C02008 - KIEN TRUC MAY TiNH

BK Khoa Khoa Hoc va Ky Thuat May Tinh
‘”‘@ Pai hoc Bach Khoa - Tp.HCM
08/2019

Bai tap/Thuc hanh 3
CHUONG 2 KIEN TRUC TAP LENH MIPS: CAC LENH DPIEU KIEN
Muc tiéu

e Chuyén tit ngéon ngit cap cao (C) sang hop ngit MIPS.

e St dung lénh diéu khién (nhay, ré nhanh) dé diéu kién ludng chuong trinh.

Yéu cau

e Xem cach dung cac lénh (set, branch, jump, load, store) trong slide va trong file tham khdao
[trang 4].

e NoOp cac file code hop ngtt dat tén theo format [Bai*.asm] chua trong thu muc Lab3_MSSV

Kiéu 1énh

R-type
Rss [Ris [Rd, |NSHGHISNN Functiong

Kiéu I-type

Kiéu J-type

e Op (opcode) Ma lénh, duing dé xac dinh lénh thuec thi (trong kiéu R, Op = 0).

¢ Rs, Rt, Rd (register): Truong xac dinh thanh ghi (truong thanh ghi 5 bit tuong ing véi 32 thanh
ghi).

e Shamt (shift amount): Xac dinh s6 bits dich trong cac 1énh dich bit.
e Function: Xac dinh toan tt(operator hay con goi la 1énh) trong kiéu lénh R.

e Immediate: Dai dién cho con sé truc tiép, dia chi, offset.

Tap lénh [tham khdo nhanh]

Anh huéng

|

Cu phap

| Mo ta

slt Rd, Rs, Rt Rd=(Rs<Rt)?1:0

[C6 dau]Rd = 1 khi Rs < Rt, ngugc lai Rd = 0

sltu Rd, Rs, Rt Rd=(Rs<Rt)?1:0

[Khong dau] Rd = 1 khi Rs < Rt, ngugc lai Rd = 0

Lénh nhay, ré nhanh

beq Rs, Rt, label | if (Rs == Rt) PC « label

Ré nhanh dén label néu Rs == Rt

bne Rs, Rt, label | if (Rs != Rt) PC « label

Ré nhanh dén label néu Rs != Rt

bltz Rs, label if (Rs < 0) PC <« label

Ré nhanh dén label néu Rs < 0

blez Rs, label if (Rs <= 0) PC <« label

Ré nhanh dén label néu Rs <= 0

bgtz Rs, label if (Rs > 0) PC < label

Ré nhanh dén label néu Rs > 0

bgez Rs, label if (Rs >= 0) PC <+ label

Ré nhanh dén label néu Rs >= 0

j label PC + label Nhay khong diéu kién dén label
Goi ham
jr Rs PC + Rs Tré vé vi tri thanh ghi Rs tré dén
jal label $ra < PC+4, PC «+ label | Goi ham label, khi d6 $ra nam vi tri 1énh tiép theo
jalr Rs $ra « PC+4, PC < Rs Goi ham Rs dang tré dén, khi dé $ra nam vi tri 1énh tiép theo

Bai tap va Thuc hanh

Lap trinh ¢6 cau truc.

Sinh vién chuyén cac ciu tric sau cia ngén ngit C qua ngén ngit assembly. Tham khio hinh

4nh vé cac cau trac 6 cudi bai thuc hanh.

Bai 1: Phat biéu IF-ELSE (1)
1 if(a % 2 == 0) { Print string: "Computer Science and Engineering, HCMUT"}
2 else { Print string: "Computer Architecture 2019"}
Bai 2: Phat biéu IF-ELSE (2)
1 if(a >= -3 && a <=4) { a=Db - c;
2 else { a=>b+ c;
Bai 3: Phat biéu SWITCH-CASE
Hién thuc phat biéu switch-case bén duéi bang hop ngit. Cho biét b = 100, ¢ = 2. Gia tri input
nhap tir ngusi dung. Xuat ra gia tri cda a.
1 switch (input)
2
3 case 1: a = b + c; break;
4 case 2: a = b - c; break;
5 case 3: a = b x c; break;
6 case 4: a = b / c; break;
7 default: NOP; // No-Operation; a = 0
8 break;
9 }
Bai 4: Vong lap FOR - xac dinh chubi Fibonacci bang vong 1ap. Nhap vao n (nguyén duong), xuat ra

s0O Fibonacci Fn.

