Solutions

Chapter 3 Solutions

3.1 5730
3.2 5730
3.3 0101111011010100

The attraction is that each hex digit contains one of 16 different characters
(0-9, A-E). Since with 4 binary bits you can represent 16 different patterns,
in hex each digit requires exactly 4 binary bits. And bytes are by definition 8
bits long, so two hex digits are all that are required to represent the contents
of 1 byte.

3.4 753

3.5 7777 (—3777)

3.6 Neither (63)

3.7 Neither (65)

3.8 Overflow (result = —179, which does not fit into an SM 8-bit format)
3.9 —105 — 42 = —128 (—147)

3.10 —105+ 42 = —63

3.11 151 + 214 = 255 (365)

3.12 62X12
mmm-zm-
Initial Vals 001 010 000 000 110 010 000 000 000 000
1sb=0, no op 001 010 000 000 110 010 000 000 000 000
1 Lshift Mcand 001 010 000 001 100 100 000 000 000 000
Rshift Mplier 000 101 000 001 100 100 000 000 000 000
Prod=Prod+Mcand 000 101 000 001 100 100 000 001 100 100
2 Lshift Mcand 000 101 000 011 001 000 000 001 100 100
Rshift Mplier 000 010 000 011 001 000 000 001 100 100
1sb=0, no op 000 010 000 011 001 000 000 001 100 100
3 Lshift Mcand 000 010 000 110 010 000 000 001 100 100
Rshift Mplier 000 001 000 110 010 000 000 001 100 100
Prod=Prod+Mcand 000 001 000 110 010 000 000 111 110 100
4 Lshift Mcand 000 001 001 100 100 000 000 111 110 100
Rshift Mplier 000 000 001 100 100 000 000 111 110 100
1sb=0, no op 000 000 001 100 100 000 000 111 110 100
5 Lshift Mcand 000 000 011 001 000 000 000 111 110 100
Rshift Mplier 000 000 011 001 000 000 000 111 110 100
1sb=0, no op 000 000 110 010 000 000 000 111 110 100
6 Lshift Mcand 000 000 110 010 000 000 000 111 110 100
Rshift Mplier 000 000 110 010 000 000 000 111 110 100

s-4

Chapter 3 Solutions

3.13

62X12

" Stp | Action | Muliplicand | Product/Multipier
0

Initial Vals 110 010 000 000 001 010
1sb=0, no op 110 010 000 000 001 010
1 Rshift Product 110 010 000 000 000 101
Prod=Prod+Mcand 110 010 110 010 000 101
2 Rshift Mplier 110 010 011 001 000 010
1sb=0, no op 110 010 011 001 000 010
3 Rshift Mplier 110 010 001 100 100 001
Prod=Prod+Mcand 110 010 111 110 100 001
4 Rshift Mplier 110 010 011 111 010 000
1sb=0, no op 110 010 011 111 010 000
5 Rshift Mplier 110 010 001 111 101 000
1sb=0, no op 110 010 001 111 101 000
6 Rshift Mplier 110 010 000 111 110 100

3.14

3.15

3.16

3.17

For hardware, it takes 1 cycle to do the add, 1 cycle to do the shift, and 1 cycle
to decide if we are done. So the loop takes (3 X A) cycles, with each cycle
being B time units long.

For a software implementation, it takes 1 cycle to decide what to add, 1 cycle
to do the add, 1 cycle to do each shift, and 1 cycle to decide if we are done. So
the loop takes (5 X A) cycles, with each cycle being B time units long.

(3X8)X4tu = 96 time units for hardware
(5X8)X4tu = 160 time units for software

It takes B time units to get through an adder, and there will be A — 1 adders.
Word is 8 bits wide, requiring 7 adders. 7X4tu = 28 time units.

It takes B time units to get through an adder, and the adders are arranged
in a tree structure. It will require log2(A) levels. 8 bit wide word requires 7
adders in 3 levels. 3X4tu = 12 time units.

