o
¢

C02008 - KIEN TRUC MAY TiNH

Khoa Khoa Hoc va Ky Thuat May Tinh
Pai hoc Bach Khoa - Tp.HCM

08/2019

Muc tiéu

Bai tap/Thuc hanh 4
CHUONG 2 KIEN TRUC TAP LENH MIPS: GOI HAM (LAP TRINH CAU TRUC),
THOI GIAN THUC THI

e Chuyén tit ngon ngit cap cao (C) sang hgp nga MIPS.

e St dung lénh diéu khién (nhdy, ré nhanh) dé lap trinh cau truc.

e Biét nguyén ly goi ham. St dung céc 1énh goi ham jal, jr.

e Tinh toan thdi gian thuc thi ctia chuong trinh.

Yéu cau

e Xem cach dung cac lénh (set, branch, jump, load, store, jal, jr) trong slide va trong file tham

khao.

e NOp cac file code hop ngtr dat tén theo format [Bai*.asm] chia trong thu muc Lab4_MSSV

Tap lénh [tham khdo nhanh]

Cua phap

| Anh huéng

| Mo ta

slt Rd, Rs, Rt

Rd=(Rs<Rt?1:0

[C6 daulRd = 1 khi Rs < Rt, ngugc lai Rd = O

sltu Rd, Rs, Rt

Rd=Rs<Rt)?1:0

[Khong dau] Rd = 1 khi Rs < Rt, ngugc lai Rd = 0

Lénh nhdy, ré nhanh

beq Rs, Rt, label

if (Rs == Rt) PC « label

Ré nhanh dén label néu Rs == Rt

bne Rs, Rt, label

if (Rs != Rt) PC <« label

Ré nhanh dén label néu Rs != Rt

bltz Rs, label

if (Rs < 0) PC « label

Ré nhanh dén label néu Rs < 0

blez Rs, label

if (Rs <= 0) PC < label

Ré nhanh dén label néu Rs <= 0

bgtz Rs, label

if (Rs > 0) PC « label

Ré nhanh dén label néu Rs > 0

bgez Rs, label

if (Rs >= 0) PC <« label

Ré nhanh dén label néu Rs >= 0

j label

PC « label

Nhay khong diéu kién dén label

Goi ham

jr Rs PC + Rs Tré vé vi tri thanh ghi Rs tré dén
jal label $ra < PC+4, PC «+ label | Goi ham label, khi d6 $ra nam vi tri 1énh tiép theo
jalr Rs $ra « PC+4, PC < Rs Goi ham Rs dang tré dén, khi dé $ra nam vi tri 1énh tiép theo

Review: MIPS instruction types

R-type

R85

| Ris | Rds

Kiéu I-type

Kiéu J-type

e Op (opcode) Ma lénh, diing dé xac dinh lénh thuec thi (trong kiéu R, Op = 0).

¢ Rs, Rt, Rd (register): Truong xac dinh thanh ghi (truong thanh ghi 5 bit tuong ing véi 32 thanh
ghi).

e Shamt (shift amount): Xac dinh s6 bits dich trong cac lénh dich bit.
¢ Function: Xac dinh toan tii(operator hay con goi la 1énh) trong kiéu lénh R.

e Immediate: Pai dién cho con sb truc tiép, dia chi, offset.

Bai tap va Thuc hanh

Sinh vién chuyén chuong trinh C bén duéi qua hgp ngtt MIPS tuong dng.

1. Leaf function (ham 1a)
Chuyén thii tuc "reverse" (ddo thit tu chudi) tit ngéon ngix C sang hdp ngit MIPS. Thti tuc reverse
dudc goi khi thuc thi 1énh jal reverse tit ving .text. cArray, cArray_size dugc gan vao cac
thanh ghi thanh ghi $a,, $a;. Gia tri trd vé (néu cé) chua vao $vo. Xuat chubi ra console.

