
TRƯỜNG ĐẠI HỌC BÁCH KHOA
KHOA KHOA HỌC & KỸ THUẬT MÁY TÍNH

ÔN TẬP
Kiến trúc máy tính - CO2008

Binh Tran-Thanh
thanhbinh.hcmut@gmail.com

January, 2019

Nội dung

1 Kiểu lệnh 3
1.1 Bài tập . 3

2 Single clock processor 4
2.1 Single clock processor . 4
2.2 Kiến trúc single cycle . 4

2.2.1 Phần cứng . 4
2.2.2 Data-path . 5

2.3 Bài tập . 5
2.4 Đáp án/Gợi ý . 6

3 Pipeline processor 8
3.1 Pipeline processor . 8

3.1.1 Các bước trong pipeline . 8
3.1.2 Hiệu suất. 8

3.2 Hazard . 8
3.2.1 Structural hazard . 8
3.2.2 Data hazards . 9
3.2.3 Phương pháp giải quyết data hazard. 9

3.3 Control hazard . 10
3.4 Bài tập . 10
3.5 Đáp án/gợi ý . 11

4 Memory 13
4.1 Memory . 13
4.2 Cache . 13

4.2.1 Block placement . 13
4.2.2 Block identification . 13
4.2.3 Block replacement . 14
4.2.4 Write strategy . 15
4.2.5 Miss/hit . 15

4.3 CPI . 15
4.4 Thời gian truy xuất bộ nhớ trung bình . 16
4.5 Bài tập . 17
4.6 Đáp án/Gợi ý . 17
4.7 Virtual Memory . 19

2

1 Kiểu lệnh

R-type
Op6 Rs5 Rt5 Rd5 Shamt5 Function6

Kiểu I-type
Op6 Rs5 Rt5 Immediate16
Kiểu J-type
Op6 Immediate26

• Op (opcode) Mã lệnh, dùng để xác định lệnh thực thi (trong kiểu R, Op = 0).

• Rs, Rt, Rd (register): Trường xác định thanh ghi (trường thanh ghi 5 bit tương ứng với 32 thanh
ghi).

• Shamt (shift amount): Xác định số bits dịch trong các lệnh dịch bit.

• Function: Xác định toán tử(operator hay còn gọi là lệnh) trong kiểu lệnh R.

• Immediate: Đại diện cho con số trực tiếp, địa chỉ, offset.

1.1 Bài tập
Bài 1.1. Cho đoạn code hợp ngữ MIPS sau:

1 addi $a0, $zero, 100 # upper threshold
2 addi $a1, $zero, 0 # count variable
3 add $a2, $zero, $zero # sum initialization
4 loop:
5 beq $a0, $a1, exit
6 add $a2, $a2, $a1
7 addi $a1, $a1, 1
8 j loop
9 exit:

(a) Xác định loại lênh của từng lệnh trong đoạn code trên.
(b) Xét lệnh beq $a0, $a1, exit, xác định khoảng cách rẽ nhánh tối đa (đơn vị tính theo

byte, theo lệnh) của lệnh beq
(c) Giả sử địa chỉ bắt đầu của đoạn chương trình trên là 0x1000_0000. Xác định mã máy của

lệnh j loop

(d) Giả sử lệnh j loop có mã máy là 0x0809_0A0B, và PC hiện tại là 0x4000_0080. Sau khi
thực thi lệnh j loop giá trị thanh PC là bao nhiêu.

3

2 Single clock processor

2.1 Single clock processor
• Ưu điểm: Một lệnh thực thi trong một chu kỳ. Máy tính đơn giản, dễ hiểu, dễ hiện thực.

• Nhược điểm: Một chu kỳ tốn nhiều thời gian, mỗi lệnh dù nhanh hay chậm đều thực thi trong
một chu kỳ → hiệu suất thấp.

2.2 Kiến trúc single cycle

2.2.1 Phần cứng

Hình. 1: Kiến trúc bộ xử lý MIPS single clock cycle

• Thanh PC: Trỏ đến lệnh thực thi kế tiếp.

• Instruction memory: Chứa code, chương trình thực thi (phần .text).

• Registers file: Gồm 32 thanh ghi, do đó cần 5 bit để xác định thanh ghi (25 = 32). Để xác định
chi tiết thanh ghi, ta tham khảo Bảng 1.

• Sign-extend: Bộ mở rộng dấu, mở rộng dấu 16 bits → 32 bits.

• Bộ chọn (MUX): Dùng để chọn input cho output tương ứng. Tín hiệu select đưa ra sự lựa chọn.

• ALU: Thực hiện tính toán.

• Data memory: Là vùng nhớ dữ liệu (phần .data). Chỉ có lệnh LOAD và STORE mới truy xuất
vào khối Data Memory.

4

• Control: Khối điều khiển, sinh ra tín hiệu điều khiển dựa vào mã lệnh Opcode.

Bảng. 1: Danh sách 32 thanh ghi
REGISTERS

0 zero Always equal to zero
1 at Assembler temporary; used by the assembler

2-3 v0-v1 Return value from a function call
4-7 a0-a3 First four parameters for a function call
8-15 t0-t7 Temporary variables; need not be preserved
16-23 s0-s7 Function variables; must be preserved
24-25 t8-t9 Two more temporary variables
26-27 k0-k1 Kernel use registers; may change unexpectedly
28 gp Global pointer
29 sp Stack pointer
30 fp/s8 Stack frame pointer or subroutine variable
31 ra Return address of the last subroutine call

Bảng. 2: Ý nghĩa của các tín hiệu điều khiển.