}
}

return fn;

1 if (n == 0) {return 0;}

2 else if(n == 1) {return 1;}

3 else(

4 f0= 0; f1 = 1;

5 for (i = 2; 1 <= n; 1i++){
6 fn = fn-1 + fn-2;

7

8

9

Bai 5:

AW N =

Note: sinh vién cé thé 1a theo cach riéng dé tim ra sé Fibonacci Fn.
Day sb Fibonacci http://en.wikipedia.org/wiki/Fibonacci_number
Fo | Fi | Fo | F3 | Fy | F5 | Fs F7 Fs Fy
0 1 1 2 3 5 8 13 21 34
Fio | Fin | Fio | Fuig | Fiu | Fis | Fig | Fir Fig Fig
55 | 89 | 144 | 233 | 377 | 610 | 987 | 1597 | 2584 | 4181

Vong lap WHILE
Xac dinh vi tri chit ‘v’ dau tién trong chubi "Computer Architecture CSE-HCMUT".
i = 0;
while (charArray[i] != ’"u’ && charArray[i] != "\0"){
i++;

}

Xuat ra gia tri index ctia ky tu "uw’. Néu khong tim thay thi xuat ra -1.

Lam thém

1.

© ® N e a A W N =

© ® N e oA W N =

ENDIANESS.
Cho mang s6 nguyén bén dudi.

.data
intArray: .word 0xCA002019, 0xC0002009
.text

la $a0, intArray

1b s$t0, 0(Sa0)

1b S$tl, 1(S$Sa0)
1lb $t2, 2($a0)
1b $t3, 3(%a0)
lbu $t4, 0($a0)
lbu $t5, 1(S$a0)
lbu st6, 2($al)
lbu $t7, 3($a0)

(a) Gi& stt MIPS dudc thiét ké theo kiéu BIG ENDIAN, xac dinh gia tri cac 6 nhd (theo byte)

clia mang trén.

(b) Gia st MIPS dudc thiét ké theo kiéu LITTLE ENDIAN, x4ac dinh gia tri cac 6 nhd (theo byte)

ctia mang trén.

(c) Xac dinh gia tri cac thanh ghi $t cia doan code bén dudi, gid stt MIPS dudc thiét ké theo

kiéu BIG ENDIAN.

(d) Xac dinh gia tri cac thanh ghi $t cia doan code bén dudi, gid stt MIPS dugc thiét ké theo

kiéu LITTLE ENDIAN.

. Memory alignment.

Cho doan code mips bén du6i

.data

int_1: .word 0xCAQ002018
char_1: .byte OxFF

int_2: .word 2018

char_2: .byte 0xCA OxFE O0xED
.text

la $a0, int_1
lw $t0, 0($Sa0

)
1w Stl, 1(sa0)
lh $St2, 2($a0)
l1h $t3, 3(Sal)
1b $t4, 0($a0)
1b $t5, 1($a0)

http://en.wikipedia.org/wiki/Fibonacci_number

(a) Xac dinh noi dung cda vang nhd dit liéu va xac dinh cac 1énh s€ gay ra 16i khi thuc thi,
gidi thich. Biét MIPS chuan dudc thiét ké theo kiéu BIG ENDIAN.

(b) Xép lai dit liéu sao cho b nhé t6i uu hon (trong kién truc 32 bit).

SG d6 cau tric ctia phat biéu (if-else, for, while, do-while)

If condition?

Else statements

]

If statements

‘ Stop ’

Hinh. 1: If-else statement

o no
Condition?

While statements

]

 —

‘ Stop ’

Hinh. 3: While statement

Start ’

|

For initialization

Y

e 110
Condition?

For statements

|

Update condition
L

—

‘ Stop ’

Hinh. 2: For statements

‘ Start ’

l

Do-while statements

Condition? yes

no

Stop

Hinh. 4: Do-while statement

Rp

Rs, Rt
Ra

PC
Acc
Lo, Hi
+

]

R2

DOTTED

MIPS32® Instruction Set
Quick Reference

— DESTINATION REGISTER

— SOURCE OPERAND REGISTERS

— RETURN ADDRESS REGISTER (R31)

— PRrROGRAM COUNTER

— 64-BIT ACCUMULATOR

— ACCUMULATOR LOW (ACC310) AND HIGH (ACCg332) PARTS
— SIGNED OPERAND OR SIGN EXTENSION

— UNSIGNED OPERAND OR ZERO EXTE!
- C()NL‘A'I‘H\'/\'I'I()N OF BIT FIELDS

— MIPS32 RELEASE 2 INSTRUCTION
— ASSEMBLER PSEUDO=INSTRUCTION

SION

PLEASE REFER TO “MIPS32 Arcrirecture For PrRoGrammERs VoLume I1:

THe MIPS32 INSTRUCTION SET” FOR COMPLETE INSTRUCTION SET INFORMATION.

