
CO2008 - KIẾN TRÚC MÁY TÍNH

Khoa Khoa Học và Kỹ Thuật Máy Tính
Đại học Bách Khoa – Tp.HCM

08/2019

Bài tập/Thực hành 3
CHƯƠNG 2 KIẾN TRÚC TẬP LỆNH MIPS: CÁC LỆNH ĐIỀU KIỂN

Mục tiêu

• Chuyển từ ngôn ngữ cấp cao (C) sang hợp ngữ MIPS.

• Sử dụng lệnh điều khiển (nhảy, rẽ nhánh) để điều kiển luồng chương trình.

Yêu cầu
• Xem cách dùng các lệnh (set, branch, jump, load, store) trong slide và trong file tham khảo
[trang 4].

• Nộp các file code hợp ngữ đặt tên theo format [Bai*.asm] chứa trong thư mục Lab3_MSSV

Kiểu lệnh

R-type
Op6 Rs5 Rt5 Rd5 Shamt5 Function6

Kiểu I-type
Op6 Rs5 Rt5 Immediate16
Kiểu J-type
Op6 Immediate26

• Op (opcode) Mã lệnh, dùng để xác định lệnh thực thi (trong kiểu R, Op = 0).

• Rs, Rt, Rd (register): Trường xác định thanh ghi (trường thanh ghi 5 bit tương ứng với 32 thanh
ghi).

• Shamt (shift amount): Xác định số bits dịch trong các lệnh dịch bit.

• Function: Xác định toán tử(operator hay còn gọi là lệnh) trong kiểu lệnh R.

• Immediate: Đại diện cho con số trực tiếp, địa chỉ, offset.

Tập lệnh [tham khảo nhanh]

Cú pháp Ảnh hưởng Mô tả
slt Rd, Rs, Rt Rd = (Rs < Rt) ? 1 : 0 [Có dấu]Rd = 1 khi Rs < Rt, ngược lại Rd = 0
sltu Rd, Rs, Rt Rd = (Rs < Rt) ? 1 : 0 [Không dấu] Rd = 1 khi Rs < Rt, ngược lại Rd = 0

Lệnh nhảy, rẽ nhánh
beq Rs, Rt, label if (Rs == Rt) PC ← label Rẽ nhánh đến label nếu Rs == Rt
bne Rs, Rt, label if (Rs != Rt) PC ← label Rẽ nhánh đến label nếu Rs != Rt
bltz Rs, label if (Rs < 0) PC ← label Rẽ nhánh đến label nếu Rs < 0
blez Rs, label if (Rs <= 0) PC ← label Rẽ nhánh đến label nếu Rs <= 0
bgtz Rs, label if (Rs > 0) PC ← label Rẽ nhánh đến label nếu Rs > 0
bgez Rs, label if (Rs >= 0) PC ← label Rẽ nhánh đến label nếu Rs >= 0
j label PC ← label Nhảy không điều kiện đến label

Gọi hàm
jr Rs PC ← Rs Trở về vị trí thanh ghi Rs trỏ đến
jal label $ra ← PC+4, PC ← label Gọi hàm label, khi đó $ra nắm vị trí lệnh tiếp theo
jalr Rs $ra ← PC+4, PC ← Rs Gọi hàm Rs đang trỏ đến, khi đó $ra nắm vị trí lệnh tiếp theo

Bài tập và Thực hành
Lập trình có cấu trúc.
Sinh viên chuyển các cấu trúc sau của ngôn ngữ C qua ngôn ngữ assembly. Tham khảo hình
ảnh về các cấu trúc ở cuối bài thực hành.

Bài 1: Phát biểu IF-ELSE (1)

1 if(a % 2 == 0) { Print string: "Computer Science and Engineering, HCMUT"}
2 else { Print string: "Computer Architecture 2019"}

Bài 2: Phát biểu IF-ELSE (2)

1 if(a >= -3 && a <= 4) { a = b - c;}
2 else { a = b + c;}

Bài 3: Phát biểu SWITCH-CASE
Hiện thực phát biểu switch-case bên dưới bằng hợp ngữ. Cho biết b = 100, c = 2. Giá trị input
nhập từ người dùng. Xuất ra giá trị của a.

