
ĐẠO HÀM VÀ VI PHÂN

Phần 2



Nội dung

1.Đạo hàm và vi phân hàm hợp.

2.Đạo hàm và vi phân hàm ẩn.



ĐẠO HÀM VÀ VI PHÂN CỦA HÀM HỢP
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Trường hợp cơ bản: hợp của hàm 2 biến và hàm 2 biến

Cho z = f(x, y) và x = x(u, v), y = y(u, v). Nếu z, x, 

y khả vi:
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Cho z = f(x) và x = x(u, v) (hợp của 1 biến và 2 biến)

Trường hợp riêng 1
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Trường hợp riêng 2:

z = f(x, y), x = x(t), y = y(t) (hợp 2 biến và 1 biến)
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x y

z t x tf y tf

. ( ) . ( )
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d z f d x f d y f x t d t f y t d t
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z = f(x, y), y = y(x) (hợp 2 biến và 1 biến)

Trường hợp riêng 3:

Löu yù: khi tính ñaïo haøm haøm hôïp, luoân baét ñaàu töø ñaïo 

haøm cuûa f theo bieán chính. Sau ñoù, tuøy thuoäc vaøo yeâu 

caàu, nhaân theâm ñaïo haøm cuûa bieán chính vaøo caïnh ñaïo 

haøm cuûa f.
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(u, v)= (1, 1) (x, y) = (1, 2)

1/ Cho: 

tìm z’u, z’v , dz tại (u, v)= (1, 1).

z’u = f’x. x’u + f’y.y’u z’v = f’x. x’v + f’y.y’v
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2/ Cho: 2
( ) s in ( ) , a rc ta n

u
z f x x x x

v

Tính z’u, z’v tại (0, 1)

z’u = f’(x). x’u z’v = f’(x). x’v
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3/ Cho: ( , ) s in ( ) ,

a rc ta n ,
t

z f x y x y

x t y e

Tính dz(t) tại t = 0

Cách 1: với  z’(t) = f’x. x’(t) + f’y.y’(t),  
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( 0 )d z d t

dz = z’(t)dt,
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Cách 2:

c o s ( ) c o s ( )d z y x y d x x x y d y

. ( ) . ( )
x yx y

d z f f x t d t f y t dy td x f d
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4/ Cho:
2
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y
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x
a/ Tính z’x  tại (1,0).

b/  Nếu y = ex,  tính  z’(x) tại x = 1

b/ z’(x) = f’x + f’y.y’(x)
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5/ Cho: ( , ) ,z f x y x y

Tính z’x, z’y

với f là hàm khả vi

Đặt: u = x – y , v = xy z = f(u, v)

(u, v là biến chính của f)
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6/ Cho:
2

x
z x f

y

Chứng minh đẳng thức: 

với f là hàm khả vi
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Đặt : 
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7/ Cho:
2 2

,z f x y x y

Tính dz theo dx, dy.

với f là hàm khả vi

Đặt: u = x2 – y , v = xy2 z = f(u, v)

•Cách 1: dz = z’xdx + z’ydy  với
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• Cách khác: 

dz = f’udu + f’vdv

= f’u( u’xdx + u’ydy) + f’v ( v’xdx + v’ydy) 

= f’u(2xdx – dy) + f’v(y
2dx + 2xydy)

= (2xf’u + y2f’v)dx + (2xyf’v – f’u)dy  



Đạo hàm và vi phân cấp cao của hàm hợp

Xét trường hợp cơ bản, các trường hợp khác tương tự.

Cho z = f(x, y) và x = x(u, v), y = y(u, v)
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Các đhàm (f’x)’u, (f’x)’v, (f’y)’u, (f’y)’v phải tính theo 

hàm hợp.
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Vi phân cấp hai của hàm hợp: (u, v là biến độc lập)

Để đơn giản, viết d2z theo du, dv

2 2 2
2

u u u v v v
d z z d u z d u d v z d v



Cho z = f(x, y) và x = x(u, v), y = y(u, v)

2
( )

x y x y
d z f d x f d y d z d d z d f d x f d y

Với x, y là các hàm số thì dx và dy không phải là hằng

2 22

x y yx
d z d x fd f d x d dd y ff y

Lưu ý:

• d(f’x), d(f’y) tính theo vi phân cấp 1 của hàm hợp.

• d2x, d2y tính theo vi phân cấp 2 của hàm thường.