ADD
ADDI
ADDIU
ADDU
CLO
CLZ
LA

9]

LUI
MOVE
NEGU
SEB®
SEH®
SUB
SUBU

ROTR®
ROTRV*
SLL
SLLV
SRA
SRAV
SRL
SRLV

ARITHMETIC OPERATIONS

Rbp, Rs, RT Rp = Rs + Rt (OVERFLOW TRAP)
Rp, Rs, consT16 | Rp = Rs + consT16® (OVERFLOW TRAP)

R, Rs, constl6 | Rp = Rs + const16*

Rp, Rs, Rt Rp=Rs+Rr

Rb, Rs Rb = CountLEADINGONES(RS)
Rb, Rs Rb = CountLEADINGZEROS(RS)
RD, LABEL Rb = ADDRESS(LABEL)

Rb, Mm32 Rbp = mm32

Rb, constl6 Rbp = consTl6 << 16

Rp, Rs Rp =Rs

Rp, Rs Rp =-Rs

Rb, Rs Rb = Rsz6"

Rb, Rs Rb = Rs)s0*

Rbp, Rs, RT Rp =Rs — Rt (OVERFLOW TRAP)
Rbp, Rs, RT Rp =Rs — Rt

SHIFT AND ROTATE OPERATIONS

Rb, Rs, BITSS RD = Rspirss 10 :: RS31pirss
Rp, Rs, RT RD = Rsprao-10 11 RSs1rra0
Rb, Rs, sHIFtS Rp = Rs << suirt5

Rbp, Rs, RT Rp = Rs << Ry

Rb, Rs, sHIFTS Rp = Rs* >> suiers

Rp, Rs, RT Rp = Rs* >> Ry

Rb, Rs, sHiFtS Rp = Rs" >> suirr5

Rb, Rs, RT Rp = Rs” >> Ry

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

AND
ANDI
EXT®
INS®

WSBH® Rbp, Rs

MOVN
MOVZ
SLT
SLTI
SLTIU
SLTU

DIV
DIVU
MADD

MADDU Rs, Rt

Locicar aNp Bir-FiELD OPERATIONS
Rp, Rs, Rt Rp=Rs & Rt

Rb, Rs, const16 Rp = Rs & const16”

Rp, Rs, P, S Rs = Rspisp”

Rp, Rs, P, S Rop:s.p = Rss. 10
No-op

Rp, Rs, Rt Rp =~(Rs | Rr)

Rp, Rs Rp =~Rs

Rp, Rs, Rt Rp =Rs|Rr

RD, Rs, const16 Rp=Rs | const16"
RD = Rsauie i Rssiaq 1 Rz 1 Rsyss
Rp, Rs, Rt Rp=Rs Rt

Rb, Rs, const16 Rp = Rs [const16"”

Conorrion TESTING AND CoNDITIONAL MOVE OPERATIONS

Rp, Rs, Rt iIF Rt #0, Rp = Rs
Rp, Rs, Rt F Rr=0, Rp=Rs
Rbp, Rs, Rt Rp=(Rs*<R1%)?1:0

Rp, Rs, const16 Rp = (Rs* < const16%) 21: 0

Rb, Rs, const16 Rp = (Rs” < const16”) 2 1:0
Rp, Rs, Rt Rp=(Rs”" <R1")?1:0

MurripLy AND DivibE OPERATIONS

Rs, Rt Lo = Rs*/ R1*; Hi = Rs* mop RT*
Rs, Rt Lo=Rs"” /Rt"; Hi = Rs” mop Rt”
Rs, Rt Acc +=Rs® x RT*

Acc += Rs"” x R71”