Ta giả sử tín hiệu tích cực ở mức cao (HIGH).
Tín hiệu Ý nghĩa Giá trị

Tích cực KHÔNG tích cực
RegDest Chọn thanh ghi kết quả Chọn Rd để ghi kết quả Chọn Rt để ghi kết quả
RegWrite Ghi kết quả vào thanh ghi Cho phép ghi Không cho phép
ALUSrc Chọn toán hạng cho ALU:thanh ghi

hoặc số (immediate)
Chọn số Chọn thanh ghi

Memwrite Ghi vào data memory Cho phép ghi Không cho phép
MemRead Đọc từ data memory Cho phép đọc Không cho phép
MemtoReg Dùng để chọn đường từ data mem-

ory đến thanh ghi
Dữ liệu từ data memory
→ thanh ghi (lệnh load)

Dữ liệu từ ALU → thanh
ghi

Branch Dùng cho các lệnh rẽ nhánh có
điều kiện

Lệnh branch Không phải lệnh branch

Jump Dùng cho các lệnh nhảy không có
điều kiện

Lệnh jump Không phải là lệnh jump

Chú ý: Không quan tâm đến RegDst, MemtoReg khi tín hiệu RegWrite = 0

2.2.2 Data-path

Bảng. 3: Các bước thực thi của các lệnh MIPS.

ALU Instruction
Fetch Decode Execute Write Back

Load Instruction
Fetch Decode Execute Memory

Read Write Back

Store Instruction
Fetch Decode Execute Memory

Write

Branch Instruction
Fetch Decode Execute

Jump Instruction
Fetch Decode

2.3 Bài tập
Dùng lại kiến trúc được miêu tả ở Hình 1 để trả lời các câu hỏi bên dưới:

5

Cho bảng delay của các khối phần cứng như Bảng bên dưới:

I-MEM ADDER MUX ALU REG D-MEM Control
200ps 10ps 30ps 180ps 150ps 200ps 10ps

Bài 2.1. Xác định đường đi có độ trễ lâu nhất của lệnh and, load và tính độ trễ đó?

Bài 2.2. Xác định các tín hiệu của khối control khi thực thi lệnh beq $8, $9, label. Với $8 = 0
x00FF, $9 = 0x00FE

Bài 2.3. Thành phần phần cứng nào không sử dụng khi ta thực thi lệnh slti, lệnh j.

Bài 2.4. Bỏ qua delay của các khối adder, mux, control. Xác định data path và thời gian của các loại
lệnh sau.

• ALU
• Load
• Store
• Branch
• Jump

Bài 2.5. Xác định thời gian của single cycle và multi-cycle

Bài 2.6. Giả sử có 1 chương trình gồm 40% ALU, 20% Loads, 10% Stores, 20% Branches, và 10% Iumps.
Tính CPI trong trường hợp single cycle, multi cylce.

Bài 2.7. Tính speed up của hệ thống Multi cycle đối với hệ thống single clock cycle.

2.4 Đáp án/Gợi ý
Bài 2.1. Critical path.

• and: I-MEM(200) → REGs(150) → MUX(30) → ALU(180) → MUX(30) = 590
• load: I-MEM (200) → REGs(150) → ALU(180) → D-MEM(200) → MUX(30) = 760

Bài 2.2. Xác định tín hiệu điều khiển.
Xét lệnh beq $8, $9, label. Với $8 = 0x00FF, $9 = 0x00FE.

Tín hiệu Giá trị Giải thích
RegDest x don’t care
RegWrite 0 Không ghi kết quả vào thanh ghi
ALUSrc 0 Chọn thanh ghi để so sánh với thanh ghi $8
Memwrite 0 Không truy xuất vào vùng data
MemRead x 0
MemtoReg x don’t care
Branch 1 Lệnh rẽ nhánh
J 0 Không phải lệnh jump
ALUop 10 Tham khảo Bảng ??

Bài 2.3. Hoạt động khối phần cứng.
Lệnh slti dùng để set giá trị thanh ghi đích lên 1 nếu thanh ghi đem so sánh nhỏ hơn số cho
trước, ngược lại nó sẽ reset giá trị thanh ghi đích xuống 0 nếu thanh ghi đem so sánh lớn hơn
hoặc bằng số cho trước.
Ví dụ: slti $t1, $t2, 100 Khi thanh ghi $t2 < 100 thì $t1 = 1, ngược lại khi $t2 >= 100
thì $t1 = 0. Từ đó ta xét các khỗi‘ phần cứng mà lệnh slti đi qua như sau:
PC (lệnh nào cũng qua PC)→ I-MEM (lệnh nào cũng qua I-MEM)→ control unit, Reg files, MUX
(2x), Sign extend, (không đi qua bộ cộng PC)→ ALU→ (không qua D-MEM)→MUX→ Reg files.

Bài 2.4. Data path, thời gian thực thi lệnh.

6

Instruction
class

Instruction
memory

Register
read

ALU
Operation

Data
memory

Total

ALU 200 150 180 500 ps
Load 200 150 180 200 730 ps
Store 200 150 180 200 730 ps

Branch 200 150 180 530 ps
Jump 200 150 350 ps

Bài 2.5. Thời gian chu kỳ của hệ thống single cycle và hệ thống multi cycle

• Thời gian chu kỳ của hệ thống single cycle = max(thời gian thực thi của tất cả các lệnh).
Lệnh load là lệnh có thời gian thực thi lâu nhất 730 ps→ thời gian chu kỳ của single cycle
= 730 ps.
• Thời gian của hệ thốngmulti cycle =max IF (InstructionMemory), ID(RegisterF iles), EXE(ALU),MEM(DataMemory),WB(RegisterF iles) =
max(200, 150, 180, 200, 150) = 200→ thời gian của multi cycle = 200ps.

