
2. Chuỗi lũy thừa – Miền hội tụ

Chuỗi lũy thừa là chuỗi có dạng 

Số hạng tổng quát un(x)=an(x-x0)
n (1) hoặc  

un(x)=anx
n (2) phụ thuộc vào n và biến x, là 1 hàm 

lũy thừa theo x hoặc (x-x0). 
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(2) nên ta chỉ viết các kết quả sau đây với số hạng 

tổng quát dạng (2)



2. Chuỗi lũy thừa – Miền hội tụ

Miền HT của chuỗi lũy thừa 
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Là chuỗi cấp số nhân nên HT khi và chỉ khi |x|<1

Suy ra MHT của chuỗi là (-1,1)



Ví dụ: Tìm MHT của chuỗi 
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2. Chuỗi lũy thừa – Miền hội tụ
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

Tổng quát: giả sử chuỗi lũy thừa 
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Suy ra chuỗi ban đầu HTTĐ theo t/c so sánh. 

Vậy ta chứng minh xong định lý Abel sau đây.
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

Định lý Abel :

Nếu chuỗi lũy thừa 
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Bán kính hội tụ (BKHT):
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PK với mọi x: |x|>R được gọi là BKHT của chuỗi



2. Chuỗi lũy thừa – Bán kính HT, Miền HT

Cách tìm BKHT của chuỗi lũy thừa

Đặt: Thì BKHT là
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R
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=Đặt: 

Cách tìm MHT của chuỗi lũy thừa

Sau khi tìm xong BKHT, ta chỉ còn xét sự HT của 

chuỗi tại 2 điểm x=R và x=-R nữa là có kết luận 
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

Ví dụ: Tìm BKHT, MHT của các chuỗi sau
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

Ví dụ: Tìm BKHT, MHT của các chuỗi:

1. Chuỗi lũy thừa với 
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Chú ý: Khi chuỗi số dương PK theo đkccsht thì chuỗi 
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

2. Chuỗi lũy thừa với 

→ R=2

Ta chỉ xét X=2: 
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Suy ra, chuỗi đã cho HT khi 

Vậy BKHT R=2, MHT: (1-√2, 1+√2)
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

3. Chuỗi lũy thừa với 

→ R=0

Vậy BKHT R=0, MHT là {0}
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

4. Chuỗi lũy thừa với 
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2. Chuỗi lũy thừa – Bán kính HT, Miền HT

4. Chuỗi lũy thừa với 
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Suy ra, chuỗi đã cho HT khi 

Vậy BKHT R=e, MHT (-∞,-1/e)U(1/e,+ ∞)
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2. Chuỗi lũy thừa – Tính tổng chuỗi

Tính chất của chuỗi lũy thừa:

Cho chuỗi (1) với BKHT là R, MHT là D và trong D 

có tổng là S(x) Ta có các kết luận sau:
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của chuỗi và được chuỗi lũy thừa cũng có BKHT là R

1. Hàm S(x) liên tục trong MHT D

3.Trong MHT D, ta có thể lấy tích phân từng số hạng 

của chuỗi và được chuỗi lũy thừa cũng có BKHT là R
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2. Chuỗi lũy thừa – Tính tổng chuỗi

Ví dụ: Tìm BKHT và tính tổng các chuỗi sau

1. Chuỗi có 
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1

( )

n

n

x
S x

n

¥

=

å=

1

1 1

1
( ) , ( 1,1)

1

n

n

n n

x
S x x x

n x

¥ ¥
-

= =

å å

¢æ ö
÷ç¢ ÷Þ = = = " Î -ç ÷ç ÷ç -è ø

0

1
( ) ln (1 ) , ( 1,1)

1

x

S x d t x x
t

ò= = - - " Î -
-

Vậy:

1 1

2 1

2
1 1

1 .                                             2 .  

3 . ( 1) 2                            4 .  

n

n

n n

n

n n

n n

x
n x

n

x
n x

n n

¥ ¥

= =

¥ ¥
-

= =

å å

å å-

+



2. Chuỗi lũy thừa – Tính tổng chuỗi

2. Dễ dàng thấy R=1, ( 1,1)x" Î - ta đặt
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2. Chuỗi lũy thừa – Tính tổng chuỗi

3. Dễ dàng thấy R=1, ( 1,1)x" Î - ta đặt
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2. Chuỗi lũy thừa – Tính tổng chuỗi

4. Dễ dàng thấy R=1, ( 1,1)x" Î - ta đặt
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2. Chuỗi Taylor - Maclaurint

Cho hàm f(x) khả vi vô hạn lần trong lân cận của x0

Ta gọi chuỗi Taylor của f(x) là chuỗi
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Khi x0=0, ta được chuỗi Maclaurint của hàm 
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Tuy nhiên, các chuỗi trên chưa chắc đã HT với mọi 

x, tức là chưa chắc chúng đã có tổng để tổng có thể 

bằng f(x).



2. Chuỗi Taylor - Maclaurint

Định lý: (Điều kiện để hàm f(x) có thể khai triển thành 

chuỗi Taylor)

Giả sử trong lân cận (x0-R,x0+R), hàm f(x) thỏa

1. f(x) khả vi vô hạn lần

2. Tồn tại hằng số C>0: |f(n)(x)|≤Cn, với mọi n

thì
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Chú ý: Trong khi làm bài, ta sẽ không kiểm tra 2 điều 

kiện trên để có chuỗi Taylor của hàm f(x) mà ta sẽ sử 

dụng các kết quả sau đây để chỉ ra MHT của chuỗi 

Taylor - Maclaurint



2. Chuỗi Taylor - Maclaurint

Một số chuỗi Maclaurint cơ bản
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2. Chuỗi Taylor - Maclaurint
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2. Chuỗi Taylor - Maclaurint

Ví dụ: Tìm chuỗi Maclaurint các hàm:
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2. Chuỗi Taylor - Maclaurint

2. f(x)=ln(2-3x+x2) = ln((1-x)(2-x)) = ln(1-x) + ln(2-x)
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2. Chuỗi Taylor - Maclaurint

Ví dụ: Tìm chuỗi Maclaurint hàm: ( )
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2. Chuỗi Taylor - Maclaurint

Ví dụ: Tìm chuỗi Taylor ở lân cận x0=3 của hàm
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2. Chuỗi Taylor - Maclaurint

Ngoài việc áp dụng khai triển các hàm cơ bản thành 

chuỗi Maclaurint vào việc tìm chuỗi Taylor , chuỗi 

Maclaurint các hàm bình thường. Ta còn có thể áp 

dụng để tính tổng các chuỗi lũy thừa, chuỗi số

Ví dụ: Tính tổng của chuỗi lũy thừa
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2. Chuỗi Taylor - Maclaurint

Ví dụ: Tính tổng của chuỗi 1
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2. Chuỗi Taylor - Maclaurint

Ví dụ: Sử dụng khai triển Maclaurint hàm dưới dấu 

tích phân bằng chuỗi, tính tích phân
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Ta có:

Thay vào tích phân trên

Ta tính tổng của chuỗi số bằng định nghĩa

Tổng riêng : Sn = u1+u2+…+un và tổng S
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2. Chuỗi Taylor - Maclaurint

Ví dụ: Tính tổng các chuỗi số sau
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