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• Tổng 2 chuỗi hội tụ là hội tụ
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CHUỖI KHÔNG ÂM.
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Cho an 0, khi đó dãy tổng riêng phần {Sn} là 

dãy tăng.

Vậy {Sn} hội tụ {Sn} bị chận trên.

Hay:

hội tụ khi và chỉ khi {Sn} bị chận trên.



Tiêu chuẩn tích phân Maclaurin - Cauchy
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Khảo sát sự hội tụ của các chuỗi sau:
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• 0 :  chuỗi phân kỳ theo điều kiện cần
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thì I hội tụ, do đó chuỗi đã cho hội tụ.
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Tiêu chuẩn D’Alembert
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Xét chuỗi số dương:

• q < 1: Dn < q : chuỗi hội tụ

• Dn 1 : chuỗi phân kỳ
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• D < 1 : hội tụ

• D > 1 : phân kỳ

• D = 1 : không có kết luận



Tiêu chuẩn Cauchy
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Xét chuỗi số không âm:
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Ví dụ-Khảo sát sự hội tụ

1
2

( 1) !

2

!

n

n

n

n

2

1n

0

2

!
1 /   

n

n
n

1n

n

n

a
D

a

Vậy chuỗi ht theo tc D’A.

2
lim 0 1

1n

D
n



0

!
2 /   

n

n

n

e n

n
1

1

( 1) !

( 1)

!

n

n

n

n

e n

n

e n

n

1n

n

n

a
D

a 1
n

e

n

n

1
e

e
Không KL

1
1

n

e e
n

1
n

D pk



2

2

0

.2
3

( 1

/

)

  

n n

n
n

n

n

n
n n

C a

2

2

.2

( 1)

n n

n

n

n

n

.2

( 1)

n

n

n

n

2

1
1

n

n

2
lim 1

n
n

C
e

chuỗi ht



1

( 2 1) !! 1

( 2 ) !
4 /

! 2 1
  

n

n

n n

2

1

( 2 1) !! 1

( 2 1)( 2 2 ) !! 2 3

( 2 1) !! 1 ( 2 2 ) .( 2 3 )

( 2 ) !! 2 1

n

n

n

n

a nn n
D

na n n

n n

1 & lim 1
n n

n

D D không dùng tc D’A được

2
( 2 1)

1 1
( 2 2 ) ( 2 3 )

n n

n
R n D n

n n



6 5

( 2 2 ) ( 2 3 )

n
n

n n

2
( 2 1)

1 1
( 2 2 ) ( 2 3 )

n n

n
R n D n

n n

3
lim 1

2
n

n

R

chuỗi hội tụ theo tiêu chuẩn Rapb



2 1

0

3 1

5
5 /

2
  

n

n

n

n

n
n n

C a

2 1
3 1

2 5

n

n
n

n

2
3

lim 1
2

n
n

C chuỗi pk

2 1

3 1

2 5

n

nn

n

Nên dùng điều kiện cần để có kết quả 

nhanh hơn(đối với VD này)



ln

1

6 / , 0    
n

n

a a

ln

ln 0
1

n

n n n
n

C a a a

1
ln ( 1 ) ln 1

ln ln ( 1 ) 01

ln
1

n

n n n

n n

a
D a a a

a

n C, D’A)

i
ln ln ln lnn n a a

a e n

a ln
1

1

a
n n



– n Leibnitz

1

( 1)
n

n

n

a

ng
1

( 1)
n

n

n

a i 0
n

a

n Leibnitz:

u 
{ }

lim 0

n

n
n

a

a

  g ia ûm  

thì  hội tụ

Đặt: 
1

( 1)
n

n

n

S a
1

0 S a

Chuoãi hoäi tuï theo tc treân goïi laø chuoãi Leibnitz



Ví dụ: Khảo sát sự hội tụ
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Tiêu chuẩn Cauchy và D’Alembert
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