
CO2008 - KIẾN TRÚC MÁY TÍNH

Khoa Khoa Học và Kỹ Thuật Máy Tính
Đại học Bách Khoa – Tp.HCM

08/2019

Bài tập/Thực hành 4
CHƯƠNG 2 KIẾN TRÚC TẬP LỆNH MIPS: GỌI HÀM (LẬP TRÌNH CẤU TRÚC),

THỜI GIAN THỰC THI

Mục tiêu

• Chuyển từ ngôn ngữ cấp cao (C) sang hợp ngữ MIPS.

• Sử dụng lệnh điều khiển (nhảy, rẽ nhánh) để lập trình cấu trúc.

• Biết nguyên lý gọi hàm. Sử dụng các lệnh gọi hàm jal, jr.

• Tính toán thời gian thực thi của chương trình.

Yêu cầu
• Xem cách dùng các lệnh (set, branch, jump, load, store, jal, jr) trong slide và trong file tham
khảo.

• Nộp các file code hợp ngữ đặt tên theo format [Bai*.asm] chứa trong thư mục Lab4_MSSV

Tập lệnh [tham khảo nhanh]

Cú pháp Ảnh hưởng Mô tả
slt Rd, Rs, Rt Rd = (Rs < Rt) ? 1 : 0 [Có dấu]Rd = 1 khi Rs < Rt, ngược lại Rd = 0
sltu Rd, Rs, Rt Rd = (Rs < Rt) ? 1 : 0 [Không dấu] Rd = 1 khi Rs < Rt, ngược lại Rd = 0

Lệnh nhảy, rẽ nhánh
beq Rs, Rt, label if (Rs == Rt) PC ← label Rẽ nhánh đến label nếu Rs == Rt
bne Rs, Rt, label if (Rs != Rt) PC ← label Rẽ nhánh đến label nếu Rs != Rt
bltz Rs, label if (Rs < 0) PC ← label Rẽ nhánh đến label nếu Rs < 0
blez Rs, label if (Rs <= 0) PC ← label Rẽ nhánh đến label nếu Rs <= 0
bgtz Rs, label if (Rs > 0) PC ← label Rẽ nhánh đến label nếu Rs > 0
bgez Rs, label if (Rs >= 0) PC ← label Rẽ nhánh đến label nếu Rs >= 0
j label PC ← label Nhảy không điều kiện đến label

Gọi hàm
jr Rs PC ← Rs Trở về vị trí thanh ghi Rs trỏ đến
jal label $ra ← PC+4, PC ← label Gọi hàm label, khi đó $ra nắm vị trí lệnh tiếp theo
jalr Rs $ra ← PC+4, PC ← Rs Gọi hàm Rs đang trỏ đến, khi đó $ra nắm vị trí lệnh tiếp theo

Review: MIPS instruction types

R-type
Op6 Rs5 Rt5 Rd5 Shamt5 Function6

Kiểu I-type
Op6 Rs5 Rt5 Immediate16
Kiểu J-type
Op6 Immediate26

• Op (opcode) Mã lệnh, dùng để xác định lệnh thực thi (trong kiểu R, Op = 0).

• Rs, Rt, Rd (register): Trường xác định thanh ghi (trường thanh ghi 5 bit tương ứng với 32 thanh
ghi).

• Shamt (shift amount): Xác định số bits dịch trong các lệnh dịch bit.

• Function: Xác định toán tử(operator hay còn gọi là lệnh) trong kiểu lệnh R.

• Immediate: Đại diện cho con số trực tiếp, địa chỉ, offset.

Bài tập và Thực hành

Sinh viên chuyển chương trình C bên dưới qua hợp ngữ MIPS tương ứng.

1. Leaf function (hàm lá)
Chuyển thủ tục "reverse" (đảo thứ tự chuỗi) từ ngôn ngữ C sang hợp ngữ MIPS. Thủ tục reverse
được gọi khi thực thi lệnh jal reverse từ vùng .text. cArray, cArray_size được gắn vào các
thanh ghi thanh ghi $a0, $a1. Giá trị trả về (nếu có) chứa vào $v0. Xuất chuỗi ra console.