MSUB Rs, Rt Acc —= Rs* x R1*
MSUBU Rs, Rt Acc —= Rs"” x R1”
MUL Rbp, Rs, Rt Rp = Rs* X RT*
MULT Rs,Rr Acc = Rs* x RT*

MULTU Rs, Rt

MFHI
MFLO
MTHI
MTLO

Acc = Rs” x Rt

AccumurLator ACCESS OPERATIONS

Rp Rp =Hi
Rp Rp = Lo
Rs Hi=Rs
Rs Lo=Rs

BEQZ
BGEZ
BGEZAL
BGTZ
BLEZ
BLTZ
BLTZAL
BNE
BNEZ

]

JAL
JALR

LB

LBU
LH
LHU
LW
LWL
LWR

SC

Jumps ANp Brancues (Note: ONE DELAY SLoT)
OFF18 PC += orr18*
OFr18 Ra=PC + 8, PC += orr18*

Rs, R, orF18 ¥ Rs = R, PC += orr18*

Rs, orF18 ¥ Rs = 0, PC += orr18*

Rs, orFl18 ¥ Rs >0, PC += orr18*

Rs, oFr18 Ra=PC + 8; 1r Rs > 0, PC += orr18*
Rs, oFFl18 ¥ Rs > 0, PC += oFr18*

Rs, orFl18 ¥ Rs <0, PC += orr18*

Rs, orFl18 ¥ Rs <0, PC += orr18*

Rs, oFr18 Ra=PC + 8; 1r Rs < 0, PC += orr18*
Rs, R, orr18 ¥ Rs # R, PC += orr18*

Rs, orFl18 ¥ Rs # 0, PC += orr18*

ADDR28 PC = PCjas 1 ADDR2S'

ADDR28 Ra=PC + 8; PC = PCay.55 :: ADDR28"
Rp, Rs Rp =PC + 8; PC =Rs

Rs PC =Rs

Loap AND STORE OPERATIONS
Rb, orr16(Rs)
Rb, orr16(Rs)

Rp = Mem8(Rs + orF16%)*
Rb = MemM8(Rs + orr16*)"
Rb, orr16(Rs) Rp = Mem16(Rs + orF16*)*
Rb, orr16(Rs) Rb = Mem16(Rs + 0Fr16*)
Rb, orr16(Rs)
Rb, orr16(Rs)

Rb, orr16(Rs)

Rb = MEM32(Rs + 0rF16%)

Rp = LoApWorpLErt(Rs + 0rr16%)
Rb = LoapWorbRiGHT(Rs + 0FF16*)
Rs, orr16(RT) MEMS8(RT + 0FF16%) = Ry
Rs, orr16(RT) MEM16(RT + 0rF16%) = Rs;s0
Rs, oFr16(RT)
Rs, orr16(RT)

Rs, orr16(RT)

MEM32(RT + 0FF16) = Rs
StorREWORDLEFT(RT + 0FF16%, Rs)
S1orREWORDRIGHT(RT + 0FF16%, Rs)
Rb, orr16(Rs) RD = UNALIGNED_MEM32(Rs + 0FF16*)

Rs, orF16(RT) UNALIGNED_MEM32(RT + 0FF16%) = Rs

Aromic REap-Mobiry-WRITE OPERATIONS
Rb, orr16(Rs) Rb = MEM32(Rs + 0FF16*); LINK

1 Atomic, MEM32(Rs + orF16*) = Ro;

Rop, orr16(Rs) Ro = Atomic 2 1: 0

MD00565 Revision 01.01

REGISTERS
0 zero Always equal to zero
1 at Assembler temporary; used by the assembler
2-3 v0-vl Return value from a function call
4-7 a0-a3 First four parameters for a function call
8-15 t0-t7 Temporary variables; need not be preserved
16-23 | s0-s7 Function variables; must be preserved
24-25 | t8-t9 Two more temporary variables
26-27 = k0-k1 = Kernel use registers; may change unexpectedly

28 gp Global pointer

29 sp Stack pointer
30 fp/s8 Stack frame pointer or subroutine variable
31 ra Return address of the last subroutine call

Deraver C Cacring Convention (032)

Stack Management
* The stack grows down.

¢ Subtract from $sp to allocate local storage space.

¢ Restore $sp by adding the same amount at function exit.
¢ The stack must be 8-byte aligned.

* Modify $sp only in multiples of eight.

