ECE 307 – Techniques for Engineering Decisions

Introduction to the Simplex Algorithm

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

1

SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

□ We examine the solution of

 $\underline{A} \underline{x} = \underline{b}$

using Gauss—Jordan elimination

□ We first use a simple example and then

generalize to cases of general interest cut ducing than cong. com Consider the system of two equations in five

unknowns:

SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

$$S_{1} \begin{cases} x_{1} - 2x_{2} + x_{3} - 4x_{4} + 2x_{5} = 2 \\ x_{1} - x_{2} - x_{3} - 3x_{4} - x_{5} = 4 \end{cases}$$
(*i*)

□ For this simple example, the number of

unknowns exceeds the number of equations and

so the system has multiple solutions; this is the

principal reason that the *LP* solution is *nontrivial*

SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

- The Gauss Jordan elimination uses elementary row operations:
 - O multiplication of any equation by a nonzero constant
 - addition to any equation of a constant multiple of any other equation
 - □ We transform S_1 into the set S_2 by multiplying equation (*i*) by -1 and adding it to equation (*ii*)

$$S_{2} \begin{cases} x_{1} - 2x_{2} + x_{3} - 4x_{4} + 2x_{5} = 2 \\ x_{2} - 2x_{3} + x_{4} - 3x_{5} = 2 \end{cases}$$

ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DEFINITIONS

- A *basic variable* is a variable x_i that appears with the coefficient 1 in an equation and with the coefficient 0 in all the other equations
- **The variables** x_j that are *not* basic are called *nonbasic variables*
- □ In the system S_2 , x_1 appears as a *basic* variable; x_2, x_3, x_4 and x_5 are *nonbasic* variables
- □ Basic variables may be generated through the use of *elementary row operations*

DEFINITIONS

- □ A *pivot operation* is the sequence of elementary row
 - operations that reduces a system of linear
 - equations into the form in which a specified
- A *canonical system* is a set of linear equations
 obtained through *pivot operations* with the property
 that the system has the same number of *basic variables* as the number of equations in the set
 - ECE 307 © 2005 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CANONICAL SYSTEM FORM

□ We transform the system S_2 into the canonical form of system S_3 :

$$S_{3} \begin{cases} x_{1} - 3x_{3} - 2x_{4} - 4x_{5} = 6 \\ x_{2} - 2x_{3} + x_{4} - 3x_{5} = 2 \end{cases}$$

The *basic solution* is obtained from a canonical system with all the nonbasic variables set to 0
 For the example, we set X₃ = X₄ = X₅ = 0 and so

 $x_1 = 6$ and $x_2 = 2$

BASIC FEASIBLE SOLUTION

- □ A basic feasible solution is a basic solution in which
 - the values of all the basic variables are
 - nonnegative

 \Box In the example of system *S*, we may choose any

two variables to be basic

□ In general for a system of *m* equations in *n*

unknowns there are $\binom{n}{m}$ possible combinations

of basic variables

BASIC FEASIBLE SOLUTION

□ As *n* increases the number of combinations

becomes large even though it is finite

cuu duong than cong. com

□ For the example, we have

$$\binom{5}{2} = \frac{5!}{3! \, 2!} = 10$$

combinations of possible choices

THE SIMPLEX SOLUTION METHOD

□ We next use a simple example to construct the

simplex solution method

□ The *simplex method* is a *systematic* and *efficient* way

of examining a subset of the basic feasible sol-

utions of the *LP* to hone in on *an* optimal solution

□ We apply the notions introduced in the definitions

we introduced above

SIMPLEX METHODOLOGY EXAMPLE

$$max \ Z = 5x_1 + 2x_2 + 3x_3 - x_4 + x_5$$

s.t.

cuu duong than cong. com

canonical
$$\begin{cases} x_{1} + 2x_{2} + 2x_{3} + x_{4} = 8 \quad (*) \\ 3x_{1} + 4x_{2} + x_{3} + x_{5} = 7 \quad (**) \\ cuu duong than cong. con \\ x_{i} \ge 0 \quad i = 1, ..., 5 \end{cases}$$

ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

-

THE SIMPLEX SOLUTION METHOD

□ The *canonical form* of the example allows the

determination of a basic feasible solution

$$x_1 = x_2 = x_3 = 0$$
 $x_4 = 8, x_5 = 7$

uu duong than cong. com

□ The corresponding value of the objective is

$$Z = -8 + 7 = -1$$

□ The next step is to improve the *basic feasible solution* by finding an *adjacent* basic feasible

solution

- □ An *adjacent* feasible solution is one which differs
 - from the current basic feasible solution in *exactly*

one basic variable that cong. com

□ Note, we characterize a *basic feasible solution* by the

following traits

cuu duong than cong. com

basic variable ≥ 0

nonbasic variable = 0

□ The search for an adjacent basic feasible solution

uses the idea of making a *nonbasic* variable into a

basic variable by increasing its value from θ to the largest positive value without violating any

constraints

□ To make the search efficient, we choose the *nonbasic* variable that can improve the value of *Z*

by the largest amount

□ In the example, consider the *nonbasic* variable

 x_1 , we leave $x_2 = x_3 = 0$ and examine the

possibility of making x_1 into a basic variable

 \Box The variable x_1 enters in both constraints

 $x_1 + x_4 = 8$

$$3x_1 + x_5 = 7$$

□ The largest value x_1 can assume without making either x_4 or x_5 negative is

$$min\left\{8,\ \frac{7}{3}\right\}\ =\ \frac{7}{3}$$

□ We have the new *basic* variable with the value

$$x_1 = \frac{7}{3} ,$$

and the other *basic* variable is

$$x_4 = \frac{17}{3}$$

and the three *nonbasic* variables are set to 0:

$$x_{2} = x_{3} = 0$$
 and $x_{5} = 0$

 \Box Note that we have an improvement in Z since its

value becomes

$$Z = 5 \cdot \frac{7}{3} - \frac{17}{3} = \frac{18}{3} = 6 > -1$$

□ We next need to put the system of equations into

canonical form:

SIMPLEX METHODOLOGY EXAMPLE

$$max \ Z = 5x_1 + 2x_2 + 3x_3 - x_4 + x_5$$

s.t. $non - x_{1} + 2x_{2} + 2x_{3} + x_{4} = 8 \quad (*)$ $form for x_{1} = 3x_{1} + 4x_{2} + x_{3} + x_{5} = 7 \quad (**)$ $x_{i} \ge 0 \qquad i = 1, \dots, 5$

ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

18

O multiply equation (**) by $-\frac{1}{3}$ and add to

equation (*) $\frac{2}{3}x_2 + \frac{5}{3}x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5 = \frac{17}{3}$ O multiply equation (**) by $\frac{1}{2}$ $x_1 + \frac{4}{3}x_2 + \frac{1}{3}x_3 + \frac{1}{3}x_5 = \frac{7}{3}$

THE SIMPLEX SOLUTION METHOD

□ We continue this process until the *condition of*

optimality is satisfied:

• in a maximization problem, a *basic feasible solution* is *optimal* if and only if the relative

profits of each *nonbasic variable* is ≤ 0

• in a minimization problem, a basic feasible solution is optimal if and only if the relative

costs of each *nonbasic variable* is ≥ 0

THE SIMPLEX SOLUTION METHOD

□ The relative profits (costs) are given by the

change in Z corresponding to a unit change in a

nonbasic variable

□ We use this fact to select the next *nonbasic variable*

to enter the basis

SIMPLEX ALGORITHM FOR MAXIMIZATION

Step 1: start with an initial basic feasible

solution with all constraint equations in

canonical form

Step 2: check for optimality condition: if the

relative profits are ≤ 0 for each *nonbasic* out ducing that congiliant congiliant variable, then the basic feasible solution is

optimal and *stop*; else, go to Step 3

SIMPLEX ALGORITHM FOR MAXIMIZATION

- Step 3: select a nonbasic variable to become the new basic variable; check the limits on the nonbasic variable the limiting constraint determines the basic variable that is being replaced by the selected nonbasic variable
 Step 4: determine the selected nonbasic variable
- Step 4:determine the canonical form for the new
set of basic variables through elementary
row operations; compute the basic feasible
solution, Z and return to Step 2

