, Rt Lo = Rs*/ R1*; Hi = Rs* mop RT*
Rs, Rt Lo=Rs"” /Rt"; Hi = Rs” mop Rt”
Rs, Rt Acc +=Rs® x RT*

Acc += Rs"” x R71”

MSUB Rs, Rt Acc —= Rs* x R1*
MSUBU Rs, Rt Acc —= Rs"” x R1”
MUL Rbp, Rs, Rt Rp = Rs* X RT*
MULT Rs,Rr Acc = Rs* x RT*

MULTU Rs, Rt

MFHI
MFLO
MTHI
MTLO

Acc = Rs” x Rt

AccumurLator ACCESS OPERATIONS

Rp Rp =Hi
Rp Rp = Lo
Rs Hi=Rs
Rs Lo=Rs

BEQZ
BGEZ
BGEZAL
BGTZ
BLEZ
BLTZ
BLTZAL
BNE
BNEZ

]

JAL
JALR

LB

LBU
LH
LHU
LW
LWL
LWR

SC

Jumps ANp Brancues (Note: ONE DELAY SLoT)
OFF18 PC += orr18*
OFr18 Ra=PC + 8, PC += orr18*

Rs, R, orF18 ¥ Rs = R, PC += orr18*

Rs, orF18 ¥ Rs = 0, PC += orr18*

Rs, orFl18 ¥ Rs >0, PC += orr18*

Rs, oFr18 Ra=PC + 8; 1r Rs > 0, PC += orr18*
Rs, oFFl18 ¥ Rs > 0, PC += oFr18*

Rs, orFl18 ¥ Rs <0, PC += orr18*

Rs, orFl18 ¥ Rs <0, PC += orr18*

Rs, oFr18 Ra=PC + 8; 1r Rs < 0, PC += orr18*
Rs, R, orr18 ¥ Rs # R, PC += orr18*

Rs, orFl18 ¥ Rs # 0, PC += orr18*

ADDR28 PC = PCjas 1 ADDR2S'

ADDR28 Ra=PC + 8; PC = PCay.55 :: ADDR28"
Rp, Rs Rp =PC + 8; PC =Rs

Rs PC =Rs

Loap AND STORE OPERATIONS
Rb, orr16(Rs)
Rb, orr16(Rs)

Rp = Mem8(Rs + orF16%)*
Rb = MemM8(Rs + orr16*)"
Rb, orr16(Rs) Rp = Mem16(Rs + orF16*)*
Rb, orr16(Rs) Rb = Mem16(Rs + 0Fr16*)
Rb, orr16(Rs)
Rb, orr16(Rs)

Rb, orr16(Rs)

Rb = MEM32(Rs + 0rF16%)

Rp = LoApWorpLErt(Rs + 0rr16%)
Rb = LoapWorbRiGHT(Rs + 0FF16*)
Rs, orr16(RT) MEMS8(RT + 0FF16%) = Ry
Rs, orr16(RT) MEM16(RT + 0rF16%) = Rs;s0
Rs, oFr16(RT)
Rs, orr16(RT)

Rs, orr16(RT)

MEM32(RT + 0FF16) = Rs
StorREWORDLEFT(RT + 0FF16%, Rs)
S1orREWORDRIGHT(RT + 0FF16%, Rs)
Rb, orr16(Rs) RD = UNALIGNED_MEM32(Rs + 0FF16*)

Rs, orF16(RT) UNALIGNED_MEM32(RT + 0FF16%) = Rs

Aromic REap-Mobiry-WRITE OPERATIONS
Rb, orr16(Rs) Rb = MEM32(Rs + 0FF16*); LINK

1 Atomic, MEM32(Rs + orF16*) = Ro;

Rop, orr16(Rs) Ro = Atomic 2 1: 0

MD00565 Revision 01.01

REGISTERS
0 zero Always equal to zero
1 at Assembler temporary; used by the assembler
2-3 v0-vl Return value from a function call
4-7 a0-a3 First four parameters for a function call
8-15 t0-t7 Temporary variables; need not be preserved
16-23 | s0-s7 Function variables; must be preserved
24-25 | t8-t9 Two more temporary variables
26-27 = k0-k1 = Kernel use registers; may change unexpectedly

28 gp Global pointer

29 sp Stack pointer
30 fp/s8 Stack frame pointer or subroutine variable
31 ra Return address of the last subroutine call

Deraver C Cacring Convention (032)

Stack Management
* The stack grows down.

¢ Subtract from $sp to allocate local storage space.

