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Trường hợp chuỗi tổng quát

0

1

( )
n

n

n

a x x

Khoảng hội tụ: 0 0
( , )x R x R

0

1

0 0

( )

, ,

S o á  s a o  c h o h o äi  tu ï t r o n g

v a ø p h a â

  > 0   

n  k y ø b e ân  n g o a øi  

g o ïi  la ø b a ùn  k ín h  h o äi  tu ï c u ûa  c h u o ã .

 

i

 
n

n

n

R a x x

x R x R R R



Cách tìm bán kính hội tụ

Tính: l im n
n

n

a

0 ,

1
, 0

, 0

   

  

 

R

hoặc 1
l im

n

n
n

a

a

0
0 : 0

: ,

 M H T  = h o a ëc  c h o  c h u o ãi  T Q

 M H T  =  

R x

R



Lưu ý
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Tính chất của chuỗi lũy thừa
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Chú ý

1.Chuỗi lũy thừa liên tục trên miền xác định

2.Trong khoảng hội tụ, đạo hàm (tích phân)

của tổng chuỗi bằng chuỗi đạo hàm (tích

phân) tương ứng.

3.Bán kính hội tụ của chuỗi đạo hàm và chuỗi

tích phân bằng BKHT của chuỗi ban đầu.
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Ví dụ áp dụng: tính tổng chuỗi
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CHUỖI TAYLOR
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Nhận xét: vì chuỗi đạo hàm của chuỗi lũy thừa

có cùng khoảng htụ với chuỗi ban đầu nên

tổng chuỗi lũy thừa là hàm khả vi vô hạn trong 

khoảng htụ.
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Định nghĩa

Cho hàm f khả vi vô hạn trong lân cận x0

khi đó, chuỗi Taylor của f trong lân cận này là
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Chuỗi Taylor trong lân cận x0 = 0 gọi là 

chuỗi Maclaurin.
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Yêu cầu của 1 bài khai triển chuỗi

1.Vận dụng được chuỗi Maclaurin cơ bản .

2.Viết được dạng chuỗi lũy thừa theo (x-x0)
n

với hàm f cho trước.

3.Chỉ ra miền hội tụ của chuỗi tìm được, 

đó chính là miền mà hàm f được khai triển

thành chuỗi Taylor.
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