□ We use an efficient way to represent visually the

steps in the simplex method through a sequence

cuu duong than cong. com

of so-called tableaus

□ We illustrate the tableau for the simple example

for the initial basic feasible solution

□ The optimality check requires the evaluation of

$$\tilde{c}_{j} = c_{j} - \left(\underline{c}_{B}^{T} \cdot \frac{\text{column corresponding}}{\text{to } x_{j} \text{ in canonical form}} \right)$$

Given Set Provide Set up and Se

$$\tilde{c}_{1} = 5 - [-1, 1] \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 3$$
$$\tilde{c}_{2} = 2 - [-1, 1] \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 0$$
$$\tilde{c}_{3} = 3 - [-1, 1] \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 4$$

□ We interpret as the change in *Z* corresponding to a unit increase in x_i

<u><i>C</i></u> _B	C _j basic	5	2	3	g - 1.	1	constraint
	variables	\boldsymbol{x}_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	constants
- 1	<i>x</i> ₄	1	2	2	1		8
1	<i>x</i> ₅	:u 3 du	on 4 th	an 1 cor	g. com	1	7
	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	3	0	4	0	0	Z = -1

SIMPLEX TABLEAU

□ Note that the optimality test indicates that

$$\tilde{c}_1 = 3 > \theta$$
 and $\tilde{c}_3 = 4 > \theta$

and so the *initial basic feasible solution* is not *optimal*

 \Box Since $\tilde{c}_3 > \tilde{c}_1$, we pick x_3 as the *nonbasic variable*

to become a *basic variable* cuu duong than cong. com U We examine the limiting solution for x_3 in the two

constraint equations:

equation	limiting basic variable	upper limit on x ₃
1	<i>x</i> ₄	(8/2) = 4
2	<i>x</i> ₅	(7/1) = 7

and so the limiting value is

min { 4, 7 } = 4

\Box We replace the basic variable x_4 by x_3

SIMPLEX METHODOLOGY EXAMPLE

$$max \ Z = 5x_1 + 2x_2 + 3x_3 - x_4 + x_5$$

s.*t*.

cuu duong than cong. com

$$\begin{array}{l} canonical \\ form \\ for \\ x_4 and \ x_5 \end{array} \begin{cases} x_1 + 2x_2 + 2x_3 + x_4 &= 8 & (*) \\ 3x_1 + 4x_2 + x_3 &+ x_5 &= 7 & (**) \\ x_i \ge 0 & i = 1, \dots, 5 \end{array}$$

- For the new basic feasible solution, we put the equations into canonical form
 - O multiplying (*) by $\frac{1}{2}$ to produce (*†) O subtract (*†) from (**) to produce (**†) $\frac{1}{2}x_1 + x_2 + x_3 + \frac{1}{2}x_4 = 4$ (*†) $\frac{5}{2}x_1 + 3x_2 - \frac{1}{2}x_4 + x_5 = 3$ (**†)
- □ The adjacent basic feasible solution is

$$x_1 = x_2 = x_4 = 0$$
 $x_3 = 4, x_5 = 3$

0	c _j	5	2	3	- 1	1	constraint
<u>C</u> B	basic variables	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x ₄	<i>x</i> ₅	constants
3	<i>x</i> ₃	1/2	1	1	1/2		4
1	<i>x</i> ₅	5/2	3	an cor	-1/2	1	3
$\tilde{\boldsymbol{c}}^{T}$		1	-4	0	- 2	0	Z = 15

 $x_3 = 4, x_5 = 3$ ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

32

- \Box Since $\tilde{c}_1 > \theta$, the basic feasible solution is non-optimal
- **U** We examine how to bring x_1 into the basis

equation	limiting basic variable	upper limit on x ₁		
(* †)	x_3	4/(1/2) = 8		
(**†)	<i>x</i> ₅	3/(5/2) = 6/5		

 \Box The variable x_1 enters the basis with the value

$$min\left\{8,\frac{6}{5}\right\}=\frac{6}{5}$$

and x_5 is replaced as a basic variable by x_1

□ We need to put the equations

$$\frac{1}{2}x_1 + x_2 + x_3 + \frac{1}{2}x_4 = 4 \quad (**)$$

$$\frac{5}{2}x_1 + 3x_2 - \frac{1}{2}x_4 + x_5 = 3 \quad (***)$$

into canonical form for the *basic variables* x_3 and x_1

ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

34

□ The following elementary row operations are used

O multiply (** \dagger) by – 1/5 and add to (*)

$$\frac{2}{5}x_2 + \frac{x_3}{3} + \frac{13}{5}x_4 - \frac{1}{5}x_5 = \frac{17}{5}$$

