
2011/12/7 T. L. Jong, Dept. of E.E., NTHU 1

System & Program System & Program
Developments of 8051Developments of 8051

Assembly Language Programming
Assembler Operation
Assembly Language Program Format
Assemble-Time Expression Evaluation
Assembler Directives
Assembler Controls
Linker Operation
Linking Relocatable Segments and Modules
Macros

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 2

System & Program System & Program
Developments of 8051Developments of 8051

Program Structure and Design
Introduction
Advantages and Disadvantages of Structured
Programming
The Three Structures: statements, loops, choice
Pseudo Code Syntax
Assembly Language Programming

Tools & Techniques for Program Development
The Development Cycle
Integration and Verification
Command and Environments

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 3

Assembly Language
Programming

ASM51

FILE1.OBJ
FILE2.OBJ

PROGRAM.SRC

PROGRAM.OBJ

PROGRAM.LST

RL51
PROGRAM.ABS

PROGRAM.MAP

LIBRARY

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 4

ASM(input_file)ASM(input_file) /*assemble source program in input_file)*//*assemble source program in input_file)*/
BEGIN

/*pass 1: build the symbol table */
lc = 0; /*lc=location counter; default to 0*/
mnemonic = null;
open input_file;
WHILE (mnemonic != end) DO BEGIN

get_line(); /*get line from input_file */
scan_line(); /*scan line & get label/symbol & mnemonic */
IF (label) THEN enter_into_symbol_table(label, lc);
CASE mnemonic OF BEGIN

null, comment, END: ; /*do nothing */
ORG: lc = operand_value;
EQU: enter_in_symbol_table(symbol, operand_value);
DB: WHILE (got_operand) DO increment_lc;

/* increment number of bytes defined */
DS: lc = lc + operand_value;
1_byte_instruction: lc = lc + 1;
2_byte_instruction: lc = lc + 2;
3_byte_instruction: lc = lc + 3;

END
END

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 5

/*pass 2: create the object program*/
rewind_input_file_pointer;
lc = 0;
mnemonic = null;
open_output_file;
WHILE (mnemonic != end) DO BEGIN

get_line();
scan_line(); /* determine mnemonic op code and value(s) of operand(s)*/
/*Note: if symbols are used in operand field, their values are looked-up*/
/* in the symbol table created during pass 1 */
CASE mnemonic OF BEGIN

null, comment, EQU, END: ; /*do nothing */
ORG: lc = operand_value;
DB: WHILE (operand) DO BEGIN

put_in_objectfile(operand);
lc = lc + 1;

END /* increment number of bytes defined */

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 6

DS: lc = lc + operand;
1_byte_instruction: put_in_objectfile(inst_code);
2_byte_instruction: put_in_objectfile(inst_code);

put_in_objectfile(operand);
3_byte_instruction: put_in_objectfile(inst_code);

put_in_objectfile(operand high-byte);
put_in_objectfile(operand low-byte);

lc = lc + size_of_instruction;

END
END
close_input_file;
close_output_file;

END

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 7

Assembly Language
Program Format

Assembly language program contains:
Machine instructions (ANL, MOV)
Assembler directives (ORG,..)
Assembler controls ($TITLE)
Comments

Lines of machine instructions or
assembler directives:
[label:] Mnemonic [operand] [,operand] […] [;comment]

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 8

Assembly Language
Program Format

Label & symbol
PAR EQU 500 ;PAR is a symbol

; which represents the
; value 500

START: MOV A,#0FFH ;START is a label
;which represents the
;address of the MOV
;instruction

Special Assembler Symbols
A, R0-R7, DPTR, PC, C, AB, $

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 9

Assemble-Time Expression
Evaluation

MOV A,#10 + 10H (MOV A,#1AH)
MOV A,#25 MOD 7 (MOV A,#4)
MOV A,#’9’ AND 0FH (MOV A,#9)
THREE EQU 3
Minus_three EQU -3
MOV A,#(NOT THREE)+1
MOV A,#Minus_three
MOV A,#11111101B
MOV A,#8 SHL 1 (MOV A,#10H)
MOV A,#HIGH 1234H (MOV A,12H)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 10