Bài 2.6. CPI (Cycle per instruction: số chu kỳ trên lệnh).

• CPI của hệ thống single cycle = 1 (1 chu kỳ thực thi 1 lệnh).
• CPI của multi cycle = 0.4× 4 + 0.2× 5 + 0.1× 4 + 0.2× 3 + 0.1× 2 = 3.8

(ALU 4 cycles; Load 5 cycles; Store 4 cycles; Branch 3 cycles; Jump 2 cycles)

Bài 2.7. Thời gian thực thi.
Thời gian chạy của 1 chương trình = IC × CPI× thời gian 1 chu kỳ = IC × CPI/f .

• IC: số lệnh.
• CPI: số chu kỳ trên một lệnh.
• f: tần số.

Thời gian chạy trên hệ thống single cycle: IC × 1× 730.
Thời gian chạy trên hệ thống multi cycle: IC × 3.8× 200.
Speedup = (1× 730)/(3.8× 200) = 730/760 = 0.96.
Trong trường hợp này ta thấy hệ thống Multi clock cycle lại không hiệu quả bằng hệ thống
Single clock cycle vì:

• Các bước thực thi có thời gian không đều.
• Những lệnh nhiều bước (load, store) chiếm phần lớn trong chương trình
• Trong hệ thống single clock cycle quá trình write back được thực thi ở chu kỳ tiếp theo
nên cycle time của hệ thống single clock cycle giảm.

7

3 Pipeline processor

3.1 Pipeline processor
3.1.1 Các bước trong pipeline

Bộ xử lý Pipeline chia quá trình thực thi lệnh thành 5 bước, mỗi bước thực thi trong trong một chu
kỳ.

1. IF: Lấy lệnh (khối Instruction Memory), 32bits lệnh chứa các thông tin của 1 lệnh được lấy ra
từ instruction memory.

2. ID: Giải mã lệnh (khối Registers và Control), xác định toán tử, các tín hiệu điều khiển, nội dung
các thanh ghi, giá trị immediate.

3. EXE: Thực thi tác vụ lệnh (khối ALU).

4. MEM: Truy xuất vùng nhớ (khối Data Memory) - chỉ dùng cho lệnh load/store.

5. WB: Ghi kết quả vào thanh ghi (khối Registers).

3.1.2 Hiệu suất.

Ta chia quá trình thực hiện lệnh ra thành k bước (tổng quát).

• Thời gian thực thi N lệnh trên hệ thống single cycle = N × single cycle.

• Thời gian thực thi N lệnh trên hệ thống pipeline = (k + N -1) × pipeline cycle. Lệnh đầu tiên:
mất k chu kỳ, n -1 lệnh còn lại, còn lại mỗi lệnh 1 chu kỳ.
Trường hợp lý tưởng: single cycle = k × pipeline cycle.
Khi đó

speedup =
k × n× pipelinecycle

(k + n− 1)× pipelinecycle

Khi chương trình đủ lớn n→∞ thì speedup→ k (pipeline nhanh tối đa gấp k lần single cycle)

Chú ý:

• Pipeline không rút ngắn thời gian thực thi của một lệnh, mà chỉ tăng hiệu suất lên bằng cách
tăng thông năng (through-put) của máy.

• Khi các bước của một lệnh có thời gian thực thi khác nhau (các bước không đều nhau) thì sẽ
làm giảm speed up.

• Thời gian fill và drain cũng đồng thời làm giảm speed up.

• Để hiện thực pipeline người ta dùng thanh ghi để lưu kết quả lại ở mỗi bước.

– Tín hiệu từ khối control unit (main control)
– Tất cả tín hiệu điều khiển được sinh ra ở bước ID
– Mỗi bước dùng 1 số tín hiệu điều khiển
– RegDst được dùng trong bước ID
– ExtOp, ALUSrc, ALUCtrl, J, Beq, Bne, zero được dùng trong bước EXE
– MemRead, MemWrite, MemtoReg dùng trong bước MEM
– RegWrite dùng trong bước WB

3.2 Hazard
Khi hiện thực pipeline sẽ gây ra các loại hazards: structural, data, và control.

3.2.1 Structural hazard

Xảy ra khi có sự tranh chấp tài nguyên phần cứng, 2 lệnh cùng dùng chung phần cứng trong cùng
chu kỳ.

8

3.2.2 Data hazards

Xảy ra khi có sự phụ thuộc dữ liệu kiểu Read After Write (RAW).

Các kiểu phụ thuộc dữ liệu

• Read After Write – RAW Hazard

1 add $s1, $s2, $s3 #thanh ghi $s1 duoc ghi
2 sub $s4, $s1, $s3 #thanh ghi $s1 duoc doc

Pipeline
c1 c2 c3 c4 c5 c6

IF ID EXE MEM WB
IF ID EXE MEM WB

Data hazard xuất hiện khi lệnh (2) đọc nội dung $s1 ở bước ID (chu kỳ 3), trong khi đó lệnh (1)
lại cập nhập kết quả của $s1 ở bước WB (chu kỳ 5).

• Write After Read: Name Dependence

1 sub $t4, $t1, $t3 # $t1 duoc doc truoc
2 add $t1, $t2, $t3 # $t1 duoc ghi sau

Không có sự phụ thuộc dữ liệu ở đây, chỉ có phụ thuộc tên biến $t1. Để loại bỏ sự phụ thuộc
về tên biến, ta đổi tên thanh ghi.

