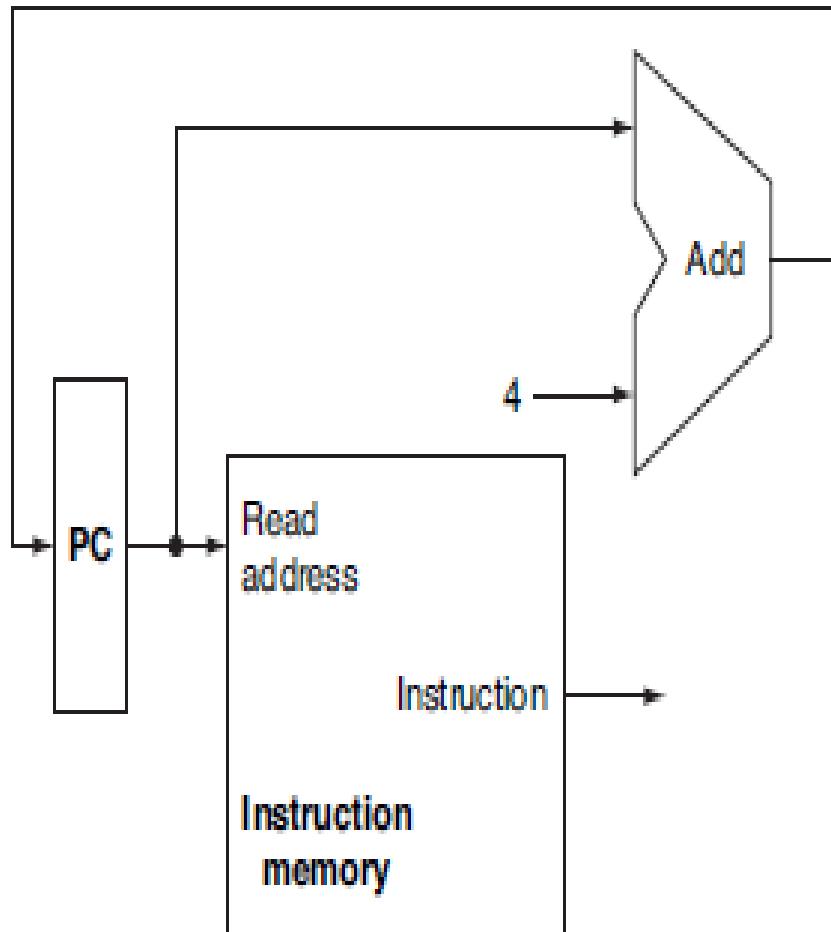


Exercise 4.6


Problems in this exercise assume that logic blocks needed to implement a processor's datapath have the following latencies:

	I-Mem	Add	Mux	ALU	Regs	D-Mem	Sign-Extend	Shift-Left-2
a.	200ps	70ps	20ps	90ps	90ps	250ps	15ps	10ps
b.	750ps	200ps	50ps	250ps	300ps	500ps	100ps	0ps

4.6.1 [10] <4.3> If the only thing we need to do in a processor is fetch consecutive instructions (Figure 4.6), what would the cycle time be?

4.6.2 [10] <4.3> Consider a datapath similar to the one in Figure 4.11, but for a processor that only has one type of instruction: unconditional PC-relative branch. What would the cycle time be for this datapath?

4.6.3 [10] <4.3> Repeat 4.6.2, but this time we need to support only *conditional* PC-relative branches.