Assemble-Time Expression
Evaluation

Relational operators: result is always false
(0000H) or true (FFFFH)
EQ = equal
NE <> not equal
LT < less than
LE <= less than or equal to
GT > greater than
GE >= greater than or equal to
MOV A,#5 = 5
MOV A,#’X’ LT ‘Z’
MOV A,#5 NE 4
MOV A,#’X’ >= ‘X’
MOV A,#$ > 0

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 11

Assemble-Time Expression
Evaluation

Expression Examples:
‘B’ - ‘A’ 0001H ‘A’ SHL 8 4100H
8/3 0002H LOW 65535 00FFH
155 MOD 2 0001H (8 + 1)*2 0012H
4*4 0010H 5 EQ 4 0000H
8 AND 7 0000H ‘A’ LT ‘B’ FFFFH
NOT 1 FFFEH 3 <= 3 FFFFH

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 12

Assemble-Time Expression
Evaluation

Operator Precedence
()
HIGH LOW
* / MOD SHL SHR
+ -
EQ NE LT LE GT GE = <> < <= > >=
NOT
AND
OR XOR

When same precedence, operators are evaluated
left-to-right
HIGH (‘A’ SHL 8) 0041H
HIGH ‘A’ SHL 8 0000H
NOT ‘A’ - 1 FFBFH
‘A’ OR ‘A’ SHL 8 4141H

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 13

Assembler Directives

Assembler state control (ORG, END, USING)
Symbol definition (SEGMENT, EQU, SET,
DATA, IDATA, XDATA, BIT, CODE)
Storage initialization/reservation (DS, DB,
DW, DBIT)
Program linkage (PUBLIC, EXTRN, NAME)
Segment selection (RSEG, CSEG, DSEG,
ISEG, BSEG, XSEG)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 14

Assembler State Controls
ORG, END, USING
ORG 100H
ORG ($ + 1000H) AND 0F000H ;set to next

;4k boundary
END ;should be the last statement in the source file
USING expression ;inform ASM51 of the currently

;active register bank
MOV PSW,#00011000B ;select RB 3, the only way

;to switch register banks
USING 3 ;use register bank 3
PUSH AR7 ;1FH (R7 in bank 3)
MOV PSW,#00001000B
USING 1
PUSH AR7 ;0FH

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 15

Symbol Definition
The symbol definition directive creates
symbols representing segments,
registers, numbers, & addresses.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 16

Symbol Definition
Segment (CODE, XDATA, DATA,IDATA,BIT)
symbol SEGMENT segment_type
CODE (code segment)
DATA (the internal data space accessible by direct

addressing 00-7FH)
IDATA (the entire internal data space accessible by

indirect addressing, 00-7FH on 8051, 00-FFH on
8052)

XDATA (the external data space)
BIT (the bit space; overlapping byte locations 20H-

2FH of the internal data space)
EPROM SEGMENT CODE (declares that EPROM is

a code segment. To actually begin using this
segment, the RSEG directive is used)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 17

Symbol Definition
EQU and SET -- numbers
symbol EQU expression (assigns a numeric

value to a specific symbol name)
N27 EQU 27
HERE EQU $
MESSAGE: DB ‘This is a message’
LENGTH EQU $-MESSAGE

symbol SET expression (similar to EQU except
that symbol can be redefined
later using another SET directive)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 18

Symbol Definition
DATA, IDATA, XDATA, BIT, & CODE: assign
addresses of the corresponding segment
type to a symbol.
e.g.,

FLAG1 EQU 05H
FLAG2 BIT 05H

SETB FLAG1
SETB FLAG2
MOV FLAG1,#0
MOV FLAG2,#0

(error message: data segment address expected)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 19