1 sub $t4, $t1, $t3
2 add $t5, $t2, $t3

• Write After write: Name Dependence

1 sub $t1, $t4, $t3 # $t1 duoc ghi
2 add $t1, $t2, $t3 # $t1 duoc ghi lan nua

Không có sự phụ thuộc dữ liệu ở đây, chỉ có phụ thuộc tên biến. Kết quả chỉ phụ thuộc vào
lệnh (2). Để loại bỏ sự phụ thuộc về tên biến, ta đổi tên thanh ghi.

1 sub $t1, $t4, $t3
2 add $t5, $t2, $t3

• Read After Read: không gây ra sự phụ thuộc.

3.2.3 Phương pháp giải quyết data hazard.

Chèn stall (aka bubble, delay)

Chèn stall để đảm bảo lệnh trước cập nhập kết quả trong khi lệnh sau (phụ thuộc vào kết quả đó)
có thể đọc được kết quả đó trong cùng chu kỳ. Phương pháp này không tốn tài nguyên phần cứng
(giá thành), chỉ tạo ra delay cho chương trình (giảm hiệu suất).

Dùng kỹ thuật forwarding (xúc tiến sớm).

• Phương pháp này cần thêm tài nguyên phần cứng (giá thành tăng) để hiện thực kết hợp với
chèn stall khi cần thiết.

• Khi xảy ra data hazard đối với lệnh load và lệnh kề tiếp nó, cho dù ta có dùng kỹ thuật forward
thì cũng phải tốn 1 stall để giải quyết chúng.

• Để hiện thực forward, người ta thêm bộ mux cho việc lựa chọn input cho ALU.
Các lệnh (ngoại trừ lệnh load) thì kết quả được cho ra ở bước ALU (EXE) nên khi ta dùng kỹ
thuật forward sẽ không còn stall nữa.

Chú ý:

9

• Các forwarding đều forward về vị trí EXE vì ALU là nơi bắt đầu tính toán→ cần đưa input trước
ALU.

• Forward kết quả về chu kỳ n từ chu kỳ n-1 (là chu kỳ trước n).

Sắp xếp lại code

sắp xếp lại code (phần mềm) có thể giúp giảm thiểu stalls nhưng việc sắp xếp phải đảm bảo thứ tự
trước sau khi có sự phụ thuộc và đảm bảo tính đúng đắn của chương trình.

3.3 Control hazard
Xét đoạn chương trình bên dưới.

1 beq $t1, $t2, label
2 addi $t1, $zero, 100
3 addi $t2, $zero, 100
4 j exit
5 label: addi $t1, $zero, 10
6 addi $t2, $zero, 10
7 exit:

Sau khi IF (lấy lệnh) beq, ở chu kỳ tiếp theo ta giải mã beq và lấy lệnh tiếp theo. Câu hỏi là lệnh
tiếp theo sau lệnh branch là lệnh nào?

• Khi $t1 = $t2, lúc đó điều kiện lệnh beq thỏa nên nó rẽ nhánh đến label thì lệnh tiếp theo là
lệnh ở dòng thứ 5.

• Khi $t1 != $t2, lúc đó điều kiện lệnh beq không thỏa nên nó thực hiện lệnh tiếp theo, khi đó
lệnh tiếp theo là lệnh ở dòng thứ 2.

Hiện tượng trên là control hazard. Để giải quyết control hazard ta có thể dùng phương pháp chèn
stall hoặc tiên đoán kết hợp chèn stall.
Ta biết bước EXE là bước hiện thực việc so sánh điều kiện, sau đó bước MEM sẽ cập nhập thanh
ghi PC. Đó đó sau bước MEM ta mới biết chính xác là lệnh tiếp theo sau lệnh branch là lệnh nào.
Nên ta cần phải chèn 3 stall (khi đó bước IF nằm sau bước MEM của lệnh branch) để loại bỏ control
hazard.
Trong trường hợp có thêm bộ phần cứng để so sánh trước 3 thanh ghi ở bước ID, và tính toán địa
chỉ rẽ nhánh ngay lúc đó, thì ta chỉ cần mất 1 chu kỳ (1 stall) để giải quyết control hazard.
Ngoài ra ta có thể dùng tiên đoán để tăng hiệu suất của chương trình. Tiên đoán 1 bit và tiên đoán
2 bit

3.4 Bài tập
Thời gian delay của mỗi khối cho như bảng bên dưới.

I-MEM ALU REG D-MEM
200ps 150ps 200ps 200ps

Bài 3.1. Bỏ qua độ trễ của khối ADD, MUX, Control. Tính thời gian chu kỳ của hệ thống single cycle,
pipeline clock?

Bài 3.2. Tính thời gian thực thi của chương trình gồm 150 line code đối với single cycle và pipeline. Từ
đó tính speed up để so sánh single cycle và pipeline (không có stall)

Bài 3.3. Giả sử chương trình không có stall và thống kê được là có ALU 50%, Beq 25%, lw 15%, sw10%.
Tính speed up giữa multi cycle và pipeline.
Dùng đoạn code sau để trả lời các câu hỏi bên dưới

1 addi $t1, $zero, 100
2 addi $t2, $zero, 100
3 add $t3, $t1, $t2
4 lw $t4, 0($a0)
5 lw $t5, 4($a0)
6 and $t6, $t4, $t5
7 sw $t6, 8($a0)

10

Bài 3.4. Xác định sự phụ thuộc RAW (read after write) giữa các lệnh và thanh ghi nào gây ra sự phụ
thuộc đó.

Bài 3.5. Chèn stall để giải quyết hazard trên, cần bao nhiêu stall?