1 char[] cArray = "Computer Architecture 2019"
2 int cArray_size = 26;
3 void reverse(char[] cArray, int cArray_size)
4 {
5 int i;
6 char temp;
7 for (i =0 ; i <cArray_size/2; i ++)
8 {
9 temp = cArray[i];

10 cArray[i] = cArray[cArray_size -1 -i];
11 cArray[cArray_size -1 -i] = temp;
12 }
13 }

Lưu ý: Dùng "jal reverse" để gọi thủ tục "reverse" và dùng "jr $ra" trở về vị trí thanh ghi
$ra đánh dấu.

2. Non-leaf function (là hàm/thủ tục gọi một hàm/thủ tục bên trong).
Chuyển thủ tục range từ C sang hợp ngữ MIPS tương đương.

1 int iArray[10];
2 int iArray_size = 10;
3 int range(iArray, iArray_size)
4 {
5 int temp1 = max(iArray, iArray_size);
6 int temp2 = min(iArray, iArray_size);
7 int range = temp1 - temp2;
8 return range;
9 }

Chương trình bắt đầu từ vùng .text, sau đó nó gọi hàm range. Trong hàm range lại gọi 2 hàm
con là max và min. Giả sử địa chỉ và kích thức iarray được gắn lần lượt vào các thanh ghi $a0,
$a1. Xuất giá trị range ra ngoài console.
Lưu ý: Khi gọi các hàm/thủ tục thanh ghi $ra sẽ tự đánh dấu lệnh tiếp theo như là vị trí trở
về. Do đó trước khi gọi hàm con trong hàm range thì sinh viên cần lưu lại giá trị thanh ghi
$ra trong stack. Sau khi thực thi xong, sinh viên cần phục hồi lại giá trị cho thanh ghi $ra từ
stack. Dùng "jal range", "jal max", "jal min" để gọi thủ tục range, max, min. Dùng
"jr $ra" để trở về vị trí lệnh mà thanh ghi $ra đã đánh dấu.
Để lưu(push) giá trị $ra vào stack, sinh viên có thể dùng các lệnh sau:

1 addi $sp, $sp, -4 # adjust stack for 1 item
2 sw $ra, 0($sp) # save return address

2

Để phục hồi(pop) $ra từ stack, sinh viên có thể dùng các lệnh sau:

1 lw $ra, 0($sp) # restore return address
2 addi $sp, $sp, 4 # pop 1 item from stack

3. Cho đoạn code hợp ngữ MIPS bên dưới

1 addi $a0, $zero, 100 // upper threshold
2 addi $a1, $zero, 0 // count variable
3 add $a2, $zero, $zero // sum initialization
4 loop:
5 beq $a0, $a1, exit
6 add $a2, $a2, $a1
7 addi $a1, $a1, 1
8 j loop
9 exit:

(a) Xác định giá trị của thanh ghi $a2 sau khi thực thi đoạn code trên.
(b) Xác định tổng số chu kỳ thực thi khi thực thi đoạn chương trình trên. Giả sử CPI của các

lệnh là 1.
(c) Giả sử vùng .text (text segment - vùng để chứa các lệnh thực thi) bắt đầu từ địa chỉ

0x10080000. Xác định mã máy của lệnh "j loop" ở dạng HEX.

3

MIPS32® Instruction Set
Quick Reference

RD  DESTINATION REGISTER

RS, RT  SOURCE OPERAND REGISTERS

RA  RETURN ADDRESS REGISTER (R31)
PC  PROGRAM COUNTER

ACC  64-BIT ACCUMULATOR

LO, HI  ACCUMULATOR LOW (ACC31:0) AND HIGH (ACC63:32) PARTS

±  SIGNED OPERAND OR SIGN EXTENSION

∅  UNSIGNED OPERAND OR ZERO EXTENSION

::  CONCATENATION OF BIT FIELDS

R2  MIPS32 RELEASE 2 INSTRUCTION

DOTTED  ASSEMBLER PSEUDO-INSTRUCTION

PLEASE REFER TO “MIPS32 ARCHITECTURE FOR PROGRAMMERS VOLUME II:
THE MIPS32 INSTRUCTION SET” FOR COMPLETE INSTRUCTION SET INFORMATION.