Storage
Initialization/Reservation

DS (define storage)
[label:] DS expression (reserves spaces in byte units,

can be used in any segment type
except BIT)

DSEG AT 30H ;put in data segment
;(absolute , internal)

LENGTH EQU 40
BUFFER: DS LENGTH ;reserve 40 bytes

MOV R7,#LENGTH
MOV R0,#BUFFER ;R0=30H

LOOP: MOV @R0,#0
INC R0
DJNZ R7,LOOP

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 20

Storage
Initialization/Reservation

Create 1000 bytes in external RAM at 4000H
XSTART EQU 4000H
XLENGTH EQU 1000

XSEG AT XSTART ;put I data segment
;(absolute , internal)

XBUFFER: DS XLENGTH ;reserve 40 bytes
MOV DPTR,#XBUFFER

LOOP: CLR A
MOV @DPTR,A
INC DPTR
MOV A,DPL
CJNE A,#LOW(XBUFFER + XLENGTH + 1),LOOP
MOV A,DPH
CJNE A,#HIGH(XBUFFER + XLENGTH + 1),LOOP
(continue)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 21

Storage Initialization/Reservation
DBIT: reserve space in bit units
[label:] DBIT expression

BSEG ;bit segment, absolute (00H-7FH)
KBFLAG: DBIT 1 ;keyboard status
PRFLAG: DBIT 1 ;printer status
DKFLAG: DBIT 1 ;disk status

DB (define byte): initialize code memory w bye values
[label:] DB expression [,expression] […]

CSEG AT 0100H
SQUARES:DB 0,1,4,9,16,25 ;squares of number 0-5
MESSAGE:DB ‘Login:’,0 ;null-terminated char string

DW (define word)
[label:] DW expression [,expression] […]

CSEG AT 0200H
DW $,’A’,1234H,2,’BC’ ;02 00 00 41 12 34 00

;02 42 43

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 22

Program Linkage
Allows separately assembled modules (files)
to communicate by permitting intermodule
referencing and naming of the modules
PUBLIC (declare public for other modules to reference)

PUBLIC symbol [,symbol] […]
allows the list of specified symbols to be known and used

outside the currently assembled module.
EXTRN (declare symbols defined outside current module)

EXTRN symbol [,symbol] […]

EXTRN CODE(HELLO,GOOD_BYE)
…
CALL HELLO
…
CALL GOOD_BYE
…
END

PUBLIC HELLO,GOOD_BYE
…

HELLO: (begin sub)
...
RET

GOOD_BYE: (begin sub)
…
RET

MESSAGE.SRCMAIN.SRC

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 23

Segment Selection
RSEG (selecting relocatable segment)

RSEG segment_name
segment_name is previously defined by SEGMENT

directive.
Selecting Absolute Segments

CSEG [AT address]
DSEG [AT address]
ISEG [AT address]
BSEG [AT address]
XSEG [AT address]

Each segment has its own location
counter which is set to 0 initially

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 24

Segment Selection
LOC OBJ LINE SOURCE

1 ONCHIP SEGMENT DATA
2 EPROM SEGMENT CODE
3

---- 4 BSEG AT 70H ;begin abs bit seg
0070 5 FLAG1: DBIT 1
0071 6 FLAG2 DBIT 1

7
---- 8 RSEG ONCHIP ;begin relocatable data seg
0000 9 TOTAL: DS 1
0001 10 COUNT: DS 1
0002 11 SUM16: DS 2

12
---- 13 RSEG EPROM ;begin relocatable code seg
0000 750000 F 14 BEGIN: MOV TOTAL,#0

15 (continue program)
16 END

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 25

Assembler Controls

Establish the format of the listing and
object files. Controls the look of listing file,
without having any effect on the program.
Can be entered on the invocation line or
placed in the source program (preceded
with $)
Primary controls and general controls
e.g., DATE, INCLUDE, LIST, MACRO(50),
XREF

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 26

Assembler Controls
NAME Primary/

General
DEFAULT Abbrev

.
Meaning

DATE(date) P DATA() DA Places string in header (9 Char.
max.)