0x33 X 0x55 = 0x10EF. 0x33 = 51,and 51 = 32+ 16+2+1. We can shift 0x55
left 5 places (0xAAO), then add 0x55 shifted left 4 places (0x550), then add
0x55 shifted left once (0xAA), then add 0x55. 0xAA0+0x550+0xAA +0x55
= 0x10EE 3 shifts, 3 adds.

(Could also use 0x55, which is 64+ 16+4-+1, and shift 0x33 left 6 times, add
to it 0x33 shifted left 4 times, add to that 0x33 shifted left 2 times, and add to
that 0x33. Same number of shifts and adds.)

Chapter 3 Solutions

S$-5

3.18 74/21 = 3 remainder 9

Initial Vals 000 000 010 001 000 000 000 000 111 100
Rem=Rem-Div 000 000 010 001 000 000 101 111 111 100

1 Rem<0,R+D, Q<< 000 000 010 001 000 000 000 000 111 100
Rshift Div 000 000 001 000 100 000 000 000 111 100
Rem=Rem-Div 000 000 001 000 100 000 111 000 011 100

2 Rem<0,R+D, Q<< 000 000 001 000 100 000 000 000 111 100
Rshift Div 000 000 000 100 010 000 000 000 111 100
Rem=Rem-Div 000 000 000 100 010 000 111 100 101 100

3 Rem<0,R+D, Q<< 000 000 000 100 010 000 000 000 111 100
Rshift Div 000 000 000 010 001 000 000 000 111 100
Rem=Rem-Div 000 000 000 010 001 000 111 110 110 100

4 Rem<0,R+D, Q<< 000 000 000 010 001 000 000 000 111 100
Rshift Div 000 000 000 001 000 100 000 000 111 100
Rem=Rem-Div 000 000 000 001 000 100 111 111 111 000

5 Rem<0,R+D, Q<< 000 000 000 001 000 100 000 000 111 100
Rshift Div 000 000 000 000 100 010 000 000 111 100
Rem=Rem-Div 000 000 000 000 100 010 000 000 011 010

6 Rem>0,Q<<1 000 001 000 000 100 010 000 000 011 010
Rshift Div 000 001 000 000 010 001 000 000 011 010
Rem=Rem-Div 000 001 000 000 010 001 000 000 001 001

7 Rem>0,Q<<1 000 011 000 000 010 001 000 000 001 001
Rshift Div 000 011 000 000 001 000 000 000 001 001

3.19. In these solutions a 1 or a 0 was added to the Quotient if the remainder was
greater than or equal to 0. However, an equally valid solution is to shiftin a 1 or 0,
but if you do this you must do a compensating right shift of the remainder (only
the remainder, not the entire remainder/quotient combination) after the last step.

74/21 = 3 remainder 11

mm—m

Initial Vals 010 001 000 000 111 100
R<K 010 001 000 001 111 000
1 Rem=Rem-Div 010 001 111 000 111 000
Rem<0, R+D 010 001 000 001 111 000
R<K 010 001 000 011 110 000
2 Rem=Rem-Div 010 001 110 010 110 000
Rem<0,R+D 010 001 000 011 110 000
R<K 010 001 000 111 100 000
3 Rem=Rem—Div 010 001 110 110 110 000
Rem<0, R+D 010 001 000 111 100 000
R<K 010 001 001 111 000 000
4 Rem=Rem-Div 010 001 111 110 000 000
Rem<0, R+D 010 001 001 111 000 000

$-6

Chapter 3 Solutions

| Step | Action | Divisor | Remainder/Quotient |

R<< 010 001 011 110 000 000
5 Rem=Ren—D1 v 010 001 111 110 000 000
Rem>0, RO-1 010 001 001 101 000 001
R<< 010 001 011 010 000 010
6 Rem=Rem—Di v 010 001 001 001 000 010
Rem>0, RO=1 010 001 001 001 000 011
3.20 201326592 in both cases.
3.21 jal 0x00000000
3.22