ARITHMETIC OPERATIONS

ADD RD, RS, RT RD = RS + RT (OVERFLOW TRAP)

ADDI RD, RS, CONST16 RD = RS + CONST16± (OVERFLOW TRAP)

ADDIU RD, RS, CONST16 RD = RS + CONST16±

ADDU RD, RS, RT RD = RS + RT

CLO RD, RS RD = COUNTLEADINGONES(RS)

CLZ RD, RS RD = COUNTLEADINGZEROS(RS)

LA RD, LABEL RD = ADDRESS(LABEL)

LI RD, IMM32 RD = IMM32

LUI RD, CONST16 RD = CONST16 << 16

MOVE RD, RS RD = RS

NEGU RD, RS RD = –RS

SEBR2 RD, RS RD = RS7:0
±

SEHR2 RD, RS RD = RS15:0
±

SUB RD, RS, RT RD = RS – RT (OVERFLOW TRAP)

SUBU RD, RS, RT RD = RS – RT

SHIFT AND ROTATE OPERATIONS

ROTRR2 RD, RS, BITS5 RD = RSBITS5–1:0 :: RS31:BITS5

ROTRVR2 RD, RS, RT RD = RSRT4:0–1:0 :: RS31:RT4:0

SLL RD, RS, SHIFT5 RD = RS << SHIFT5

SLLV RD, RS, RT RD = RS << RT4:0

SRA RD, RS, SHIFT5 RD = RS
± >> SHIFT5

SRAV RD, RS, RT RD = RS
± >> RT4:0

SRL RD, RS, SHIFT5 RD = RS
∅ >> SHIFT5

SRLV RD, RS, RT RD = RS
∅ >> RT4:0

LOGICAL AND BIT-FIELD OPERATIONS

AND RD, RS, RT RD = RS & RT

ANDI RD, RS, CONST16 RD = RS & CONST16∅

EXTR2 RD, RS, P, S RS = RSP+S-1:P
∅

INSR2 RD, RS, P, S RDP+S-1:P = RSS-1:0

NOP NO-OP

NOR RD, RS, RT RD = ~(RS | RT)

NOT RD, RS RD = ~RS

OR RD, RS, RT RD = RS | RT

ORI RD, RS, CONST16 RD = RS | CONST16∅

WSBHR2 RD, RS RD = RS23:16 :: RS31:24 :: RS7:0 :: RS15:8

XOR RD, RS, RT RD = RS ⊕ RT

XORI RD, RS, CONST16 RD = RS ⊕ CONST16∅

CONDITION TESTING AND CONDITIONAL MOVE OPERATIONS

MOVN RD, RS, RT IF RT ≠ 0, RD = RS

MOVZ RD, RS, RT IF RT = 0, RD = RS

SLT RD, RS, RT RD = (RS
± < RT

±) ? 1 : 0

SLTI RD, RS, CONST16 RD = (RS
± < CONST16±) ? 1 : 0

SLTIU RD, RS, CONST16 RD = (RS
∅ < CONST16∅) ? 1 : 0

SLTU RD, RS, RT RD = (RS
∅ < RT

∅) ? 1 : 0

MULTIPLY AND DIVIDE OPERATIONS

DIV RS, RT LO = RS
± / RT

±; ΗΙ = RS
± MOD RT

±

DIVU RS, RT LO = RS
∅ / RT

∅; ΗΙ = RS
∅ MOD RT

∅

MADD RS, RT ACC += RS
± × RT

±

MADDU RS, RT ACC += RS
∅ × RT

∅

MSUB RS, RT ACC −= RS
± × RT

±

MSUBU RS, RT ACC −= RS
∅ × RT

∅

MUL RD, RS, RT RD = RS
± × RT

±

MULT RS, RT ACC = RS
± × RT

±

MULTU RS, RT ACC = RS
∅ × RT

∅

ACCUMULATOR ACCESS OPERATIONS

MFHI RD RD = HI

MFLO RD RD = LO

MTHI RS HI = RS

MTLO RS LO = RS

JUMPS AND BRANCHES (NOTE: ONE DELAY SLOT)