Bài 3.6. Sắp xếp lại thứ tự các lệnh sao cho khi chạy đoạn code đó thì ít stall nhất mà chương trình
vẫn giữ tính đúng đắn.

Bài 3.7. Dùng kỹ thuật forward để giải quyết hazard khi đó còn bao nhiêu stall.

3.5 Đáp án/gợi ý
Bài 3.1. Thời gian chu kỳ single cycle, pipeline.

Single cycle = thời gian thực thi lệnh dài nhất (lệnh load).
= I-Mem → Regs → ALU → D-Mem.
= 200 + 200 + 150 + 200 = 750ps
Pipeline clock = max (I-Mem, Regs, ALU, D-Mem, Regs) = 200ps

Bài 3.2. Thời gian thực thi chương trình, speed up giữa single cycle và pipeline.
CPIsingleclockcycle = 1.
CPIpipeline = 1.
Timesinglecycle = 150× 750 = 112500ps
T imePipeline = (5 + 150− 1)× 200 = 30800ps

Speed up =
142500

30800
= 3.65

Bài 3.3. Thời gian thực thi chương trình, speed up giữa multi cycle và pipeline
CPIMultiCycle = 50%×4 + 25%×3 + 15%×5 + 10%×4= 3.9
CPIPipeline = 1.
Time = Số lệnh × CPI × thời gian 1 chu kỳ.
TimeMultiCycle = 150×3.9×200.
TimePipeline = (5 + 150 - 1)×1×200.
Speed up = 3.80.

Bài 3.4. Phụ thuộc dữ liệu Read After Write

1 addi $t1, $zero, 100
2 addi $t2, $zero, 100
3 add $t3, $t1, $t2
4 lw $t4, 0($a0)
5 lw $t5, 4($a0)
6 and $t6, $t4, $t5
7 sw $t6, 8($a0)

Lệnh (3) phụ thuộc lệnh (2) và (1).
Lệnh (6) phụ thuộc lệnh (5) và (4).
Lệnh (7) phụ thuộc lệnh (6).

Bài 3.5. Giải quyết data hazard bằng cách chèn stall
6 stall
2 stall giữa (2) và (3).
2 stall giữa (5) và (6).
2 stall giữa (6) và (7).
Lúc chèn stall vào đảm bảo là những chỗ cần giải mã giá trị thanh ghi (ID) phải cùng chu kỳ
ghi kết quả (WB)

Bài 3.6. Sắp xếp lại lệnh.
Một trong những cách sắp xếp làm giảm stall
(4)→ (5)→ (1)→ (2)→ (6)→ (3)→ (7)

11

1 lw $t4, 0($a0) #4
2 lw $t5, 4($a0) #5
3 addi $t1, $zero, 100 #1
4 addi $t2, $zero, 100 #2
5 add $t6, $t4, $t5 #6
6 add $t3, $t1, $t2 #3
7 sw $t6, 8($a0) #7

Còn lại 1 stall giữa 6 và 3

Bài 3.7. Giải quyết data hazard bằng forwarding.
Còn 1 stall giữa lệnh (5) và (6).

Hình ảnh so sánh hệ thống single cycle, multi cycle và pipeline cycle
Single clock cycle
Load Add Jump Store Branch
IF ID EXE MEM WB IF ID EXE MEM WB IF ID EXE MEM WB IF ID EXE MEM WB IF ID EXE MEM WB

Multi cycle
Load Add Jump Store Branch
IF ID EXE MEM WB IF ID EXE WB IF ID IF ID EXE MEM IF ID EXE

Pipeline
IF ID EXE MEM WB

IF ID EXE MEM WB
IF ID EXE MEM WB

IF ID EXE MEM WB
IF ID EXE MEM WB

• Single Clock Cycle: Một lệnh thực thi trong 1 chu kỳ. Ví dụ lệnh load thực thi trong 1 chu
kỳ(màu xanh), lệnh store thực thi trong 1 chu kỳ(màu vàng). Thời gian giữa màu xanh và vàng
là bằng nhau.

• Multi Clock Cycle: 1 lệnh thực thi trong nhiều chu kỳ. Ví dụ lệnh Load thực thi trong 5 chu
kỳ (5 chu kỳ nhỏ này tương ứng với 1 chu kỳ lớn bên single clock cycle), lệnh Store thực thi
trong 4 chu kỳ (màu vàng).

• Pipeline Lệnh đầu tiên thực thi 5 chu kỳ, các lệnh còn lại sau mỗi chu kỳ hoàn thành xong
một lệnh.

Các yếu tố ảnh hưởng đến hiệu suất của hệ thống:

• Độ dài của chương trình (instruction count)

• Số chu kỳ trên 1 lệnh (CPI)

• Thời gian của 1 chu kỳ (clock cycle time).

12

4 Memory

4.1 Memory
SRAM và DRAM (xem slide)

4.2 Cache
Nguồn gốc Cache: do tốc độ phát triển của CPU quá nhanh so với Memory nên khi CPU truy xuất
Memory sẽ tạo ra delay khá lớn, do đó cần có cache để làm bộ đệm giữa ALU và MEM.
Cache thường được làm bằng SRAM nên nó truy xuất nhanh, và dụng lượng nhỏ giúp giảm giá
thành.

Bảng. 4: Tốc độ và thời gian truy xuất của các loại memory
Type Size Access time

Registers size < 1 KB < 0.5 ns
Level 1 Cache size 8 – 64 KB 1 ns
Level 2 Cache 512KB – 8MB 3 – 10 ns
Main Memory 4 – 16 GB 50 – 100 ns
Disk Storage > 200 GB 5 – 10 ms

Temporal Locality: (tính cục bộ về thời gian) một biến, thực thể được truy xuất thì có thể nó sẽ
được truy xuất lần nữa. Thường xuất hiện trong những vòng lặp, hay gọi hàm/thủ tục nhiều lần.
Đối với truy xuất theo thời gian thì xu hướng thường giữ block đó trong cache nhằm truy xuất lại
lần sau.