1 switch (input)
2 {
3 case 1: a = b + c; break;
4 case 2: a = b - c; break;
5 case 3: a = b x c; break;
6 case 4: a = b / c; break;
7 default: NOP; // No-Operation; a = 0
8 break;
9 }

Bài 4: Vòng lặp FOR - xác định chuỗi Fibonacci bằng vòng lặp. Nhập vào n (nguyên dương), xuất ra
số Fibonacci Fn.

1 if (n == 0) {return 0;}
2 else if(n == 1) {return 1;}
3 else{
4 f0= 0; f1 = 1;
5 for (i = 2; i <= n; i++){
6 fn = fn-1 + fn-2;
7 }
8 }
9 return fn;

2

Note: sinh viên có thể là theo cách riêng để tìm ra số Fibonacci Fn.
Dãy số Fibonacci http://en.wikipedia.org/wiki/Fibonacci_number
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

0 1 1 2 3 5 8 13 21 34
F10 F11 F12 F13 F14 F15 F16 F17 F18 F19

55 89 144 233 377 610 987 1597 2584 4181

Bài 5: Vòng lặp WHILE
Xác định vị trí chữ ‘u’ đầu tiên trong chuỗi "Computer Architecture CSE-HCMUT".

1 i = 0;
2 while(charArray[i] != ’u’ && charArray[i] != ’\0’){
3 i++;
4 }

Xuất ra giá trị index của ký tự ’u’. Nếu không tìm thấy thì xuất ra -1.

Làm thêm
1. ENDIANESS.

Cho mảng số nguyên bên dưới.

1 .data
2 intArray: .word 0xCA002019, 0xC0002009
3 .text
4 la $a0, intArray
5 lb $t0, 0($a0)
6 lb $t1, 1($a0)
7 lb $t2, 2($a0)
8 lb $t3, 3($a0)
9 lbu $t4, 0($a0)

10 lbu $t5, 1($a0)
11 lbu $t6, 2($a0)
12 lbu $t7, 3($a0)

(a) Giả sử MIPS được thiết kế theo kiểu BIG ENDIAN, xác định giá trị các ô nhớ (theo byte)
của mảng trên.

(b) Giả sử MIPS được thiết kế theo kiểu LITTLE ENDIAN, xác định giá trị các ô nhớ (theo byte)
của mảng trên.

(c) Xác định giá trị các thanh ghi $t của đoạn code bên dưới, giả sử MIPS được thiết kế theo
kiểu BIG ENDIAN.

(d) Xác định giá trị các thanh ghi $t của đoạn code bên dưới, giả sử MIPS được thiết kế theo
kiểu LITTLE ENDIAN.

2. Memory alignment.
Cho đoạn code mips bên dưới

1 .data
2 int_1: .word 0xCA002018
3 char_1: .byte 0xFF
4 int_2: .word 2018
5 char_2: .byte 0xCA 0xFE 0xED
6 .text
7 la $a0, int_1
8 lw $t0, 0($a0)
9 lw $t1, 1($a0)

10 lh $t2, 2($a0)
11 lh $t3, 3($a0)
12 lb $t4, 0($a0)
13 lb $t5, 1($a0)

3

http://en.wikipedia.org/wiki/Fibonacci_number

(a) Xác định nội dung của vùng nhớ dữ liệu và xác định các lệnh sẽ gây ra lỗi khi thực thi,
giải thích. Biết MIPS chuẩn được thiết kế theo kiểu BIG ENDIAN.

(b) Xếp lại dữ liệu sao cho bộ nhớ tối ưu hơn (trong kiến trúc 32 bit).

Sơ đồ cấu trúc của phát biểu (if-else, for, while, do-while)

Start

If condition?

Else statements

If statements

Stop

yes

no

Hình. 1: If-else statement

Start

For initialization

Condition?

For statements

Update condition

Stop

yes

no

Hình. 2: For statements

Start

Condition?

While statements

Stop

yes

no

Hình. 3: While statement

Start

Do-while statements

Condition?