O multiply (**†) by 2/5

$$x_1 + \frac{6}{5}x_2 + \frac{1}{5}x_4 + \frac{2}{5}x_5 = \frac{6}{5}$$

and construct the corresponding tableau

0	c _j	5	2	3	- 1	1	constraint		
<u><i>C</i></u> _B	<u>C</u> B basic variables		<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	constants		
3	3 x ₃ 2/5 1 3/5 -1/5								
5	<i>x</i> ₁	1	6/5		- 1/5	2/5	6/5		
$\tilde{\underline{C}}^T$ 0 -26/5 0 -9/5 -2/5 $Z = 81/5$									
$\tilde{c}_i \leq 0$ implies optimality $16.2 > 15$									

□ We put this problem into standard form: $max \ Z = 3x_1 + 2x_2$ canonical form *s*.*t*. $-x_1 + 2x_2 + x_3$ = 14 $+ x_{4}$ $3x_1 + 2x_2$ $+ x_5 = 3$ $x_1 - x_2$ $x_1, \ldots, x_5 \ge 0$

$\Box x_3, x_4, x_5$ are *fictitious* variables

		3	2	0	0	0	constraint
<u>C</u> B	basic variables	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	constants
0	<i>x</i> ₃	cuu ¹ d	uone ti	an ¹ cor	g. com		4
0	<i>x</i> ₄	3	2		1		14
0	<i>x</i> ₅	1	- 1			1	3
	$\tilde{\underline{c}}^{T}$	3	long ti 2	an cor O	e. com 0	0	Z = 0

 $\tilde{c}_{j} = c_{j} - (\underline{c}_{B}^{T} \bullet \text{column corresponding to } x_{j})$

- □ The data in $\tilde{\underline{c}}^T$ indicates that the highest relative profits correspond to x_1 so want to make x_1 a basic variable
- □ To bring x_1 into the basis requires to evaluate . $\begin{bmatrix} 14 \\ 2 \end{bmatrix}$

$$\min\left\{\infty,\frac{14}{3},3\right\}=3$$

and so x_1 replaces x_5 with the value 3

 We evaluate the basic variable at the adjacent basic feasible solution and convert into canonical form; the new tableau becomes

	c_j	3	2	0	0	0	constraint
<u>C</u> B	basic variables	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	constants
0	<i>x</i> ₃	cuu d	ion 1 th	an <mark>1</mark> con	g. com	1	7
0	<i>x</i> ₄		5		1	-3	5
3	<i>x</i> ₁	1 cuu d	-1	an con	z. com	1	3
	$\underline{\tilde{c}}^{T}$	0	5	0	0	-3	Z = 9

 \Box We reproduce here the calculation of the $\tilde{\underline{c}}^{T}$

components

$$\tilde{c}_{j} = c_{j} - \left(\underline{c}_{B}^{T} \cdot \text{column corresponding to } x_{j}\right)$$

for each nonbasic variable x_i

 \Box Note that $\tilde{c}_i = \theta$ for each basic variable x_i by

definition

□ The calculations give

$$\tilde{c}_1 = 0$$
 by definition since x_1 is in the basis
 $\tilde{c}_2 = 2 - \begin{bmatrix} 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix} = 5$ indicates possible
improvement

$$\tilde{c}_3 = 0$$
 by definition since x_3 is in the basis

$$\tilde{c}_4 = 0$$
 by definition since x_4 is in the basis
 $\tilde{c}_5 = 0 - \begin{bmatrix} 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix} = -3$

- \Box Clearly, the only choice is to get x_2 into the basis
 - and so we need to establish the limiting condition
 - from the three equations by evaluating

 $min\left\{7,1,\infty
ight\}=1$

and so x_2 replaces x_4 , which becomes a

nonbasic variable

□ We need to rewrite the equations into canonical

form for x_3 and x_2 and construct the new tableau

An optimum is at the solution of

Consider the following *LP*

 $max Z = 3x_1 + 2x_2$

s.*t*.