0x0C000000 = 0000 1100 0000 0000 0000 0000 0000 0000

=0

0001 1000 0000 0000 0000 0000 0000 000

sign is positive

exp

=0x18 =24 — 127 = —103

there is a hidden 1

mantissa =0

answer = 1.0 x 27103

3.23

3.24

63.25 X 10° = 111111.01 X 2°

normalize, move binary point 5 to the left

1.1111101 X 25

sign = positive, exp = 127+5=132

Final bit pattern: 0 1000 0100 1111 1010 0000 0000 0000 000
= 010000100111 1101 0000 0000 0000 0000 = 0x427D0000

63.25 X 10° = 111111.01 X 2°
normalize, move binary point 5 to the left
1.1111101 X 2°

sign = positive, exp = 1023+5=1028
Final bit pattern:

010000000100 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000
= 0x404FA00000000000

Chapter 3 Solutions

3.25 63.25 X 10°=111111.01 X 2° = 3F40 X 16°
move hex point 2 to the left
.3F40 X 162
sign = positive, exp = 64+2
Final bit pattern: 01000010001111110100000000000000
3.26 —1.5625 X 107! = —.15625 X 10°
= —.00101 X 2°
move the binary point 2 to the right
= —.101 X 272
exponent = —2, fraction = —.101000000000000000000000
answer: 111111111110101100000000000000000000
3.27 —1.5625 X 107! = —.15625 X 10°
= —.00101 X 2°
move the binary point 3 to the right, = —1.01 X 273
exponent = —3 = —3+15 = 12, fraction = —.0100000000
answer: 1011000100000000
3.28 —1.5625 X 107! = —.15625 X 10°
= —.00101 X 2°
move the binary point 2 to the right
= —.101 X 272
exponent = —2, fraction = —.1010000000000000000000000000
answer: 10110000000000000000000000000101
3.29 2.6125 X 10" + 4.150390625 X 107!
2.6125 X 10" = 26.125 = 11010.001 = 1.1010001000 X 2*

4.150390625 X 107! = 4150390625 = .011010100111 = 1.1010100111 X
2*2

Shift binary point 6 to the left to align exponents,

Chapter 3 Solutions

GR
1.1010001000 00

1.0000011010 10 0111 (Guard 5 1, Round 5 O,
Sticky 5 1)

1.1010100010 10
In this case the extra bit (G,R,S) is more than half of the least significant bit (0).

Thus, the value is rounded up.
1.1010100011 X 2* = 11010.100011 X 2° = 26.546875 = 2.6546875 X 10!

3.30 —8.0546875 X —1.79931640625 X 107!
—8.0546875 = —1.0000000111 X 2°
—1.79931640625 X 107! = —1.0111000010 X 273
Exp: —3 + 3 = 0,0+16 = 16 (10000)

Signs: both negative, result positive

Fraction:

1.0000000111
X 1.0111000010
00000000000
10000000111
00000000000
00000000000
00000000000
00000000000
10000000111
10000000111
10000000111
00000000000
10000000111
1.01110011000001001110

1.0111001100 00 01001110 Guard = 0, Round = 0, Sticky = 1:NoRnd

Chapter 3 Solutions

S$-9

1.0111001100 X 2° = 0100000111001100 (1.0111001100 = 1.44921875)
—8.0546875 X —.179931640625 = 1.4492931365966796875

Some information was lost because the result did not fit into the available 10-bit
field. Answer (only) off by .0000743865966796875

3.31 8.625 X 10'/ —4.875 X 10°
8.625 X 10' = 1.0101100100 X 2°
—4.875 = —1.0011100000 X 2
Exponent = 6—2 = 4,4+15 = 19 (10011)
Signs: one positive, one negative, result negative
Fraction:

1.00011011000100111
10011100000. | 10101100100.0000000000000000
—10011100000.
10000100.0000
—1001110.0000
1100110.00000
—100111.00000
1111.0000000
—1001.1100000
101.01000000
—100.11100000
000.011000000000
—.010011100000
.000100100000000
—.000010011100000
.0000100001000000
—.0000010011100000
.00000011011000000
—.00000010011100000