Stop

no

yes

Hình. 4: Do-while statement

4

MIPS32® Instruction Set
Quick Reference

RD  DESTINATION REGISTER

RS, RT  SOURCE OPERAND REGISTERS

RA  RETURN ADDRESS REGISTER (R31)
PC  PROGRAM COUNTER

ACC  64-BIT ACCUMULATOR

LO, HI  ACCUMULATOR LOW (ACC31:0) AND HIGH (ACC63:32) PARTS

±  SIGNED OPERAND OR SIGN EXTENSION

∅  UNSIGNED OPERAND OR ZERO EXTENSION

::  CONCATENATION OF BIT FIELDS

R2  MIPS32 RELEASE 2 INSTRUCTION

DOTTED  ASSEMBLER PSEUDO-INSTRUCTION

PLEASE REFER TO “MIPS32 ARCHITECTURE FOR PROGRAMMERS VOLUME II:
THE MIPS32 INSTRUCTION SET” FOR COMPLETE INSTRUCTION SET INFORMATION.

ARITHMETIC OPERATIONS

ADD RD, RS, RT RD = RS + RT (OVERFLOW TRAP)

ADDI RD, RS, CONST16 RD = RS + CONST16± (OVERFLOW TRAP)

ADDIU RD, RS, CONST16 RD = RS + CONST16±

ADDU RD, RS, RT RD = RS + RT

CLO RD, RS RD = COUNTLEADINGONES(RS)

CLZ RD, RS RD = COUNTLEADINGZEROS(RS)

LA RD, LABEL RD = ADDRESS(LABEL)

LI RD, IMM32 RD = IMM32

LUI RD, CONST16 RD = CONST16 << 16

MOVE RD, RS RD = RS

NEGU RD, RS RD = –RS

SEBR2 RD, RS RD = RS7:0
±

SEHR2 RD, RS RD = RS15:0
±

SUB RD, RS, RT RD = RS – RT (OVERFLOW TRAP)

SUBU RD, RS, RT RD = RS – RT

SHIFT AND ROTATE OPERATIONS

ROTRR2 RD, RS, BITS5 RD = RSBITS5–1:0 :: RS31:BITS5

ROTRVR2 RD, RS, RT RD = RSRT4:0–1:0 :: RS31:RT4:0

SLL RD, RS, SHIFT5 RD = RS << SHIFT5

SLLV RD, RS, RT RD = RS << RT4:0

SRA RD, RS, SHIFT5 RD = RS
± >> SHIFT5

SRAV RD, RS, RT RD = RS
± >> RT4:0

SRL RD, RS, SHIFT5 RD = RS
∅ >> SHIFT5

SRLV RD, RS, RT RD = RS
∅ >> RT4:0

LOGICAL AND BIT-FIELD OPERATIONS

AND RD, RS, RT RD = RS & RT

ANDI RD, RS, CONST16 RD = RS & CONST16∅

EXTR2 RD, RS, P, S RS = RSP+S-1:P
∅

INSR2 RD, RS, P, S RDP+S-1:P = RSS-1:0

NOP NO-OP

NOR RD, RS, RT RD = ~(RS | RT)

NOT RD, RS RD = ~RS

OR RD, RS, RT RD = RS | RT

ORI RD, RS, CONST16 RD = RS | CONST16∅

WSBHR2 RD, RS RD = RS23:16 :: RS31:24 :: RS7:0 :: RS15:8

XOR RD, RS, RT RD = RS ⊕ RT

XORI RD, RS, CONST16 RD = RS ⊕ CONST16∅

CONDITION TESTING AND CONDITIONAL MOVE OPERATIONS

MOVN RD, RS, RT IF RT ≠ 0, RD = RS

MOVZ RD, RS, RT IF RT = 0, RD = RS

SLT RD, RS, RT RD = (RS
± < RT

±) ? 1 : 0

SLTI RD, RS, CONST16 RD = (RS
± < CONST16±) ? 1 : 0

SLTIU RD, RS, CONST16 RD = (RS
∅ < CONST16∅) ? 1 : 0

SLTU RD, RS, RT RD = (RS
∅ < RT

∅) ? 1 : 0

MULTIPLY AND DIVIDE OPERATIONS

DIV RS, RT LO = RS
± / RT

±; ΗΙ = RS
± MOD RT

±

DIVU RS, RT LO = RS
∅ / RT

∅; ΗΙ = RS
∅ MOD RT

∅

MADD RS, RT ACC += RS
± × RT

±

MADDU RS, RT ACC += RS
∅ × RT

∅

MSUB RS, RT ACC −= RS
± × RT

±

MSUBU RS, RT ACC −= RS
∅ × RT

∅

MUL RD, RS, RT RD = RS
± × RT

±

MULT RS, RT ACC = RS
± × RT

±

MULTU RS, RT ACC = RS
∅ × RT

∅

ACCUMULATOR ACCESS OPERATIONS

MFHI RD RD = HI

MFLO RD RD = LO

MTHI RS HI = RS

MTLO RS LO = RS

JUMPS AND BRANCHES (NOTE: ONE DELAY SLOT)