Vi phân cấp 2 tính theo hàm hợp



VÍ DỤ
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z”uu(1, 1) = 8

,x u v y u v1/ Cho:
2

( , ) ,z f x y x y

Tính z”uu, z”uv  tại (u, v) =(1, 1) (x = 2, y = 0)

2 2
2 1 1 2x y x x y x

2 2
u u u

x y x y x x

2 ( ) 2 4 2y x x x y



2
2

u v
v

z x y x

2
2

u
z x y x

z”uv (1, 1) = 0

2 2
v v v

x y x y x x

2 ( ) 2 2y x x y

,x u v y u v



VÍ DỤ
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2
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2
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Tính z”uutại (u, v) =(1, 1) (x = 2, y = 1)

2
u u

x y x y

2
2 ( .2 ) 2 .1y x u x u x

2
( x .2 . )

u
u x x



2
, lnx t y t2/ Cho:

2
( , ) ,z f x y x y

Tính d2z theo dt tại t = 1

với

2 2
( )d z z t d t (t là biến độc lập)
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3/ Cho:
2

( )z f x y

Tính z”xx, z”xy, z”yy

với f là hàm khả vi cấp 2.

Đặt u = x2 - y z = f(u)
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ĐẠO HÀM VÀ VI PHÂN HÀM ẨN

Nhắc lại: giả sử hàm ẩn y = y(x) xác định bởi 

phương trình F(x, y) = 0. Để tính y’(x), lấy đạo hàm 

phương trình F = 0 theo x và giải tìm y’(x) (cách 1).

Với cách là này ta xem y là hàm theo x khi lấy đạo 

hàm của  F.

Cách 2: Sử dụng hàm hợp cho hàm nhiều biến

G = F(x, y) = 0, với y = y(x)

G’(x) = F’x + F’y.y’(x) = 0



( )
x

y

F
y x

F

Xem x, y là 2 biến độc lập 

khi lấy đh của  F.

Đạo hàm của hàm ẩn 1 biến y = y(x) 

Xét hàm ẩn 2 biến z = z(x, y) xác định từ phương 

trình:

F(x, y, z) = 0    (1).

,       
yx

x y

z z

FF
z z

F F

x, y, z là các biến độc

lập khi tính F’x, F’y, F’z.



Đặt G = F(x, y, z), lấy đạo hàm (1) theo x:

0 .1 .0 . 0
x x y z x

G G F F F z x

x

z

F
z

F

0 .0 .1 . 0
y x y z y

G G F F F z
y

y

z

F
z

F

Hàm ẩn cho bởi pt (1) có đhr là

Chứng minh công thức đạo hàm hàm ẩn



dz tìm bằng giải pt hoặc từ dz = z’xdx + z’ydy

0 . . . 0
x y z

G d G d F F d x F d y F d z Giải pt tìm dz

Cách tìm vi phân cấp 1:

Đạo hàm và vi phân cấp 2 của hàm ẩn:

Cách 1: tính z”xx, z”xy, z”yy và d2z từ z’x, z’y và dz

Cách 2: giải các pt

(a) G”xx = 0 tìm z”xx

(b) G”xy = 0 tìm z”xy

(c) G”xy = 0 tìm z”yy

(d) d2G  = d2F =  0 tìm d2z



VÍ DỤ
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Cách 1: học kỳ 1

Lấy đạo hàm pt đã cho:

x = 0, (1) y = 1,

Cho y = y(x) xác định từ pt: 

Tìm y’(0).
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(2)

(2) 

1
( 0 )y e



Cách 2: F(x, y) = ey + xy – e 

(1) F(x, y) = 0
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1/ Cho z = z(x, y), thỏa pt:

/
( , , ) 0

x z
F x y z z y e

Tìm z’x, z’y tại (x, y) = (0, 1).

(1)

từ (1) ta có: (x, y) = (0, 1) z = 1
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2/ Cho z = z(x, y), thỏa pt:

( , , ) ( ) 0F x y z x y s h x y z

Tìm z’’xx, z’’xy tại (x, y) = (1, 0).
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3/ Cho z = z(x, y), thỏa pt:
3 2

( , , ) 4 4 0F x y z z x z y

Tìm dz(1, -2), d2z(1, -2) nếu z(1, -2) = 2 

(1)

 Lấy vi phân pt (1):
2

3 4 4 2 0d F z d z z d x x d z y d y (2)

Thay x = 1, y = - 2, z = 2 vào (2):
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1
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2
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Ví dụ



 Lấy vi phân pt (2):

2 2
3 4 4 2 0d F d z d z z d x x d z y d y

2 2 2 2
3 2d F z d z z d z

(Vì x, y là biến độc lập nên dx = dy = hằng)

(3)

Thay x = 1, y =-2, z = 2, dz = dz(1, -2) = dx + 1/2dy 

vào (3)

2 2 21 5
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4/ Cho z = z(x, y), thỏa pt: ( , ) 0F f x z y

Tìm z’x, z’y, z”xx, z”yy

(1)

với f là hàm khả vi cấp 2.

Đặt u = x+ z, v = y F(x, y, z) = f(u, v) = 0
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