¢ Restore $sp by adding the same amount at function exit.
¢ The stack must be 8-byte aligned.

* Modify $sp only in multiples of eight.

Function Parameters
¢ Every parameter smaller than 32 bits is promoted to 32 bits.
¢ First four parameters are passed in registers $a0—$a3.
* 64-bit parameters are passed in register pairs:
¢ Little-endian mode: $al:$a0 or $a3:$a2.
* Big-endian mode: $a0:$al or $a2:$a3.
¢ Every subsequent parameter is passed through the stack.
¢ First 16 bytes on the stack are not used.
¢ Assuming $sp was not modified at function entry:
* The 1" stack parameter is located at 16($sp).
* The 2" stack parameter is located at 20(Ssp), etc.
* 64-bit parameters are 8-byte aligned.

Return Values
¢ 32-bit and smaller values are returned in register $v0.
¢ 64-bit values are returned in registers $v0 and $v1:

¢ Little-endian mode: $v1:$v0.

* Big-endian mode: $v0:$v1.

MIPS32 Virruar ADDRESS SPACE

ReapinG Tue Cycre Count Recister Frow C

unsigned mips_cycle_counter_ read()
{

unsigned cc;

asm volatile("mfcO %0, $9" : "=r" (cc));

return (cc << 1);

AssemLy-Lancuace Funcrion ExampLE

int asm_max(int a, int b)
{

#
#
int r = (a <b) 2 b : a;
return r;

#

}

.text
.set nomacro
.set noreorder

.global asm_max

.ent asm_max

asm_max:
move $v0, $al #r=a
slt $t0, $a0, $al #a<b?
jr Sra # return
movn $v0, $al, $t0 # if yes,
.end asm_max

C / AssemBLY-LANGUAGE FuNcrioN INTERFACE

#include <stdio.h>
int asm_max(int a, int b);

int main ()

{
int x = asm_max(10, 100);
int y = asm max (200, 20);
printf ("%d %d\n", x, y):

Invokine MULT Anp MADD Instrucrions From C

int dp(int a(], int b[], int n)
{

kseg3 0xE000.0000 OXxFFFF.FFFF = Mapped Cached int i;
long long acc = (long long)
ksseg | 0xC000.0000 OxDFFF.FFFF Mapped Cached for (i = 1; i < n; i++)
acc += (long long) ali]
ksegl 0xA000.0000 OxBFFF.FFFF Unmapped | Uncached return (acc >> 391),. g
kseg0 0x8000.0000 Ox9FFF.FFFF Unmapped Cached }
useg | 0x0000.0000 Ox7FFF.FFFF Mapped Cached

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

af0] * b[0];

* bli];

Aromic Reap-Moviry-Write ExampLE

atomic_inc:

11 $t0, 0(sa0) # load linked
addiu s$tl, $t0, 1 # increment

sc s$tl, 0($a0) # store cond'l
beqz $tl, atomic_inc # loop if failed
nop

AccesSING UNALIGNED Dat4
NoTE: ULW AND USW AUTOMATICALLY GENERATE APPROPRIATE CODE

LirrLe-EnpiaNy Mope BiG-Enpian Mope

LWR Rb, orr16(Rs) LWL Rb, orr16(Rs)
LWL Rb, orr16+3(Rs) LWR Rb, 0rF16+3(Rs)
SWR Rb, orr16(Rs) SWL Rb, orF16(Rs)
SWL Rb, orr16+3(Rs) SWR Rb, orr16+3(Rs)

Accessing UNALIGNED Data From C

typedef struct
{
int u;
} __attribute__ ((packed)) unaligned;

int unaligned_load(void *ptr)

{
unaligned *uptr = (unaligned *)ptr;
return uptr->u;

MIPS SDE-GCC CompiLer DEFINES

__mips MIPS ISA (= 32 for MIPS32)
__mips_isa_rev | MIPS ISA Revision (=2 for MIPS32 R2)

__mips_dsp DSP ASE extensions enabled
_MIPSEB Big-endian target CPU
_MIPSEL Little-endian target CPU

_MIPS_ARCH_CPU | Target CPU specified by -march=CpPU

_MIPS_TUNE_CPU Pipeline tuning selected by -mtune=CPU

Nores

* Many assembler pseudo-instructions and some rarely used

machine instructions are omitted.

¢ The C calling convention is simplified. Additional rules apply

when passing complex data structures as function parameters.

¢ The examples illustrate syntax used by GCC compilers.

Most MIPS processors increment the cycle counter every other
cycle. Please check your processor documentation.

MD00565 Revision 01.01