.00000000110000000

S-10 Chapter 3 Solutions

1.000110110001001111 Guard=0, Round=1, Sticky=1: No Round, fix
sign
—1.0001101100 X 2* = 1101000001101100 = 10001.101100 = —17.6875
86.25/ —4.875 = —17.692307692307
Some information was lost because the result did not fit into the available 10-bit
field. Answer off by .00480769230
3.32 (3.984375 X 107" + 3.4375 X 107") + 1.771 X 10%)

3.984375 X 107! = 1.1001100000 X 272

3.4375 X 107! = 1.0110000000 X 272

1.771 X 10* = 1771 = 1.1011101011 X 2%

shift binary point of smaller left 12 so exponents match

(A) 1.1001100000
(B) +1.0110000000

10.1111100000 Normalize,

(A+B) 1.0111110000 x 27!
(C) +1.1011101011
(A+B) .0000000000 10 111110000 Guard = 1,

Round = 0, Sticky =1

(A+B)+C +1.1011101011 10 1 Round up
(A+B)+C =1.1011101100 x 2! = 0110101011101100 = 1772

3.33 3.984375 X 107! + (3.4375 X 107" + 1.771 X 10°)
3.984375 X 107! = 1.1001100000 X 22
3.4375 X 107! = 1.0110000000 X 22
1.771 X 10* = 1771 = 1.1011101011 X 2

shift binary point of smaller left 12 so exponents match

(B) .0000000000 01 0110000000 Guard = O,
Round = 1, Sticky =1

(C) +1.1011101011

(B+C) +1.1011101011

Chapter 3 Solutions S-11

(A) .0000000000 011001100000

A+(B+C) +1.1011101011 No round
A+(B+C) +1.1011101011 x 2! = 0110101011101011 = 1771

3.34 No, they are not equal: (A+B)+C = 1772, A+(B+C) = 1771 (steps shown
above).

Exact: .398437 + .34375 + 1771 = 1771.742187

3.35 (3.41796875 X 1073 X 6.34765625 X 107%) X 1.05625 X 10
(A) 3.41796875 X 103 = 1.1100000000 X 2~°
(B) 4.150390625 X 103 = 1.0001000000 X 2~
(C) 1.05625 X 10? = 1.1010011010 X 28
Exp: —9—8 = —17

Signs: both positive, result positive

Fraction:
(A) 1.1100000000
(B) X 1.0001000000
11100000000
11100000000

1.11011100000000000000
AXB 1.1101110000 00 00000000
Guard = 0, Round = 0, Sticky = 0: No Round

AXB 1.1101110000 X 27 UNDERFLOW: Cannot represent number

3.36 3.41796875 X 1073 X (6.34765625 X 1073 X 1.05625 X 10%)
(A) 3.41796875 X 10~* = 1.1100000000 X 2~
(B) 4.150390625 X 10~* = 1.0001000000 X 2~
(C) 1.05625 X 10> = 1.1010011010 X 2°
Exp: —8+6 = —2

S-12 Chapter 3 Solutions

Signs: both positive, result positive

Fraction:
(B) 1.0001000000

(C) x 1.1010011010

10001000000
10001000000
10001000000
10001000000
10001000000
10001000000

1.110000001110100000000
1.1100000011 10 100000000 Guard 5 1,

5 1: Round
BXC 1.1100000100 X 272

Round 5 0, Sticky

Exp: —=9—-2 = —11
Signs: both positive, result positive

Fraction:
(A) 1.1100000000
(B x C)x 1.1100000100
11100000000
11100000000
11100000000
11100000000

11.00010001110000000000
1.1000100011 10 0000000000 Guard=1,

Round to even
AX(BXC) 1.1000100100 X 2710

Normalize, add 1 to exponent
Round=0, Sticky=0:

Chapter 3 Solutions S$-13

3.37 b) No:
AXB =1.1101110000 X 27 UNDERFLOW: Cannot represent
AX(BXC) = 1.1000100100 X 2~
A and B are both small, so their product does not fit into the
16-bit floating point format being used.