Spatial Locality: (tính cục bộ về không gian) lệnh/data trong vùng nhớ khi được truy xuất có
thể các lệnh/data gần nó sẽ được truy xuất. Thường xuất hiện trong khai báo mảng, thực thi tuần
tự. Đối với truy xuất theo không gian thì xu hướng thường chuẩn bị trước block kế tiếp.

4.2.1 Block placement

Phương pháp đặt block vào cache.

Direct mapped

Mỗi block được xác định một vị trí đặt duy nhất. Cho N là số set (= số block) trong cache. Block ID
M trong bộ nhớ (RAM) sẽ được đặt vào vị trí set M % N trong cache.

Fully associative

Block được đặt vào bất kỳ vị trí nào còn trống trong cache.

K-way set associative

Một set bao gồm K blocks (K có dạng 2x). Trong set đó có K sự lựa chọn. Cho N là số set (K block
tạo thành 1 set) trong cache, Block thứ M trong bộ nhớ (RAM) sẽ được đặt vào vị trí set M % N trong
cache.

4.2.2 Block identification

Để xác định địa chỉ người ta chia địa chỉ ra làm 3 phần Tag, Index, block offset.

Tag Index Block Offset

13

Hình. 2: Hình ảnh so sánh 3 cấu hình Direct map, k-way associative, full associative. Với k =2

Block offset

Xác định thành phần trong block được truy xuất. Để xác định block offset có bao nhiêu bit, ta đi xác
định trong block đó có bao nhiêu phần tử. Xác định số phần tử bằng cách lấy (size of block)/(size
of đơn vị truy xuất).
Byte-offset Xác định byte trong block.
Half-word-offset Xác định 2 bytes trong block.
Word-offset Xác định word trong block.

Index

Dùng để xác định số set trong bộ nhớ đệm.

• Direct mapped: 1 block là 1 set.

• K-way Set Associative: k block tạo thành 1 set.

• Fully Associative: toàn bộ block thành 1 set. Index lúc này là 0 bit – không cần xác định set.

Xác định số block bằng cách lấy (size of cache)/(size of block).

Tag

Để xác định block nào đang nằm trong cache hoặc kết hợp với index để xác định block ID trong
RAM.
Tag bit = không gian địa chỉ – index – bytes offset.
Trong trường hợp không đề cập đến không gian địa chỉ thì ta dùng không gian 32 bit.

4.2.3 Block replacement

Khi một block vào mà không còn chỗ trống để đặt vào thì cần phải thay block cũ bằng block mới.
Dưới đây là 1 số giải thuật thay thể cơ bản.

• Trong trường hợp direct mapped, vì mỗi set chỉ có 1 block nên khi nào có block mới vào thì
block cũ bị thay thế do đó không có chính sách thay thế trong trường hợp này.

• FIFO: cái nào được đặt vào trước thì sẽ được lấy ra trước.

• Ramdom

• LRU: (least recently used) cái nào ít dùng nhất thì được thay thế trước.

• FILO: vào trước ra sau.

14

4.2.4 Write strategy

Chiến lược ghi ngược lại cache, memory

Write Through

Updata cả cache và memory, cần bit valid để xác định block đó có valid hay không.

• Đơn giản, dễ hiện thực

• Tốn lưu lượng băng thông của hệ thống vì phải update nhiều.

Write Back

Chỉ updata cache, khi có yêu cầu hay cần thay thế thì sẽ update giá trị sau cùng xuống memory.
Cần bit valid để xác định block đó có valid hay không và bit modified để xác định block đó có update
chưa.

• Khó hiện thực

• Ít tốn lưu lượng băng thông của hệ thống.

4.2.5 Miss/hit

• Miss: cần truy xuất mà tìm không thấy trong cache. Do đó phải đưa block chứa địa chỉ cần
truy xuất vào cache, và sau đó truy xuất lại.

• Hit: cần truy xuất và tìm thấy cái muốn truy xuất trong cache.

• Ngoài dữ liệu, bộ nhớ đệm còn thêm các trường thông tin:

– Valid: xác định có block tồn tại trong set hay không.
– Tag: xác định block ID nào đang chứa trong block của Cache.

• Miss Penalty: số chu kỳ để xử lý cache miss.

• Hit_rate =
Mit_times

Hit_times+Miss_times
.

• Miss_rate =
Misstimes

Hit_times+Miss_times
= 1−Hit_rate.

• I-Cache Miss Rate = Miss rate trong lúc truy xuất I-MEM.

• D-Cache Miss Rate = Miss rate trong lúc truy xuất D-MEM

Ví dụ 1: Chương trình có 1000 lệnh trong đó có 25% là load/store. Biết lúc đọc I-MEM bị miss 150,
D-MEM bị miss 50. Tìm I-Cache Miss Rate, D-Cache Miss Rate.

• I-Cache Miss Rate = số lần miss instruction / số lần truy xuất I-MEM = 150/1000 = 15%.

• D-Cache Miss Rate = số lần miss data/ số lần truy xuất D-MEM = 50/(1000×25%) = 50/250
= 20%.

4.3 CPI
Khi cache miss thì sẽ gây ra stall. Để xác định bao nhiêu stall, ta đi tìm các thông số sau:

• Memory stall cycles = Combined Misses × Miss Penalty.

