ECE 307- Techniques for Engineering Decisions

Duality Concepts in Linear Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

DUALITY

□ Definition: A LP is in symmetric form if all the variables are restricted to be nonnegative and all the constraints are inequalities of the type:

objective type

max

min

min

corresponding
inequality type

min

≥

DUALITY DEFINITIONS

☐ We define the *primal* problem as

$$Z = \underline{c}^T \underline{x}$$

$$\underline{c}^T \underline{x}$$

s.t.

$$\underline{A} \underline{x}$$
 \underline{b} cong. com $\underline{x} \geq \underline{0}$

☐ The *dual* problem is therefore

$$W = b^T y$$

$$\underline{\boldsymbol{b}}^T \underline{\boldsymbol{y}}$$

s.t.

$$\underline{A}^T \underline{y} \geq \underline{c} \tag{D}$$

DUALITY DEFINITIONS

 \square The problems (P) and (D) are called the *symmetric*

dual LP problems

$$max \ Z = c_1 \ x_1 + c_2 \ x_2 + \dots + c_n x_n$$
 s.t. cuu duong than cong. com
$$a_{11} \ x_1 + a_{12} \ x_2 + \dots + a_{1n} \ x_n \le b_1$$

$$a_{21} \ x_1 + a_{22} \ x_2 + \dots + a_{2n} \ x_n \le b_2$$

$$cuu \ duen: \ than \ cong. \ com$$

$$a_{m1} \ x_1 + a_{m2} \ x_2 + \dots + a_{mn} \ x_n \le b_m$$

$$x_1 \ge 0, \quad x_2 \ge 0, \quad \dots, \quad x_n \ge 0$$

DUALITY DEFINITIONS

s.t.
$$a_{11} y_1 + a_{21} y_2 + \dots + a_{m1} y_m \ge c_1$$

$$a_{12} y_1 + a_{22} y_2 + \dots + a_{m2} y_m \ge c_2$$

$$\vdots$$

$$a_{1n} y_1 + a_{2n} y_2 + \dots + a_{mn} y_m \ge c_n$$

$$y_1 \ge 0, \quad y_2 \ge 0, \dots, \quad y_m \ge 0$$

EXAMPLE 1: MANUFACTURING TRANSPORTATION PROBLEM

shipment cost coefficients

warehouses	retail stores			
	R_1	R_2	R_3	
${W}_1$	2	4	3	
${W}_2$	5	uu 3 .uor	g t 4 an	

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

EXAMPLE 1: MANUFACTURING TRANSPORTATION PROBLEM

☐ We are given that the *supplies needed* at Warehouse

$$W_1$$
 and W_2 are

$$W_1 \leq 300$$

$$W_2 \leq 600$$

☐ We are also specified the *demands needed* at retail stores R_1 , R_2 , and R_3 as

$$R_1 \leq 200$$

$$R_2 \leq 300$$

$$R_3 \leq 400$$

EXAMPLE 1: MANUFACTURING TRANSPORTATION PROBLEM

☐ The problem is to determine the *least-cost* shipping

schedule

☐ We define the decision variable

 $x_{ij} \triangleq quantity shipped from W_1 to R_j \quad i = 1, 2, j = 1, 2, 3$

 \Box The shipping costs $c_{ij} \triangleq$ may be viewed as

element i,j of the transportation cost matrix

FORMULATION STATEMENT

min
$$Z = \sum_{i=1}^{2} \sum_{j=1}^{3} c_{ij} x_{ij} = 2x_{11} + 4x_{12} + 3x_{13} + 5x_{21} + 3x_{22} + 4x_{23}$$
s.t.
$$x_{11} + x_{12} + x_{13} \leq 300$$

$$x_{11} + x_{21} + x_{22} + x_{23} \leq 600$$

$$x_{11} + x_{21} \geq 200$$

$$x_{12} + x_{22} \geq 300$$

$$x_{13} + x_{23} \geq 400$$

$$x_{ij} \geq 0 \quad i = 1, 2 \quad j = 1, 2, 3$$

DUAL PROBLEM SETUP

$$min Z = \sum_{i=1}^{2} \sum_{j=1}^{3} c_{ij} x_{ij}$$

s.t.

$$y_{1} \leftrightarrow -x_{11} - x_{12} - x_{13} + x_{13} + x_{22} - x_{23} \ge -300$$
 $y_{2} \leftrightarrow -x_{21} - x_{22} - x_{23} \ge -600$
 $y_{3} \leftrightarrow x_{11} + x_{21} \ge 200$
 $y_{4} \leftrightarrow x_{12} + x_{22} \ge 300$
 $y_{5} \leftrightarrow x_{13} + x_{23} \ge 400$

$$x_{ij} \ge 0$$
 $i = 1, 2, 3$

DUAL PROBLEM SETUP

$$y_i \ge 0$$
 $i = 1, 2, ..., 5$

 $+ y_5 \le c_{23} = 4$

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 $-y_2$

INTERPRETATION OF THE DUAL PROBLEM

☐ The moving company proposes to the manufacturer to:

buy all the 300 units at W_1 at y_1 /unit buy all the 600 units at W_2 at y_2 /unit sell all the 200 units at R_1 at y_3 /unit sell all the 300 units at R_2 at y_4 /unit sell all the 400 units at R_3 at y_5 /unit