DEBUG P NODEBUG DB Outputs debug symbol information
to object file

NODEBUG P NODEBUG NODB Symbol information not placed in
object file

EJECT G Not applicable EJ Continue listing on next page

ERRORPRINT P NOERRORPRINT EP Designates a file to receive error
Messages in addition to the listing
file (defaults to console)

NOERRORPRINT P NOERRORPRINT NOEP Designates that error messages
will be printed in listing file only

GEN P GENONLY GO List only the fully expanded source
as if all lines generated by a macro
call were already in the source file

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 27

Assembler Controls
GENONLY G GENONLY NOGE List only the original source

text in the listing file

INCLUDE(file) G Not applicable IC Designates a file to be
included as part of the
program

LIST G NOLIST LI Print subsequent lines of
source code in listing file

NOLIST G NOLIST NOLI Do not print subsequent lines
of source code in listing
file

MACRO(mem_percent
)

P MACRO(50) MR Evaluate and expand all macro
calls. Allocate percentage of
free memory for macro
processing

NOMACRO P MACRO(50) NOMR Do not evaluate macro calls

MOD51 P MOD51 MO Recognize the 8051-specific
predefined special function
registers

NOMOD51 P MOD51 NOMO Do not recognize 8051-
specific predefined special
function registers

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 28

Assembler Controls
OBJECT(file) P OBJECT(source.O

BJ)
OJ Designates file to receive object

code

NOOBJECT P OBJECT(source.O
BJ)

NOOJ Designates that no object
file will be created

PAGING P PAGING PI Designates that listing file
be broken into pages and each
will have a header

NOPAGING P PAGING NOPI Designates that listing file will
contain no page breaks

PAGELENGTH P PAGELENGTH(60) PL Sets maximum number of lines in
each page of listing file (range = 10
to 65,536)

PAGEWIDTH P PAGEWIDTH(120) PW Sets maximum number of
characters in each line of listing file
(range = 72 to 132)

PRINT(file) P PRINT(source.LST) PR Designates file to receive source
listing

NOPRINT P PRINT(source.LST) NOPR Designates that no listing file will be
created

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 29

Assembler Controls
SAVE G Not applicable SA Stores current control settings from

SAVE stack

RESTORE G Not applicable RS Restores control settings
from SAVE stack

REGISTERBANK(rb,..) P REGISTERBANK(0) RB Indicates one or more banks
used in program module

NOREGISTERBANK P REGISTERBANK(0) NORB Indicates that no register banks are
used

SYMBOLS P SYMBOLS SB Creates a formatted table of all
symbols used in program

NOSYMBOLS P SYMBOLS NOSB Designates that no symbol table is
created

TITLE(string) G TITLE() TT Places a string in all subsequent
page headers (max. 60 characters)

WORKFILES(path) P Same as source WF Designates alternate path for
temporary workfiles

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 30

Assembler Controls
XREF P NOXREF XR Creates a cross reference listing of

all symbols used in program

NOXREF P NOXREF NOXR Designates that no cross
reference list is created

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 31

Linker Operations
Intel RL51: links modules into an output
file:
RL51 input_list [TO output_file] [location_controls]
input_list: a list of relocatable object modules (files)
separated by commas.
Output_file: the name of the output absolute object
module (executable program).
Location controls: set start addresses for the named
segments.
e.g., RL51 MAIN.OBJ,MESSAGE.OBJ,
SUBROUTINE.OBJ TO EXAMPLE &
CODE (EPROM(4000H))
DATA(ONCHIP(30H))

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 32

Linker Operations

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 33

Annotated Example: ECHO.LST

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 34

Annotated Example: ECHO.LST

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 35

Annotated Example: IO.LST

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 36

Annotated Example

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 37

Annotated Example

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 38

Annotated Example

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 39

Annotated Example: ECHO+IO

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 40

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 41

MACROS
Macro allows frequently used sections of
code to be defined once using a simple
mnemonic and used anywhere in the
program by inserting the mnemonic.
ASM51’s MPL: string replacement.
%DEFINE (call_pattern) (macro_body)
%DEFINE (PUSH_DPTR)