cuu duong than cong. com

- $-x_1 + 2x_2 \leq 4$
 - $3x_1 + 2x_2 \leq 14$
- $x_{1} x_{2} \leq 3$

$$x_1 \geq 0$$
 $x_2 \geq 0$

□ The graphical representation corresponds to

ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

□ The tableau approach leads to *C* which is an optimal solution with

$$x_1 = 4, x_2 = 1, x_3 = 6, x_4 = 0, x_5 = 0$$

- Note that any point along *CD* has *Z* = 14 and as such *D* is another optimal solution corresponding to an adjacent basic feasible solution
- □ We may obtain *D* from *C* by bringing into the basis the nonbasic variable x_5 in Tableau 3; note that $\tilde{c}_5 = 0$

- \Box We may choose x_5 as a basic variable without
 - effecting Z since the relative profits are θ ; we
 - compute the limiting value of x_5
- \Box The limit is imposed by x_3 which, consequently,

leaves the basis ducing than cong. com

□ The corresponding tableau is:

	c_j	3	2	0	0	0	constraint			
<u>C</u> B	basic variables	\boldsymbol{x}_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	constants			
0	<i>x</i> ₃	cuu d	Jong th	5/8	-1/8	1	15/4			
2	<i>x</i> ₂		1	3/8	1/8		13/4			
3	<i>x</i> ₁	1		-1/4	1/4		5/2			
	$\tilde{\underline{c}}^{T}$	0	0	0	-1	0	Z = 14			
$C_{i} \leq 0 \forall i$										

ECE 307 © 2005 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 $\mathbf{c}_{i} \leq \mathbf{0}$

□ The adjacent feasible solution is given by

$$x_1 = \frac{5}{2}, x_2 = \frac{13}{4}, x_3 = x_4 = 0, x_5 = \frac{15}{4}$$

□ Note that at this basic feasible solution,

and so this is also an optimal solution

ALTERNATE OPTIMAL SOLUTION

In general, an alternate optimal solutions is

indicated whenever there exists a *nonbasic*

cuu duong than cong. com

variable x_j with $\tilde{c}_j = 0$ in an optimal tableau;

such a situation corresponds to a *non unique*

optimum for the LP

MINIMIZATION LP

Consider a minimization problem

min
$$Z = \sum_{i=1}^{n} c_i x_i$$

s.t.

$$\underline{Ax} = \underline{b}$$

$$\underline{x} \ge \underline{0}$$

□ In the simplex scheme, replace the optimality check by the following : if each coefficient \tilde{c}_j is ≥ θ stop; else, select the nonbasic variable with the *most negative* value in \tilde{c} to become the new basic variable

MINIMIZATION LP

□ Every minimization *LP* may be solved as a

maximization LP because of equivalence

 $\begin{array}{ll} \min & Z = \underline{c}^T \underline{x} & \max & Z' = (-\underline{c}^T) \underline{x} \\ s.t. & s.t. \\ & \underline{A} \, \underline{x} = \underline{b} & \underline{s.t.} \\ & \underline{X} \geq \underline{0} & \underline{x} \geq \underline{0} \\ \end{array}$ with the solutions of Z and Z' related by $\begin{array}{l} \min\{Z\} = -\max\{Z'\} \end{array}$

- \Box Two variables x_j and x_k are tied in the selection
 - of the *nonbasic variables* to replace a current basic
 - variable when $\tilde{c}_{j} = \tilde{c}_{k}$; the choice of the new

nonbasic variable to enter the basis is *arbitrary*

□ Two or more constraints may give rise to the

same *minimum ratio value* in selecting the basic variable to be replaced

□ We consider the example of the following tableau

	<i>c</i> _j	0	0	0	2	0	3/2	constraint
<u>C</u> B	basic variables	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	constants
0	<i>x</i> ₁	1	uu duor	g thar	c¶g.	<u>-</u> 1	0	2
0	<i>x</i> ₂		1		2	0	1	4
0	<i>x</i> ₃	C	u duor	1 g thar	1 cong.	1	1	3
	$\tilde{\underline{c}}^{T}$	0	0	0	2	0	3/2	Z = 0

candidate for basic variable

Oin selecting the *nonbasic variable* x_{4} to enter the basis, we observe that the first two constraints give the same minimum ratio: this means that when x_4 is first increased to 2, both the basic variables x_1 and x_2 will reduce to zero even though only one of them can be made a *nonbasic* variable Owe arbitrarily decide to remove x_1 from the

basis to get the new basic feasible solution:

	<i>c</i> _j	0	0	0	2	0	3/2	constraint
<u>C</u> B	basic variables	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	constants
2	<i>x</i> ₄	1	uu duor	g thar	cong.	<u>-1</u>		2
0	<i>x</i> ₂	- 2	1			2	1	0
0	<i>x</i> ₃	- 1 _c	uu duor	g 1 nar	cong.		1	1
	$\tilde{\underline{c}}^{T}$	- 2	0	0	0	0	3/2	Z = 4

O in the new basic feasible solution

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = 1$, $x_4 = 2$, $x_5 = 0$, and $x_6 = 0$,

we treat x_2 as a *basic variable* whose value is θ ,

the same as if it were a *nonbasic variable*

DEGENERACY

□ A *degenerate basic feasible* solution is one where one or more *basic variables* is 0

Degeneracy may lead to a number of complicacuu duong than cong. com tions in the simplex approach: an important

implication is a minimum ratio of θ , so that no

new *nonbasic variable* maybe included in the basis and therefore the basis remains unchanged

□ We consider the following example tableau

	<i>c</i> _j	0	0	0	2	0	3/2	constraint
<u>C</u> B	basic variables	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	constants
2	<i>x</i> ₄	¢	1/2	g thar	cong. 1	com	1/2	2
0	<i>x</i> ₅	-1	1/2			1	1/2	0
0	<i>x</i> ₃	1	1 1 01	g 1 har	cong.	com	0	1
	$\tilde{\underline{c}}^{T}$	0	- 1	0	0	0	1/2	Z = 4

DEGENERACY

the logical choice being the *nonbasic variable* x_6 to enter the basis; this leads to finding the limiting constraint from two equations

$$\frac{1}{2}x_{6} = 2 - x_{4}$$
$$\frac{1}{2}x_{6} = 0 - x_{5}$$

and no constraint in the third equation; thus

$$x_6 = min\{4, 0, \infty\}$$

DEGENERACY

- Degeneracy may result in the construction of new tableaus without improvement in the objective function value, thereby reducing the efficiency of the computations: theoretically, an infinite loop, the so-called *cycling*, is possible
- Whenever ties occur in the minimum ratio rule, an *arbitrary* decision is made regarding which *basic variable* is replaced, ignoring the theoretical consequences of degeneracy and cycling

□ The minimum ratio rule may not be able to deter-

mine the basic variable to be replaced: this is the

case when all equations lead to ∞ as the limit

□ Consider the example and corresponding tableau

$$\begin{array}{rcl} max & Z = 2x_{1} + 3x_{2} \\ s.t. \\ & x_{1} - x_{2} + x_{3} & = 2 \\ -3x_{1} + x_{2} & + x_{4} = 4 \\ & x_{i} \geq 0, \quad i = 1, \dots, 4 \end{array}$$

	c_j	2	3	0	0	constraint
<u>C</u> B	basic variables	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	constants
0	<i>x</i> _{3 cu}	1 duong	-1 than	1 cong.	om	2
0	<i>x</i> ₄	-3	1		1	4
	$\tilde{\underline{c}}^{T}$		3	0	0	Z = 0

cuu duong than cong. com

 \Box The *nonbasic variable* x_2 enters the basis to

replacing x_4 and the new tableau is

cuu duong than cong. com

 \Box We select x_1 to enter the basis but we are unable

to get limiting constraints from the two equations

$$-2x_{1} + x_{3} = 6 \qquad x_{1} = \frac{1}{2}x_{3} - 3$$
$$-3x_{1} + x_{2} = 4 \qquad x_{1} = \frac{1}{3}x_{2} - \frac{4}{3}$$

 \Box In fact, as x_1 increases so do x_2 and x_3 and Z

and therefore, the solution is *unbounded*

□ The failure of the minimum ratio rule to result in a

bound at any simplex tableau implies that the

problem has an *unbounded solution*