Function Parameters
¢ Every parameter smaller than 32 bits is promoted to 32 bits.
¢ First four parameters are passed in registers $a0—$a3.
* 64-bit parameters are passed in register pairs:
¢ Little-endian mode: $al:$a0 or $a3:$a2.
* Big-endian mode: $a0:$al or $a2:$a3.
¢ Every subsequent parameter is passed through the stack.
¢ First 16 bytes on the stack are not used.
¢ Assuming $sp was not modified at function entry:
* The 1" stack parameter is located at 16($sp).
* The 2" stack parameter is located at 20(Ssp), etc.
* 64-bit parameters are 8-byte aligned.

Return Values
¢ 32-bit and smaller values are returned in register $v0.
¢ 64-bit values are returned in registers $v0 and $v1:

¢ Little-endian mode: $v1:$v0.

* Big-endian mode: $v0:$v1.

MIPS32 Virruar ADDRESS SPACE

ReapinG Tue Cycre Count Recister Frow C

unsigned mips_cycle_counter_ read()
{

unsigned cc;

asm volatile("mfcO %0, $9" : "=r" (cc));

return (cc << 1);

AssemLy-Lancuace Funcrion ExampLE

int asm_max(int a, int b)
{

#
#
int r = (a <b) 2 b : a;
return r;

#

}

.text
.set nomacro
.set noreorder

.global asm_max

.ent asm_max

asm_max:
move $v0, $al #r=a
slt $t0, $a0, $al #a<b?
jr Sra # return
movn $v0, $al, $t0 # if yes,
.end asm_max

C / AssemBLY-LANGUAGE FuNcrioN INTERFACE

#include <stdio.h>
int asm_max(int a, int b);

int main ()

{
int x = asm_max(10, 100);
int y = asm max (200, 20);
printf ("%d %d\n", x, y):

Invokine MULT Anp MADD Instrucrions From C

int dp(int a(], int b[], int n)
{

kseg3 0xE000.0000 OXxFFFF.FFFF = Mapped Cached int i;
long long acc = (long long)
ksseg | 0xC000.0000 OxDFFF.FFFF Mapped Cached for (i = 1; i < n; i++)
acc += (long long) ali]
ksegl 0xA000.0000 OxBFFF.FFFF Unmapped | Uncached return (acc >> 391),. g
kseg0 0x8000.0000 Ox9FFF.FFFF Unmapped Cached }
useg | 0x0000.0000 Ox7FFF.FFFF Mapped Cached

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

af0] * b[0];

* bli];

Aromic Reap-Moviry-Write ExampLE

atomic_inc:

11 $t0, 0(sa0) # load linked
addiu s$tl, $t0, 1 # increment

sc s$tl, 0($a0) # store cond'l
beqz $tl, atomic_inc # loop if failed
nop

AccesSING UNALIGNED Dat4
NoTE: ULW AND USW AUTOMATICALLY GENERATE APPROPRIATE CODE

LirrLe-EnpiaNy Mope BiG-Enpian Mope

LWR Rb, orr16(Rs) LWL Rb, orr16(Rs)
LWL Rb, orr16+3(Rs) LWR Rb, 0rF16+3(Rs)
SWR Rb, orr16(Rs) SWL Rb, orF16(Rs)
SWL Rb, orr16+3(Rs) SWR Rb, orr16+3(Rs)

Accessing UNALIGNED Data From C

typedef struct
{
int u;
} __attribute__ ((packed)) unaligned;

int unaligned_load(void *ptr)

{
unaligned *uptr = (unaligned *)ptr;
return uptr->u;

MIPS SDE-GCC CompiLer DEFINES

__mips MIPS ISA (= 32 for MIPS32)
__mips_isa_rev | MIPS ISA Revision (=2 for MIPS32 R2)

__mips_dsp DSP ASE extensions enabled
_MIPSEB Big-endian target CPU
_MIPSEL Little-endian target CPU

_MIPS_ARCH_CPU | Target CPU specified by -march=CpPU

_MIPS_TUNE_CPU Pipeline tuning selected by -mtune=CPU

Nores

* Many assembler pseudo-instructions and some rarely used

machine instructions are omitted.

¢ The C calling convention is simplified. Additional rules apply

when passing complex data structures as function parameters.

¢ The examples illustrate syntax used by GCC compilers.

Most MIPS processors increment the cycle counter every other
cycle. Please check your processor documentation.

MD00565 Revision 01.01