B OFF18 PC += OFF18±

BAL OFF18 RA = PC + 8, PC += OFF18±

BEQ RS, RT, OFF18 IF RS = RT, PC += OFF18±

BEQZ RS, OFF18 IF RS = 0, PC += OFF18±

BGEZ RS, OFF18 IF RS ≥ 0, PC += OFF18±

BGEZAL RS, OFF18 RA = PC + 8; IF RS ≥ 0, PC += OFF18±

BGTZ RS, OFF18 IF RS > 0, PC += OFF18±

BLEZ RS, OFF18 IF RS ≤ 0, PC += OFF18±

BLTZ RS, OFF18 IF RS < 0, PC += OFF18±

BLTZAL RS, OFF18 RA = PC + 8; IF RS < 0, PC += OFF18±

BNE RS, RT, OFF18 IF RS ≠ RT, PC += OFF18±

BNEZ RS, OFF18 IF RS ≠ 0, PC += OFF18±

J ADDR28 PC = PC31:28 :: ADDR28∅

JAL ADDR28 RA = PC + 8; PC = PC31:28 :: ADDR28∅

JALR RD, RS RD = PC + 8; PC = RS

JR RS PC = RS

LOAD AND STORE OPERATIONS

LB RD, OFF16(RS) RD = MEM8(RS + OFF16±)±

LBU RD, OFF16(RS) RD = MEM8(RS + OFF16±)∅

LH RD, OFF16(RS) RD = MEM16(RS + OFF16±)±

LHU RD, OFF16(RS) RD = MEM16(RS + OFF16±)∅

LW RD, OFF16(RS) RD = MEM32(RS + OFF16±)

LWL RD, OFF16(RS) RD = LOADWORDLEFT(RS + OFF16±)

LWR RD, OFF16(RS) RD = LOADWORDRIGHT(RS + OFF16±)

SB RS, OFF16(RT) MEM8(RT + OFF16±) = RS7:0

SH RS, OFF16(RT) MEM16(RT + OFF16±) = RS15:0

SW RS, OFF16(RT) MEM32(RT + OFF16±) = RS

SWL RS, OFF16(RT) STOREWORDLEFT(RT + OFF16±, RS)

SWR RS, OFF16(RT) STOREWORDRIGHT(RT + OFF16±, RS)

ULW RD, OFF16(RS) RD = UNALIGNED_MEM32(RS + OFF16 ±)

USW RS, OFF16(RT) UNALIGNED_MEM32(RT + OFF16±) = RS

ATOMIC READ-MODIFY-WRITE OPERATIONS

LL RD, OFF16(RS) RD = MEM32(RS + OFF16±); LINK

SC RD, OFF16(RS) IF ATOMIC, MEM32(RS + OFF16±) = RD;
RD = ATOMIC ? 1 : 0

Copyright © 2008 MIPS Technologies, Inc. All rights reserved. MD00565 Revision 01.01

REGISTERS

0 zero Always equal to zero

1 at Assembler temporary; used by the assembler

2-3 v0-v1 Return value from a function call

4-7 a0-a3 First four parameters for a function call

8-15 t0-t7 Temporary variables; need not be preserved

16-23 s0-s7 Function variables; must be preserved

24-25 t8-t9 Two more temporary variables

26-27 k0-k1 Kernel use registers; may change unexpectedly

28 gp Global pointer

29 sp Stack pointer

30 fp/s8 Stack frame pointer or subroutine variable

31 ra Return address of the last subroutine call

DEFAULT C CALLING CONVENTION (O32)

Stack Management
• The stack grows down.

• Subtract from $sp to allocate local storage space.
• Restore $sp by adding the same amount at function exit.

• The stack must be 8-byte aligned.
• Modify $sp only in multiples of eight.

Function Parameters
• Every parameter smaller than 32 bits is promoted to 32 bits.
• First four parameters are passed in registers $a0−$a3.

• 64-bit parameters are passed in register pairs:
• Little-endian mode: $a1:$a0 or $a3:$a2.
• Big-endian mode: $a0:$a1 or $a2:$a3.