(PUSH DPH
PUSH DPL)

%PUSH_DPTR will be replaced by PUSH
DPH and PUSH DPL two instructions in
the .LST file

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 42

Advantages of Using Macros

More readable
The source program is shorter and
requires less typing
Using macros reduces bugs
Using macros frees the programmer
from dealing with low-level details

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 43

Parameter Passing
%DEFINE
(macro_name(parameter_list))

(macro_body)
%DEFINE (CMPA# (VALUE))

(CJNE A,#%VALUE, $ + 3
)

%CMPA# (20H) = CJNE A,#20H,$+3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 44

Parameter Passing

JUMP if A is greater than X:
%DEFINE (macro_name(parameter_list))

(macro_body)
%DEFINE (JGT(VALUE,LABEL))

(CJNE A,#%VALUE+1, $ + 3 ;
JNC %LABEL ;JGT
)

%JGT(‘Z’,GREATER_THAN)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 45

Local Labels
%DEFINE (macro_name [(parameter_list)])

[LOCAL list_of_local_labels]
(macro_body)

%DEFINE (DEC_DPTR) LOCAL SKIP
(DEC DPL

MOV A,DPL
CJNE A,#0FFH,%SKIP
DEC DPH

%SKIP:)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 46

Local Labels
%DEC_DPTR =

DEC DPL
MOV A,DPL
CJNE A,#0FFH, SKIP00
DEC DPH

SKIP00:
Side effect: A is used and changed

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 47

Preserve A by Push-Pop
%DEFINE (DEC_DPTR) LOCAL SKIP

(PUSH A
DEC DPL
MOV A,DPL
CJNE A,#0FFH,%SKIP
DEC DPH

%SKIP: POP A
)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 48

Repeat Operations-- Built-in
Macros

%REPEAT (expression) (text)
%REPEAT (100)

(NOP
)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2011/12/7 T. L. Jong, Dept. of E.E., NTHU 49

Control Flow Operations
Conditional Assembly in ASM51:
%IF (expression) THEN (balanced_text)
[ELSE (balanced_text)]

INTERNAL EQU 1 ;1=8051 serial I/O drivers
. ;0=8251 serial I/O drivers

%IF (INTERNAL) THEN
(INCHAR: . ;8051 driver

.
OUTCHR: .

.
) ELSE

(INCHAR: . ;8251 driver
.

OUTCHR: .
.

)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

	System & Program Developments of 8051
	System & Program Developments of 8051
	Assembly Language Programming
	Assembly Language Program Format
	Assembly Language Program Format
	Assemble-Time Expression Evaluation
	Assemble-Time Expression Evaluation
	Assemble-Time Expression Evaluation
	Assemble-Time Expression Evaluation
	Assembler Directives
	Assembler State Controls
	Symbol Definition
	Symbol Definition
	Symbol Definition
	Symbol Definition
	Storage Initialization/Reservation
	Storage Initialization/Reservation
	Storage Initialization/Reservation
	Program Linkage
	Segment Selection
	Segment Selection
	Assembler Controls
	Assembler Controls
	Assembler Controls
	Assembler Controls
	Assembler Controls
	Assembler Controls
	Linker Operations
	Linker Operations
	Annotated Example: ECHO.LST
	Annotated Example: ECHO.LST
	Annotated Example: IO.LST
	Annotated Example
	Annotated Example
	Annotated Example
	Annotated Example: ECHO+IO
	MACROS
	Advantages of Using Macros
	Parameter Passing
	Parameter Passing
	Local Labels
	Local Labels
	Preserve A by Push-Pop
	Repeat Operations-- Built-in Macros
	Control Flow Operations