1 char[] cArray = "Computer Architecture 2019"
2 int cArray_size = 26;

3 wvoid reverse(char[] cArray, int cArray_size)
a |

5 int i;

6 char temp;

7 for (i =0 ; i <cArray_size/2; i ++)

8 {

9 temp = cArray[i];

10 cArray[i] = cArray[cArray_size -1 -i];
11 cArray|[cArray_size -1 -i] = temp;

13}

Luu y: Dung "jal reverse" dé goi tht tuc "reverse" va dung "jr S$ra" tré vé vi tri thanh ghi
$ra danh dau.

2. Non-leaf function (la ham/tht tuc goi mét ham/tht tuc bén trong).
Chuyén thti tuc range tit C sang hgp ngtt MIPS tuong duong.

int iArray[10];
int iArray_size = 10;

—

)

int range (iArray, iArray_size)

{
int templ = max(iArray, 1iArray_size);
int temp2 = min(iArray, iArray_size);
int range = templ - temp2;
return range;

© ® N e U A W

}

Chuong trinh bat dau tir viing .text, sau d6 noé goi ham range. Trong ham range lai goi 2 ham
con la max va min. Gié st dia chi va kich thuc iarray duge gan 1an lugt vao cac thanh ghi $a,,
$a;. Xuat gia tri range ra ngoai console.

Luu y: Khi goi cac ham/thi tuc thanh ghi $ra sé€ tu danh dau lénh tiép theo nhu l1a vi tri trd
vé. Do d6 trudc khi goi ham con trong ham range thi sinh vién can luu lai gia tri thanh ghi
$ra trong stack. Sau khi thyc thi xong, sinh vién can phuc héi lai gia tri cho thanh ghi $ra tu
stack. Dung "jal range", "jal max", "jal min" dé goi thti tuc range, max, min. Dung
"jr $ra" dé trd vé vi tri lénh ma thanh ghi $ra da danh dau.

Pé lvu(push) gia tri $r, vao stack, sinh vién cé thé dung cac 1énh sau:

1 addi sp, Ssp, -4 # adjust stack for 1 item
2 sw Sra, 0(S$sp) # save return address

N

W

© ® N e g oA W N =

Pé phuc hoi(pop) Sr, tir stack, sinh vién cé thé diung cac 1énh sau:

1w Sra, 0(S$Ssp) # restore return address
addi Ssp, Ssp, 4 # pop 1 item from stack

. Cho doan code hgp ngtt MIPS bén dudi

addi $a0, S$zero, 100 // upper threshold

addi $al, Szero, O // count variable

add $a2, Szero, $zero // sum initialization
loop:

beq $a0, $al, exit

add $a2, Sa2, Sal

addi al, Sal, 1

j loop
exit:

(a) Xac dinh gia tri ctia thanh ghi $a2 sau khi thuc thi doan code trén.

(b) Xac dinh tdng s6 chu ky thuec thi khi thuc thi doan chuong trinh trén. Gia stt CPI ctia cac
1énh la 1.

(c) Gid st vung .text (text segment - ving dé chita cac lénh thuc thi) bat dau tir dia chi
0x10080000. Xac dinh ma may cta lénh "j loop" 6 dang HEX.

Rp

Rs, Rt
Ra

PC
Acc
Lo, Hi
+

]

R2

DOTTED

MIPS32® Instruction Set
Quick Reference

— DESTINATION REGISTER

— SOURCE OPERAND REGISTERS

— RETURN ADDRESS REGISTER (R31)

— PRrROGRAM COUNTER

— 64-BIT ACCUMULATOR

— ACCUMULATOR LOW (ACC310) AND HIGH (ACCg332) PARTS
— SIGNED OPERAND OR SIGN EXTENSION

— UNSIGNED OPERAND OR ZERO EXTE!
- C()NL‘A'I‘H\'/\'I'I()N OF BIT FIELDS

— MIPS32 RELEASE 2 INSTRUCTION
— ASSEMBLER PSEUDO=INSTRUCTION

SION

PLEASE REFER TO “MIPS32 Arcrirecture For PrRoGrammERs VoLume I1:

THe MIPS32 INSTRUCTION SET” FOR COMPLETE INSTRUCTION SET INFORMATION.