• Miss Penalty: số chu kỳ để giải quyết việc miss.

• Combined Misses = I-Cache Misses + D-Cache Misses.

• I-Cache Misses = I-Count × I-Cache Miss Rate.

• D-Cache Misses = LS-Count × D-Cache Miss Rate.

• LS-Count (Load & Store) = I-Count × LS Frequency.

15

• Memory Stall Cycles Per Instruction = Combined Misses Per Instruction × Miss Penalty.

• Combined Misses Per Instruction = I-Cache Miss Rate + LS Frequency × D-Cache Miss Rate

• Memory Stall Cycles Per Instruction = I-Cache Miss Rate × Miss Penalty + LS Frequency ×
D-Cache Miss Rate × Miss Penalty.
Trong đó:

– I-count: Tổng số lệnh.
– LS-count: Số lệnh Load/Store.
– LS Frequency: Tỉ lệ lệnh Load/Store trong chương trình.

Ví dụ 2: Cho chương trình có 106 lệnh, trong đó 30% lệnh loads/stores. D-cache miss rate là
5% và I-cache miss rate là 1%. Miss penalty là 100 chu kỳ. Tính combined misses per instruction
and memory stall cycles.

• 1% + 30% * 5% = 0.025 combined misses. Mỗi lệnh tương đương 25 misses trên 1000 lệnh.

• Memory stall cycles = 0.025 * 100 (miss penalty) = 2.5 stalled cycles per instruction.

• Total memory stall cycles = 106 ∗ 2.5 = 2, 500, 000

• CPI Memory Stalls = CPI Perfect Cache + Mem Stalls per Instruction

Ví dụ 3: Cho CPI = 1.5 khi không có stall, Cache miss rate là 2% đối với instruction và 5% đối với
data. Lệnh loads và stores chiếm 20%. Miss penalty là 100 chu kỳ đối với I-cache và D-cache. Tính
CPI của hệ thống?

• Mem stalls cho mỗi lệnh = 0.02*100 + 20%*0.05*100 =3

• CPI Memory Stalls = 1.5 + 3 = 4.5 cycles

4.4 Thời gian truy xuất bộ nhớ trung bình
Average Memory Access Time (AMAT).
AMAT = Hit time + Miss rate × Miss Penalty
Do đó để giảm thời gian truy xuất:

• Ta giảm Hit time: bằng cách dùng bộ nhớ cache nhỏ (tăng miss rate :D), đơn giản.

• Giảm Miss Rate: bằng cách dùng bộ nhớ cache lớn , block size lớn (tăng Hit time) và k-way set
associativity với k lớn.

• Giảm Miss Penalty bằng cách dùng cache nhiều mức.

Ví dụ 4: Tìm thời gian truy xuất trung bình khi biết hit time 1 chu kỳ, miss penalty 20 chu kỳ, miss
rate 0.05 %. Biết máy tính chạy với tần số 0.5Ghz

• AMAT (cycles) = 1 + 0.05 × 20 = 2 cycles

• 0.5 Ghz → 1 chu kỳ 2ns

• AMAT (time) = 2×2 = 4ns

Ví dụ 5: Tìm thời gian truy xuất trung bình khi biết thời gian truy xuất cache L1 là 1 chu kỳ, thời
gian truy xuấtcache L2 là 10 chu kỳ, thời gian truy xuất bộ nhớ chính là 100 chu kỳ, miss rate L1
5%, miss rate L2 10%. Biết máy tính chạy với tần số 1Ghz.

• AMAT (cycles) = 1 + 5% x 20 + 10%×100 = 20 cycles

• 1Ghz → 1 chu kỳ 1ns

• AMAT (time) = 20×1= 20 ns

16

4.5 Bài tập
Bài 4.1. Cho bộ nhớ cache có dung lượng 256KB, block size là 4 word, mỗi lần truy xuất 1 byte. Xác

định số bit của các trường tag, index, block offset trong các trường hợp.

• Direct mapped
• Fully associcative
• 2-Way set associcative

Bài 4.2. Cho bộ nhớ chính có dung lượng 1G, bộ nhớ cache có dung lượng 1MB, block size là 256B, mỗi
lần truy xuất 1 word. Xác định số bit của các trường tag, index, block offset trong các trường
hợp.

• Direct mapped
• Fully associcative
• 4-Way set associcative

Bài 4.3. Trong cache có 8 blocks, mỗi block là 4 words. Xác định số lần miss/hit khi hệ thống truy xuất
vào các địa chỉ (dạng byte) theo thứ tự sau:

1 0x0001_002A
2 0x0001_0020
3 0x0002_006A
4 0x0002_0066
5 0x0002_0022
6 0x0001_002B

Trong các trường hợp:

• Direct mapped
• Fully associcative
• 2-Way set associcative

4.6 Đáp án/Gợi ý
Byte-offset: xác định byte trong block.
Word-offset: xác định word trong block.
index: xác định set trong block.
Tag: xác định block trong cache.
Tag + index: xác định block trong bộ nhớ chính.
Direct mapped: một block 1 set.
k-Way Set Associative: k block (k = 2x) một set.
Fully associative: Tấc cả block 1 set.

Bài 4.1. Xác định tag, index, byte-offset.
Số phần tử trong 1 block = (size of block)/(size of phần tử truy xuất) = 4 word /1 byte = 4x4
bytes/ 1 byte = 16 = 24.
Số block trong cache = (size of cache) / (size of block) = 256 KB / 4 words = 28 ∗ 210/4 ∗ 4 = 214

blocks.
Không gian địa chỉ là 32 bit.