• Every subsequent parameter is passed through the stack.
• First 16 bytes on the stack are not used.
• Assuming $sp was not modified at function entry:

• The 1st stack parameter is located at 16($sp).
• The 2nd stack parameter is located at 20($sp), etc.

• 64-bit parameters are 8-byte aligned.

Return Values
• 32-bit and smaller values are returned in register $v0.
• 64-bit values are returned in registers $v0 and $v1:

• Little-endian mode: $v1:$v0.
• Big-endian mode: $v0:$v1.

MIPS32 VIRTUAL ADDRESS SPACE

kseg3 0xE000.0000 0xFFFF.FFFF Mapped Cached

ksseg 0xC000.0000 0xDFFF.FFFF Mapped Cached

kseg1 0xA000.0000 0xBFFF.FFFF Unmapped Uncached

kseg0 0x8000.0000 0x9FFF.FFFF Unmapped Cached

useg 0x0000.0000 0x7FFF.FFFF Mapped Cached

READING THE CYCLE COUNT REGISTER FROM C

unsigned mips_cycle_counter_read()
{

unsigned cc;
asm volatile("mfc0 %0, $9" : "=r" (cc));
return (cc << 1);

}

ASSEMBLY-LANGUAGE FUNCTION EXAMPLE

int asm_max(int a, int b)
{
int r = (a < b) ? b : a;
return r;
}

.text

.set nomacro

.set noreorder

.global asm_max

.ent asm_max
asm_max:

move $v0, $a0 # r = a
slt $t0, $a0, $a1 # a < b ?
jr $ra # return
movn $v0, $a1, $t0 # if yes, r = b
.end asm_max

C / ASSEMBLY-LANGUAGE FUNCTION INTERFACE

#include <stdio.h>
int asm_max(int a, int b);
int main()
{

int x = asm_max(10, 100);
int y = asm_max(200, 20);
printf("%d %d\n", x, y);

}

INVOKING MULT AND MADD INSTRUCTIONS FROM C

int dp(int a[], int b[], int n)
{

int i;
long long acc = (long long) a[0] * b[0];
for (i = 1; i < n; i++)

acc += (long long) a[i] * b[i];
return (acc >> 31);

}

ATOMIC READ-MODIFY-WRITE EXAMPLE

atomic_inc:
ll $t0, 0($a0) # load linked
addiu $t1, $t0, 1 # increment
sc $t1, 0($a0) # store cond'l
beqz $t1, atomic_inc # loop if failed
nop

ACCESSING UNALIGNED DATA
NOTE: ULW AND USW AUTOMATICALLY GENERATE APPROPRIATE CODE

LITTLE-ENDIAN MODE BIG-ENDIAN MODE

LWR RD, OFF16(RS)
LWL RD, OFF16+3(RS)

LWL RD, OFF16(RS)
LWR RD, OFF16+3(RS)

SWR RD, OFF16(RS)
SWL RD, OFF16+3(RS)

SWL RD, OFF16(RS)
SWR RD, OFF16+3(RS)

ACCESSING UNALIGNED DATA FROM C

typedef struct
{

int u;
} __attribute__((packed)) unaligned;

int unaligned_load(void *ptr)
{

unaligned *uptr = (unaligned *)ptr;
return uptr->u;

}

MIPS SDE-GCC COMPILER DEFINES

__mips MIPS ISA (= 32 for MIPS32)

__mips_isa_rev MIPS ISA Revision (= 2 for MIPS32 R2)

__mips_dsp DSP ASE extensions enabled

_MIPSEB Big-endian target CPU

_MIPSEL Little-endian target CPU

_MIPS_ARCH_CPU Target CPU specified by -march=CPU
_MIPS_TUNE_CPU Pipeline tuning selected by -mtune=CPU

NOTES

• Many assembler pseudo-instructions and some rarely used
machine instructions are omitted.

• The C calling convention is simplified. Additional rules apply
when passing complex data structures as function parameters.

• The examples illustrate syntax used by GCC compilers.
• Most MIPS processors increment the cycle counter every other

cycle. Please check your processor documentation.

MD00565 Revision 01.01Copyright © 2008 MIPS Technologies, Inc. All rights reserved.