3.38 1.666015625 X 10° X (1.9760 X 10* — 1.9744 X 10%)
(A) 1.666015625 X 10° = 1.1010101010 X 2°
(B) 1.9760 X 10* = 1.0011010011 X 24
(C) —1.9744 X 10* = —1.0011010010 X 2

Exponents match, no shifting necessary
(B) 1.0011010011
(C) —1.0011010010

(B+C) 0.0000000001 x 21
(B+C) 1.0000000000 x 2¢

Exp: 0+4 =4

Signs: both positive, result positive

Fraction:
(A) 1.1010101010
(B+C) X 1.0000000000

1.10101010100000000000
AX(B+C) 1.1010101010 0000000000 Guard = 0, Round =
0, sticky = 0: No round

AX(B+C) 1.1010101010 X 2°

3.39 1.666015625 X 10° X (1.9760 X 10* — 1.9744 X 10%)
(A) 1.666015625 X 10° = 1.1010101010 X 2°
(B) 1.9760 X 10* = 1.0011010011 X 2"

S-14 Chapter 3 Solutions

(C) —1.9744 X 10* = —1.0011010010 X 24
Exp: 0+14 = 14

Signs: both positive, result positive

Fraction:
(A) 1.1010101010
(B) X 1.0011010011
11010101010
11010101010
11010101010
11010101010
11010101010
11010101010
10.0000001001100001111 Normalize, add 1 to
exponent
AXB 1.0000000100 11 00001111 Guard = 1, Round = 1,
Sticky = 1: Round
AXB 1.0000000101 x 215
Exp: 0+14=14

Signs: one negative, one positive, result negative

Fraction:
(A) 1.1010101010

(C) X 1.0011010010
11010101010
11010101010
11010101010
11010101010
11010101010

10.0000000111110111010
Normalize, add 1 to exponent

AXC 1.0000000011 11 101110100
Guard = 1, Round = 1, Sticky = 1: Round

AXC —1.0000000100 x 2

AXB 1.0000000101 x 215

AXC —1.0000000100 x 2'°

AXB+AXC .0000000001 x 2%°

AXB-+AXC 1.0000000000 x 2°

Chapter 3 Solutions $-15

3.40 b) No:

AX(B+C) = 1.1010101010 X 2* = 26.65625, and (AXB)+(AXC) =
1.0000000000 X 25 = 32

Exact: 1.666015625 X (19,760 — 19,744) = 26.65625

3.41
—mmmm
\ 101111101 00000000000000000000000 \ \ \ Yes \

3.42 b+b+b+b=—1
bx4 = -1

They are the same

3.43 01010101 0101 0101 0101 0101
No

3.44 0011 0011001100110011 0011
No

3.45 0101 0000 0000 0000 0000 0000
0.5
Yes
3.46 01010 00000 00000 00000
0.A
Yes

3.47 |Instruction assumptions:

(1) 8-lane 16-bit multiplies

(2) sum reductions of the four most significant 16-bit values
(3) shift and bitwise operations
(4) 128-, 64-, and 32-bit loads and stores of most significant bits

Outline of solution:

load register F[bits 127:0] = f[3..0] & f[3..0] (64-bit
load)
load register A[bits 127:0] = sig_in[7..0] (128-bit Toad)

jonesl001
Pencil

jonesl001
Sticky Note
Align

$-16

Chapter 3 Solutions

for i

=0 to 15 do
load register B[bits 127:0] = sig_in[(i*8+7..1*8]
(128-bit load)

for j = 0 to7 do

(1) eight-Tane multiply C[bits 127:0] = A*F

(eight 16-bit multiplies)

(2) set D[bits 15:0] = sum of the four 16-bit values

in CLbits 63:0] (reduction of four 16-bit values)
(3) set D[bhits 31:161 = sum of the four 16-bit
values in C[bits 127:64] (reduction of four 16-
bit values)
(4) store D[bits 31:0] to sig_out (32-bit store)
(5) set A = A shifted 16 bits to the Teft
(6) set E =B shifted 112 shifts to the right
(7) set A=A OR E
(8) set B B shifted 16 bits to the left

end for
end for