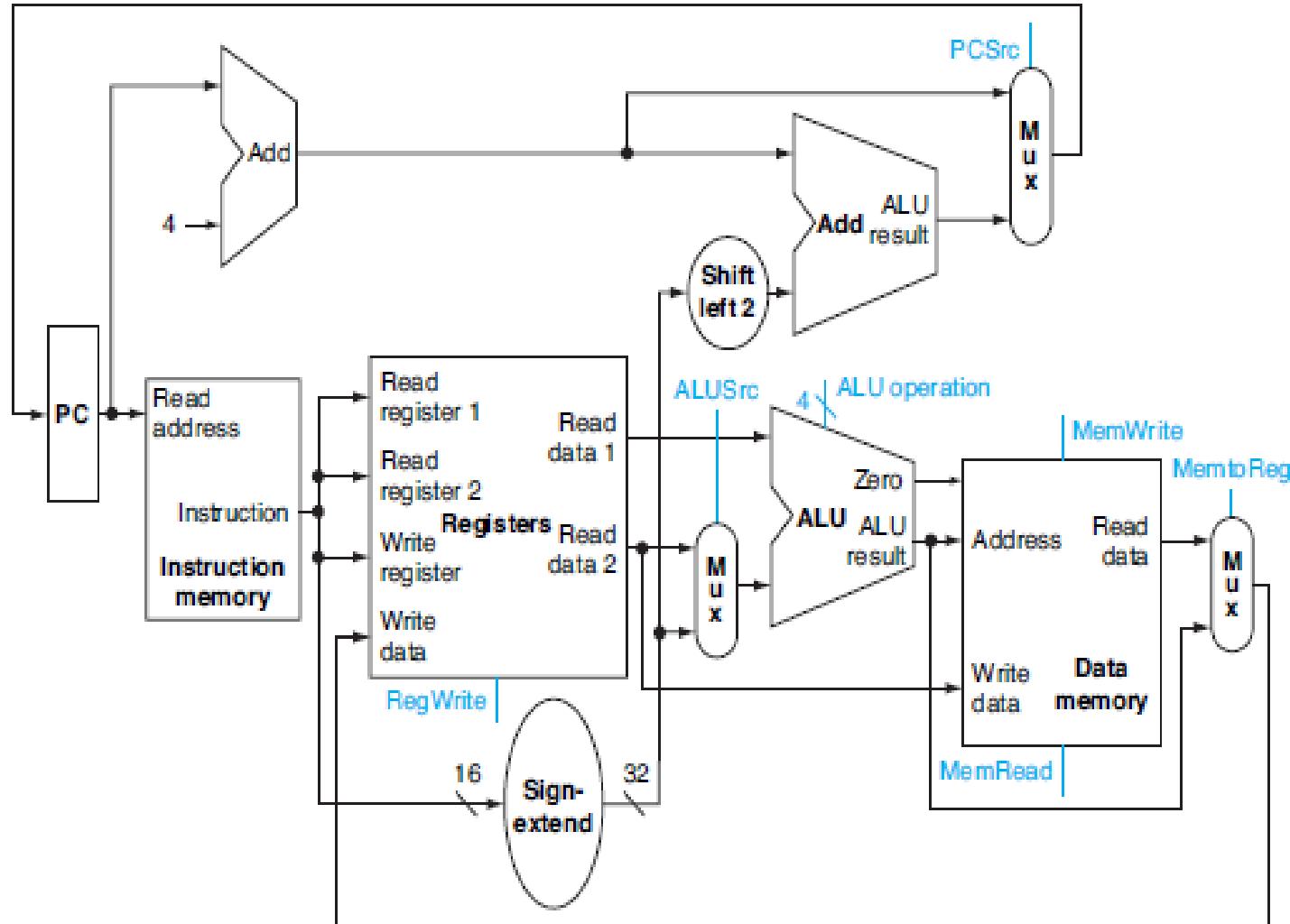


FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing the program counter. The fetched instruction is used by other parts of the datapath.

Solution 4.6

4.6.1 I-Mem takes longer than the Add unit, so the clock cycle time is equal to the latency of the I-Mem:

a.	200ps
b.	750ps

FIGURE 4.11 The simple datapath for the MIPS architecture combines the elements required by different instruction classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store word, ALU operations, and branches) in a single clock cycle. An additional multiplexor is needed to integrate branches. The support for jumps will be added later.

4.6.2 The critical path for this instruction is through the instruction memory, Sign-extend and Shift-left-2 to get the offset, Add unit to compute the new PC, and Mux to select that value instead of PC + 4. Note that the path through the other Add unit is shorter, because the latency of I-Mem is longer than the latency of the Add unit. We have:

a.	$200\text{ps} + 15\text{ps} + 10\text{ps} + 70\text{ps} + 20\text{ps} = 315\text{ps}$
b.	$750\text{ps} + 100\text{ps} + 0\text{ps} + 200\text{ps} + 50\text{ps} = 1100\text{ps}$

4.6.3 Conditional branches have the same long-latency path that computes the branch address as unconditional branches do. Additionally, they have a long-latency path that goes through Registers, Mux, and ALU to compute the PCSrc condition. The critical path is the longer of the two, and the path through PCSrc is longer for these latencies:

a.	$200\text{ps} + 90\text{ps} + 20\text{ps} + 90\text{ps} + 20\text{ps} = 420\text{ps}$
b.	$750\text{ps} + 300\text{ps} + 50\text{ps} + 250\text{ps} + 50\text{ps} = 1400\text{ps}$

The remaining three problems in this exercise refer to the following logic block (resource) in the datapath:

	Resource
a.	Shift-left-2
b.	Registers

4.6.4 [10] <4.3> Which kinds of instructions require this resource?

4.6.5 [20] <4.3> For which kinds of instructions (if any) is this resource on the critical path?

4.6.6 [10] <4.3> Assuming that we only support BEQ and ADD instructions, discuss how changes in the given latency of this resource affect the cycle time of the processor. Assume that the latencies of other resources do not change.

4.6.4

a.	PC-relative branches.
b.	All instructions except unconditional jumps without a register operand (jal, j).

4.6.5

a.	PC-relative unconditional branch instructions. We saw in 4.6.3 that this is not on the critical path of conditional branches, and it is only needed for PC-relative branches. Note that MIPS does not have actual unconditional branches (BNE zero, zero, Label plays that role so there is no need for unconditional branch opcodes) so for MIPS the answer to this question is actually "None."
b.	All instructions except unconditional jumps without a register operand (jal, j).

4.6.6 Of the two instruction (BNE and ADD), BNE has a longer critical path so it determines the clock cycle time. Note that every path for ADD is shorter than or equal to the corresponding path for BNE, so changes in unit latency will not affect this. As a result, we focus on how the unit's latency affects the critical path of BNE:

<p>a.</p> <p>This unit is not on the critical path, so the only way for this unit to become critical is to increase its latency until the path for address computation through sign extend, shift left, and branch add becomes longer than the path for PCSrc through Registers, Mux, and ALU. The latency of Regs, Mux, and ALU is 200ps and the latency of Sign-extend, Shift-left-2, and Add is 95ps, so the latency of Shift-left-2 must be increased by 105ps or more for it to affect clock cycle time.</p>
<p>b.</p> <p>This unit is already on the critical path of BNE, so changes in its latency affect the clock cycle time directly. Even if we speed this unit up to have zero latency, the path through Regs, Mux, and ALU will take 300ps and remain a critical path (because Sign-extend, Shift-left-2, and Add also take 300ps).</p>