• Direct mapped: byte-offset 4 bits, index = 14 bits, tag = 32 – 4 - 14 = 14 bits
• Fully associcative: byte-offset 4 bits, index = 0 bits, tag = 32 – 4 = 28 bits.
• 2-Ways set associative: 2 block tạo thành 1 set mà có 214 blocks nên có 213 sets, byte-offset
4 bits, index = 13 bits, tag = 32 -4 - 13 = 15 bits

Bài 4.2. Xác định tag, index, word-offset.
Số phần tử trong 1 block = (size of block)/(size of phần tử truy xuất) = 256B / 4 bytes = 26.
Số block trong cache = size of cache / size of block = 1MB / 256B = 210x210/28 = 212 blocks.
Không gian địa chỉ là 1G, do đó ta dùng thanh ghi 30 bit tính theo byte-offset.

17

• Direct mapped: word-offset 6 bits, index = 12 bits, tag = 30 – 6 – 12 – 2 = 10 bits.
• Fully associcative: word-offset 6 bits, index = 0 bits, tag = 30 – 6 – 2 = 22 bits.
• 4 ways set associative: 4 block tạo thành 1 set mà có 212 blocks nên có 210 sets, word-offset
6 bits, index = 10 bits, tag = 30 – 6 - 10 - 2 = 12 bits.

Chú ý: không gian tính theo byte thì phải chuyển về byte-offset để tính: số bit của địa chỉ = số
bit của tag, index, và byte-offset.

Bài 4.3. HIT/MISS
Ta tính được có 4 bits byte-offset, 3 bits index. Do đó ta phân tích địa chỉ như bên dưới:
Cách 1:

Direct map
Address Tag Index Offset Miss/Hit Giải thích

0x0001002A 0000 0000 0000 0001 0000 0000 0 010 1010 M First access
0x00010020 0000 0000 0000 0001 0000 0000 0 010 0000 H
0x0002006A 0000 0000 0000 0010 0000 0000 0 110 1010 M First access
0x00020066 0000 0000 0000 0010 0000 0000 0 110 0110 H
0x00020022 0000 0000 0000 0010 0000 0000 0 010 0010 M Khác tag
0x0001002B 0000 0000 0000 0001 0000 0000 0 010 1011 M Khác tag

Fully associative
Address Tag Offset Miss/hit Giải thích

0x0001002A 0000 0000 0000 0001 0000 0000 0010 1010 M First access
0x00010020 0000 0000 0000 0001 0000 0000 0010 0000 H
0x0002006A 0000 0000 0000 0010 0000 0000 0110 1010 M First access
0x00020066 0000 0000 0000 0010 0000 0000 0110 0110 H
0x00020022 0000 0000 0000 0010 0000 0000 0010 0010 M First access
0x0001002B 0000 0000 0000 0001 0000 0000 0010 1011 H

2 ways set associative, cần 2 bit index
Address Tag Index Offset Miss/hit Giải thích

0x0001002A 0000 0000 0000 0001 0000 0000 00 10 1010 M First access
0x00010020 0000 0000 0000 0001 0000 0000 00 10 0000 H
0x0002006A 0000 0000 0000 0010 0000 0000 01 10 1010 M First access
0x00020066 0000 0000 0000 0010 0000 0000 01 10 0110 H
0x00020022 0000 0000 0000 0010 0000 0000 00 10 0010 M Khác tag
0x0001002B 0000 0000 0000 0001 0000 0000 00 10 1011 M Khác tag

Cách 2:

• Lấy địa chỉ chia cho kích thước của block được kết quả (A) dùng để xác định block trong
RAM
• Lấy kết quả (A) modulo số set được kết quả là index.
• Lấy kết quả (A) chia số set được kết quả là tag

8 blocks cache → mỗi block là 4 words.

Direct map 8 sets và mỗi block 16 bytes.
Address Address/block size = A Tag = A / 8 Index = A % 8 Miss/Hit Giải thích

0x0001002A 4098 512 2 M First access
0x00010020 4098 512 2 H
0x0002006A 8198 1024 6 M First access
0x00020066 8198 1024 6 H
0x00020022 8194 1024 2 M Khác tag
0x0001002B 4098 512 2 M Khác tag

18

Fully associative
Address Address/block size = A Tag = A Miss/hit Giải thích

0x0001002A 4098 4098 M First access
0x00010020 4098 4098 H
0x0002006A 8198 8198 M First access
0x00020066 8198 8198 H
0x00020022 8194 8194 M First access
0x0001002B 4098 4098 H

2-way set associative, cần 2 bit index
Address Address/block size = A Tag = A / 4 Index = A % 4 Miss/Hit Giải thích

0x0001002A 4098 1024 2 M First access
0x00010020 4098 1024 2 H
0x0002006A 8198 2049 2 M First access
0x00020066 8198 2049 2 H
0x00020022 8194 2048 2 M Khác tag
0x0001002B 4098 1024 2 M Khác tag

4.7 Virtual Memory

Xem sách

19

	Kiu lnh
	Bài tp

	Single clock processor
	Single clock processor
	Kin trúc single cycle
	Phn cng
	Data-path

	Bài tp
	Ðáp án/Gi ý

	Pipeline processor
	Pipeline processor
	Các buc trong pipeline
	Hiu sut.

	Hazard
	Structural hazard
	Data hazards
	Phuong pháp giai quyt data hazard.

	Control hazard
	Bài tp
	Ðáp án/gi ý

	Memory
	Memory
	Cache
	Block placement
	Block identification
	Block replacement
	Write strategy
	Miss/hit

	CPI
	Thi gian truy xut b nh trung bình
	Bài tp
	Ðáp án/Gi ý
	Virtual Memory