ADD
ADDI
ADDIU
ADDU
CLO
CLZ
LA

9]

LUI
MOVE
NEGU
SEB®
SEH®
SUB
SUBU

ROTR®
ROTRV*
SLL
SLLV
SRA
SRAV
SRL
SRLV

ARITHMETIC OPERATIONS

Rbp, Rs, RT Rp = Rs + Rt (OVERFLOW TRAP)
Rp, Rs, consT16 | Rp = Rs + consT16® (OVERFLOW TRAP)

R, Rs, constl6 | Rp = Rs + const16*

Rp, Rs, Rt Rp=Rs+Rr

Rb, Rs Rb = CountLEADINGONES(RS)
Rb, Rs Rb = CountLEADINGZEROS(RS)
RD, LABEL Rb = ADDRESS(LABEL)

Rb, Mm32 Rbp = mm32

Rb, constl6 Rbp = consTl6 << 16

Rp, Rs Rp =Rs

Rp, Rs Rp =-Rs

Rb, Rs Rb = Rsz6"

Rb, Rs Rb = Rs)s0*

Rbp, Rs, RT Rp =Rs — Rt (OVERFLOW TRAP)
Rbp, Rs, RT Rp =Rs — Rt

SHIFT AND ROTATE OPERATIONS

Rb, Rs, BITSS RD = Rspirss 10 :: RS31pirss
Rp, Rs, RT RD = Rsprao-10 11 RSs1rra0
Rb, Rs, sHIFtS Rp = Rs << suirt5

Rbp, Rs, RT Rp = Rs << Ry

Rb, Rs, sHIFTS Rp = Rs* >> suiers

Rp, Rs, RT Rp = Rs* >> Ry

Rb, Rs, sHiFtS Rp = Rs" >> suirr5

Rb, Rs, RT Rp = Rs” >> Ry

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

AND
ANDI
EXT®
INS®

WSBH® Rbp, Rs

MOVN
MOVZ
SLT
SLTI
SLTIU
SLTU

DIV
DIVU
MADD

MADDU Rs, Rt

Locicar aNp Bir-FiELD OPERATIONS
Rp, Rs, Rt Rp=Rs & Rt

Rb, Rs, const16 Rp = Rs & const16”

Rp, Rs, P, S Rs = Rspisp”

Rp, Rs, P, S Rop:s.p = Rss. 10
No-op

Rp, Rs, Rt Rp =~(Rs | Rr)

Rp, Rs Rp =~Rs

Rp, Rs, Rt Rp =Rs|Rr

RD, Rs, const16 Rp=Rs | const16"
RD = Rsauie i Rssiaq 1 Rz 1 Rsyss
Rp, Rs, Rt Rp=Rs Rt

Rb, Rs, const16 Rp = Rs [const16"”

Conorrion TESTING AND CoNDITIONAL MOVE OPERATIONS

Rp, Rs, Rt iIF Rt #0, Rp = Rs
Rp, Rs, Rt F Rr=0, Rp=Rs
Rbp, Rs, Rt Rp=(Rs*<R1%)?1:0

Rp, Rs, const16 Rp = (Rs* < const16%) 21: 0

Rb, Rs, const16 Rp = (Rs” < const16”) 2 1:0
Rp, Rs, Rt Rp=(Rs”" <R1")?1:0

MurripLy AND DivibE OPERATIONS

Rs, Rt Lo = Rs*/ R1*; Hi = Rs* mop RT*
Rs, Rt Lo=Rs"” /Rt"; Hi = Rs” mop Rt”
Rs, Rt Acc +=Rs® x RT*

Acc += Rs"” x R71”

MSUB Rs, Rt Acc —= Rs* x R1*
MSUBU Rs, Rt Acc —= Rs"” x R1”
MUL Rbp, Rs, Rt Rp = Rs* X RT*
MULT Rs,Rr Acc = Rs* x RT*

MULTU Rs, Rt

MFHI
MFLO
MTHI
MTLO

Acc = Rs” x Rt

AccumurLator ACCESS OPERATIONS

Rp Rp =Hi
Rp Rp = Lo
Rs Hi=Rs
Rs Lo=Rs

BEQZ
BGEZ
BGEZAL
BGTZ
BLEZ
BLTZ
BLTZAL
BNE
BNEZ

]