B OFF18 PC += OFF18±

BAL OFF18 RA = PC + 8, PC += OFF18±

BEQ RS, RT, OFF18 IF RS = RT, PC += OFF18±

BEQZ RS, OFF18 IF RS = 0, PC += OFF18±

BGEZ RS, OFF18 IF RS ≥ 0, PC += OFF18±

BGEZAL RS, OFF18 RA = PC + 8; IF RS ≥ 0, PC += OFF18±

BGTZ RS, OFF18 IF RS > 0, PC += OFF18±

BLEZ RS, OFF18 IF RS ≤ 0, PC += OFF18±

BLTZ RS, OFF18 IF RS < 0, PC += OFF18±

BLTZAL RS, OFF18 RA = PC + 8; IF RS < 0, PC += OFF18±

BNE RS, RT, OFF18 IF RS ≠ RT, PC += OFF18±

BNEZ RS, OFF18 IF RS ≠ 0, PC += OFF18±

J ADDR28 PC = PC31:28 :: ADDR28∅

JAL ADDR28 RA = PC + 8; PC = PC31:28 :: ADDR28∅

JALR RD, RS RD = PC + 8; PC = RS

JR RS PC = RS

LOAD AND STORE OPERATIONS

LB RD, OFF16(RS) RD = MEM8(RS + OFF16±)±

LBU RD, OFF16(RS) RD = MEM8(RS + OFF16±)∅

LH RD, OFF16(RS) RD = MEM16(RS + OFF16±)±

LHU RD, OFF16(RS) RD = MEM16(RS + OFF16±)∅

LW RD, OFF16(RS) RD = MEM32(RS + OFF16±)

LWL RD, OFF16(RS) RD = LOADWORDLEFT(RS + OFF16±)

LWR RD, OFF16(RS) RD = LOADWORDRIGHT(RS + OFF16±)

SB RS, OFF16(RT) MEM8(RT + OFF16±) = RS7:0

SH RS, OFF16(RT) MEM16(RT + OFF16±) = RS15:0

SW RS, OFF16(RT) MEM32(RT + OFF16±) = RS

SWL RS, OFF16(RT) STOREWORDLEFT(RT + OFF16±, RS)

SWR RS, OFF16(RT) STOREWORDRIGHT(RT + OFF16±, RS)

ULW RD, OFF16(RS) RD = UNALIGNED_MEM32(RS + OFF16 ±)

USW RS, OFF16(RT) UNALIGNED_MEM32(RT + OFF16±) = RS

ATOMIC READ-MODIFY-WRITE OPERATIONS

LL RD, OFF16(RS) RD = MEM32(RS + OFF16±); LINK

SC RD, OFF16(RS) IF ATOMIC, MEM32(RS + OFF16±) = RD;
RD = ATOMIC ? 1 : 0

Copyright © 2008 MIPS Technologies, Inc. All rights reserved. MD00565 Revision 01.01

REGISTERS

0 zero Always equal to zero

1 at Assembler temporary; used by the assembler

2-3 v0-v1 Return value from a function call

4-7 a0-a3 First four parameters for a function call

8-15 t0-t7 Temporary variables; need not be preserved

16-23 s0-s7 Function variables; must be preserved

24-25 t8-t9 Two more temporary variables

26-27 k0-k1 Kernel use registers; may change unexpectedly

28 gp Global pointer

29 sp Stack pointer

30 fp/s8 Stack frame pointer or subroutine variable

31 ra Return address of the last subroutine call

DEFAULT C CALLING CONVENTION (O32)

Stack Management
• The stack grows down.

• Subtract from $sp to allocate local storage space.
• Restore $sp by adding the same amount at function exit.

• The stack must be 8-byte aligned.
• Modify $sp only in multiples of eight.

Function Parameters
• Every parameter smaller than 32 bits is promoted to 32 bits.
• First four parameters are passed in registers $a0−$a3.

