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KHAI TRIỂN TAYLOR
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Cho f(x, y) khả vi đến cấp (n+1) trong lân cận 

(x0, y0), khi đó trong lân cận này ta có:

Cụ thể:
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Có thể thay Rn bởi o( n) (Peano) (là VCB  bậc cao 

hơn n khi 0), 
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Khai triển trong lân cận (0, 0) gọi là kt Maclaurin 

1.Thông thường chỉ sử dụng pd Peano.

2.Sử dụng khai triển Maclaurin cơ bản của hàm 

1 biến trong kt Taylor hàm nhiều biến.

3.Viết kt trong lân cận của (x0, y0) là viết kt theo 

lũy thừa của x = (x – x0), y = (y – y0)



1/ Khai triển Taylor đến cấp 2 trong lân cận (1, 1), 

cho    z = f(x, y) = xy
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2/ Viết kt Maclaurin đến cấp 2 cho

1
( , )

1
z f x y

x y x y

Đặt u = x + y – xy, kt z theo u đến u2
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3/ Viết kt Taylor đến cấp 3 với (x0, y0) = (0,1) cho
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Đặt X = x, Y = y – 1, 
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Đặt X = x – 1, Y = y – 2, z trở thành
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4/ Viết kt Taylor đến cấp 3 với (x0, y0) = (1,2) 

cho ( , ) s in ( 2 ) .z f x y x y Suy ra f”xy(1, 2)
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Đạo hàm theo hướng

Định nghĩa:

Cho hàm f xác định trong lân cận M0 và một 

hướng cho bởi vector    .
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Định lý (cách tính đạo hàm theo hướng)

Nếu hàm f khả vi tại M0,                             là 

vector đơn vị, đạo hàm theo hướng      tại M0

tồn tại, khi đó:
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Hàm 3 biến cũng được tính tương tự.
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Công thức tổng quát
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Ví dụ

1. Tìm đạo hàm theo hướng dương của trục 

Ox tại điểm (-2,1) của hàm số
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Vector đơn vị theo hướng dương của Ox là:
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2. Tìm đạo hàm theo hướng                    tại1,1, 1a
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Vector Gradient

Gọi , ,i j k

 
là các vector đơn vị trên các

trục tọa độ, f có các đạo hàm riêng tại 
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Liên hệ
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Tổng quát

Hướng của vector gradient là hướng mà 

hàm f tăng nhanh nhất.
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PHÁP TUYẾN – TIẾP DIỆN CỦA MẶT CONG.

Cho mặt cong S: F(x, y, z) = 0, M(x0,y0,z0) S

n


•L là đường cong trong S đi qua 

M. Tiếp tuyến của L tại M gọi là 

tiếp tuyến của S tại M.

•Các tiếp tuyến này cùng thuộc 1 

mặt phẳng gọi là tiếp diện của S 

tại M.



PHÁP TUYẾN – TIẾP DIỆN CỦA MẶT CONG
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Giả sử L S có pt: x = x(t), y = y(t), z = z(t)

M = (x(t0), y(t0), z(t0)) L

Vector  chỉ phương của tiếp tuyến tại M là :

M S: F(x,y,z) = 0, ta có:
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grad F(M) là  pháp vector của tiếp diện 

của S tại M.

• Pháp vector của tiếp diện còn gọi là 

pháp vector của mặt cong S.

(với mọi đường cong trong S và 

qua M)
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Phương trình pháp tuyến
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Phương trình tiếp diện
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1/ Tìm phương trình tiếp diện của mặt cầu:
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