JAL
JALR

LB

LBU
LH
LHU
LW
LWL
LWR

SC

Jumps ANp Brancues (Note: ONE DELAY SLoT)
OFF18 PC += orr18*
OFr18 Ra=PC + 8, PC += orr18*

Rs, R, orF18 ¥ Rs = R, PC += orr18*

Rs, orF18 ¥ Rs = 0, PC += orr18*

Rs, orFl18 ¥ Rs >0, PC += orr18*

Rs, oFr18 Ra=PC + 8; 1r Rs > 0, PC += orr18*
Rs, oFFl18 ¥ Rs > 0, PC += oFr18*

Rs, orFl18 ¥ Rs <0, PC += orr18*

Rs, orFl18 ¥ Rs <0, PC += orr18*

Rs, oFr18 Ra=PC + 8; 1r Rs < 0, PC += orr18*
Rs, R, orr18 ¥ Rs # R, PC += orr18*

Rs, orFl18 ¥ Rs # 0, PC += orr18*

ADDR28 PC = PCjas 1 ADDR2S'

ADDR28 Ra=PC + 8; PC = PCay.55 :: ADDR28"
Rp, Rs Rp =PC + 8; PC =Rs

Rs PC =Rs

Loap AND STORE OPERATIONS
Rb, orr16(Rs)
Rb, orr16(Rs)

Rp = Mem8(Rs + orF16%)*
Rb = MemM8(Rs + orr16*)"
Rb, orr16(Rs) Rp = Mem16(Rs + orF16*)*
Rb, orr16(Rs) Rb = Mem16(Rs + 0Fr16*)
Rb, orr16(Rs)
Rb, orr16(Rs)

Rb, orr16(Rs)

Rb = MEM32(Rs + 0rF16%)

Rp = LoApWorpLErt(Rs + 0rr16%)
Rb = LoapWorbRiGHT(Rs + 0FF16*)
Rs, orr16(RT) MEMS8(RT + 0FF16%) = Ry
Rs, orr16(RT) MEM16(RT + 0rF16%) = Rs;s0
Rs, oFr16(RT)
Rs, orr16(RT)

Rs, orr16(RT)

MEM32(RT + 0FF16) = Rs
StorREWORDLEFT(RT + 0FF16%, Rs)
S1orREWORDRIGHT(RT + 0FF16%, Rs)
Rb, orr16(Rs) RD = UNALIGNED_MEM32(Rs + 0FF16*)

Rs, orF16(RT) UNALIGNED_MEM32(RT + 0FF16%) = Rs

Aromic REap-Mobiry-WRITE OPERATIONS
Rb, orr16(Rs) Rb = MEM32(Rs + 0FF16*); LINK

1 Atomic, MEM32(Rs + orF16*) = Ro;

Rop, orr16(Rs) Ro = Atomic 2 1: 0

MD00565 Revision 01.01

REGISTERS
0 zero Always equal to zero
1 at Assembler temporary; used by the assembler
2-3 v0-vl Return value from a function call
4-7 a0-a3 First four parameters for a function call
8-15 t0-t7 Temporary variables; need not be preserved
16-23 | s0-s7 Function variables; must be preserved
24-25 | t8-t9 Two more temporary variables
26-27 = k0-k1 = Kernel use registers; may change unexpectedly

28 gp Global pointer

29 sp Stack pointer
30 fp/s8 Stack frame pointer or subroutine variable
31 ra Return address of the last subroutine call

Deraver C Cacring Convention (032)

Stack Management
* The stack grows down.

¢ Subtract from $sp to allocate local storage space.

¢ Restore $sp by adding the same amount at function exit.
¢ The stack must be 8-byte aligned.

* Modify $sp only in multiples of eight.

Function Parameters
¢ Every parameter smaller than 32 bits is promoted to 32 bits.
¢ First four parameters are passed in registers $a0—$a3.
* 64-bit parameters are passed in register pairs:
¢ Little-endian mode: $al:$a0 or $a3:$a2.
* Big-endian mode: $a0:$al or $a2:$a3.
¢ Every subsequent parameter is passed through the stack.
¢ First 16 bytes on the stack are not used.
¢ Assuming $sp was not modified at function entry:
* The 1" stack parameter is located at 16($sp).
* The 2" stack parameter is located at 20(Ssp), etc.
* 64-bit parameters are 8-byte aligned.