• 64-bit parameters are passed in register pairs:
• Little-endian mode: $a1:$a0 or $a3:$a2.
• Big-endian mode: $a0:$a1 or $a2:$a3.

• Every subsequent parameter is passed through the stack.
• First 16 bytes on the stack are not used.
• Assuming $sp was not modified at function entry:

• The 1st stack parameter is located at 16($sp).
• The 2nd stack parameter is located at 20($sp), etc.

• 64-bit parameters are 8-byte aligned.

Return Values
• 32-bit and smaller values are returned in register $v0.
• 64-bit values are returned in registers $v0 and $v1:

• Little-endian mode: $v1:$v0.
• Big-endian mode: $v0:$v1.

MIPS32 VIRTUAL ADDRESS SPACE

kseg3 0xE000.0000 0xFFFF.FFFF Mapped Cached

ksseg 0xC000.0000 0xDFFF.FFFF Mapped Cached

kseg1 0xA000.0000 0xBFFF.FFFF Unmapped Uncached

kseg0 0x8000.0000 0x9FFF.FFFF Unmapped Cached

useg 0x0000.0000 0x7FFF.FFFF Mapped Cached

READING THE CYCLE COUNT REGISTER FROM C

unsigned mips_cycle_counter_read()
{

unsigned cc;
asm volatile("mfc0 %0, $9" : "=r" (cc));
return (cc << 1);

}

ASSEMBLY-LANGUAGE FUNCTION EXAMPLE

int asm_max(int a, int b)
{
int r = (a < b) ? b : a;
return r;
}

.text

.set nomacro

.set noreorder

.global asm_max

.ent asm_max
asm_max:

move $v0, $a0 # r = a
slt $t0, $a0, $a1 # a < b ?
jr $ra # return
movn $v0, $a1, $t0 # if yes, r = b
.end asm_max

C / ASSEMBLY-LANGUAGE FUNCTION INTERFACE

#include <stdio.h>
int asm_max(int a, int b);
int main()
{

int x = asm_max(10, 100);
int y = asm_max(200, 20);
printf("%d %d\n", x, y);

}

INVOKING MULT AND MADD INSTRUCTIONS FROM C

int dp(int a[], int b[], int n)
{

int i;
long long acc = (long long) a[0] * b[0];
for (i = 1; i < n; i++)

acc += (long long) a[i] * b[i];
return (acc >> 31);

}

ATOMIC READ-MODIFY-WRITE EXAMPLE

atomic_inc:
ll $t0, 0($a0) # load linked
addiu $t1, $t0, 1 # increment
sc $t1, 0($a0) # store cond'l
beqz $t1, atomic_inc # loop if failed
nop

ACCESSING UNALIGNED DATA
NOTE: ULW AND USW AUTOMATICALLY GENERATE APPROPRIATE CODE

LITTLE-ENDIAN MODE BIG-ENDIAN MODE

LWR RD, OFF16(RS)
LWL RD, OFF16+3(RS)

LWL RD, OFF16(RS)
LWR RD, OFF16+3(RS)

SWR RD, OFF16(RS)
SWL RD, OFF16+3(RS)

SWL RD, OFF16(RS)
SWR RD, OFF16+3(RS)

ACCESSING UNALIGNED DATA FROM C

typedef struct
{

int u;
} __attribute__((packed)) unaligned;

int unaligned_load(void *ptr)
{

unaligned *uptr = (unaligned *)ptr;
return uptr->u;

}

MIPS SDE-GCC COMPILER DEFINES

__mips MIPS ISA (= 32 for MIPS32)

__mips_isa_rev MIPS ISA Revision (= 2 for MIPS32 R2)

__mips_dsp DSP ASE extensions enabled

_MIPSEB Big-endian target CPU

_MIPSEL Little-endian target CPU

_MIPS_ARCH_CPU Target CPU specified by -march=CPU
_MIPS_TUNE_CPU Pipeline tuning selected by -mtune=CPU

NOTES

• Many assembler pseudo-instructions and some rarely used
machine instructions are omitted.

• The C calling convention is simplified. Additional rules apply
when passing complex data structures as function parameters.

• The examples illustrate syntax used by GCC compilers.
• Most MIPS processors increment the cycle counter every other

cycle. Please check your processor documentation.

MD00565 Revision 01.01Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