Return Values
¢ 32-bit and smaller values are returned in register $v0.
¢ 64-bit values are returned in registers $v0 and $v1:

¢ Little-endian mode: $v1:$v0.

* Big-endian mode: $v0:$v1.

MIPS32 Virruar ADDRESS SPACE

ReapinG Tue Cycre Count Recister Frow C

unsigned mips_cycle_counter_ read()
{

unsigned cc;

asm volatile("mfcO %0, $9" : "=r" (cc));

return (cc << 1);

AssemLy-Lancuace Funcrion ExampLE

int asm_max(int a, int b)
{

#
#
int r = (a <b) 2 b : a;
return r;

#

}

.text
.set nomacro
.set noreorder

.global asm_max

.ent asm_max

asm_max:
move $v0, $al #r=a
slt $t0, $a0, $al #a<b?
jr Sra # return
movn $v0, $al, $t0 # if yes,
.end asm_max

C / AssemBLY-LANGUAGE FuNcrioN INTERFACE

#include <stdio.h>
int asm_max(int a, int b);

int main ()

{
int x = asm_max(10, 100);
int y = asm max (200, 20);
printf ("%d %d\n", x, y):

Invokine MULT Anp MADD Instrucrions From C

int dp(int a(], int b[], int n)
{

kseg3 0xE000.0000 OXxFFFF.FFFF = Mapped Cached int i;
long long acc = (long long)
ksseg | 0xC000.0000 OxDFFF.FFFF Mapped Cached for (i = 1; i < n; i++)
acc += (long long) ali]
ksegl 0xA000.0000 OxBFFF.FFFF Unmapped | Uncached return (acc >> 391),. g
kseg0 0x8000.0000 Ox9FFF.FFFF Unmapped Cached }
useg | 0x0000.0000 Ox7FFF.FFFF Mapped Cached

Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

af0] * b[0];

* bli];

Aromic Reap-Moviry-Write ExampLE

atomic_inc:

11 $t0, 0(sa0) # load linked
addiu s$tl, $t0, 1 # increment

sc s$tl, 0($a0) # store cond'l
beqz $tl, atomic_inc # loop if failed
nop

AccesSING UNALIGNED Dat4
NoTE: ULW AND USW AUTOMATICALLY GENERATE APPROPRIATE CODE

LirrLe-EnpiaNy Mope BiG-Enpian Mope

LWR Rb, orr16(Rs) LWL Rb, orr16(Rs)
LWL Rb, orr16+3(Rs) LWR Rb, 0rF16+3(Rs)
SWR Rb, orr16(Rs) SWL Rb, orF16(Rs)
SWL Rb, orr16+3(Rs) SWR Rb, orr16+3(Rs)

Accessing UNALIGNED Data From C

typedef struct
{
int u;
} __attribute__ ((packed)) unaligned;

int unaligned_load(void *ptr)

{
unaligned *uptr = (unaligned *)ptr;
return uptr->u;

MIPS SDE-GCC CompiLer DEFINES

__mips MIPS ISA (= 32 for MIPS32)
__mips_isa_rev | MIPS ISA Revision (=2 for MIPS32 R2)

__mips_dsp DSP ASE extensions enabled
_MIPSEB Big-endian target CPU
_MIPSEL Little-endian target CPU

_MIPS_ARCH_CPU | Target CPU specified by -march=CpPU

_MIPS_TUNE_CPU Pipeline tuning selected by -mtune=CPU

Nores

* Many assembler pseudo-instructions and some rarely used

machine instructions are omitted.

¢ The C calling convention is simplified. Additional rules apply

when passing complex data structures as function parameters.

¢ The examples illustrate syntax used by GCC compilers.

Most MIPS processors increment the cycle counter every other
cycle. Please check your processor documentation.

MD00565 Revision 01.01