☐ To convince the manufacturer to get the business, the mover ensures that the delivery is for less than the transportation costs the manufacturer would incur (the dual constraints)

INTERPRETATION OF THE DUAL PROBLEM

$$-y_{1} + y_{3} \leq c_{11} = 2$$

$$-y_{1} + y_{4} \leq c_{12} = 4$$

$$-y_{1} + y_{5} \leq c_{13} = 3$$

$$-y_{2} + y_{3} \text{ than cong. } c \leq c_{21} = 5$$

$$-y_{2} + y_{4} \leq c_{22} = 3$$

$$-y_{2} + y_{5} \leq c_{23} = 4$$

☐ The mover wishes to maximize profits, i.e.,

 $revenues - costs \Rightarrow dual cost objective function$

$$maxW = -300 y_1 - 600 y_2 + 200 y_3 + 300 y_4 + 400 y_5$$

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

IJ

EXAMPLE 2: FURNITURE PRODUCTS

☐ Resource requirements

item	sales price (\$)		
desks	60		
tables the	n cong. co30		
chairs	20		

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

14

EXAMPLE 2: FURNITURE PRODUCTS

☐ The Dakota Furniture Company manufacturing:

resource	desk	table	chair	available
lumber board (ft)	8	6	1	48
finishing (h)	cuu duong	than 2^{ong} .	1.5	20
carpentry (h)	2	1.5	0.5	8

- We assume that the demand for desks, tables and chairs is unlimited and the available resources are already purchased
- ☐ The decision problem is to maximize *total revenues*

PRIMAL AND DUAL PROBLEM FORMULATION

☐ We define decision variables

 $x_1 = number of desks produced$

 x_2 = number of tables produced

 x_3 = number of chairs produced

☐ The Dakota problem is

$$max \quad Z = 60x_1 + 30x_2 + 20x_3$$

s.t.

$$y_1 \leftrightarrow 8x_1 + 6x_2 + x_3 \leq 48$$

$$y_2 \leftrightarrow 4x_1 + 2x_2 + 1.5x_3 \leq 20$$
 finishing

$$y_3 \leftrightarrow 2x_1 + 1.5x_2 + 0.5x_3 \leq 8$$

$$x_1, x_2, x_3 \geq \theta$$

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

lumber

carpentry

PRIMAL AND DUAL PROBLEM FORMULATION

☐ The dual problem is

$$min \quad W = 48y_1 + 20y_2 + 8y_3$$

s.t.

cuu duong than cong. com

$$8y_1 + 4y_2 + 2y_3 \ge 60$$
 desk

$$6y_1 + 2y_2 + 1.5y_3 \ge 30$$
 table

$$y_1 + 1.5y_2 + 0.5y_3 \ge 20$$
 chair

$$y_1, y_2, y_3 \geq \theta$$

PRIMAL AND DUAL PROBLEM FORMULATION

$$max \quad Z = 60 x_1 + 30 x_2 + 20 x_3$$
 $y_1 \leftrightarrow 8 x_1 + 6 x_2 + x_3 \leq 48 \quad lumber$
 $y_2 \leftrightarrow 4 x_1 + 2 x_2 + 1.5 x_3 \leq 20 \quad finishing$
 $y_3 \leftrightarrow 2 x_1 + 1.5 x_2 + 0.5 x_3 \leq 8 \quad carpentry$
 $x_1, x_2, x_3 \geq 0$

min
$$W = 48y_1 + 20y_2 + 8y_3$$

 $8y_1 + 4y_2 + 2y_3 \ge 60$ desk
 $6y_1 + 2y_2 + 1.5y_3 \ge 30$ table
 $y_1 + 1.5y_2 + 0.5y_3 \ge 20$ chair
 $y_1, y_2, y_3 \ge 0$

INTERPRETATION OF THE DUAL PROBLEM

- ☐ An entrepreneur wishes to purchase all of Dakota's resources
- □ He thus needs to determine the price to pay for each unit of each resource

 $y_1 = price paid for 1 lumber board ft$

 y_2 = price paid for 1 h of finishing

 $y_3 = price paid for 1 h of carpentry$

■ We solve the Dakota dual problem to determine

$$y_1, y_2, \text{ and } y_3$$

INTERPRETATION OF THE DUAL PROBLEM

- ☐ To induce Dakota to sell the raw resources, the resource prices must be set sufficiently high
- □ For example, the entrepreneur must offer Dakota at least \$60 for a combination of resources that includes 8 ft of lumber board, 4 h of finishing and 2 h of carpentry since Dakota could use this combination to sell a desk for \$60: this consideration implies the construction of the dual constraint

$$8y_1 + 4y_2 + 2y_3 \geq 60$$

INTERPRETATION OF DUAL PROBLEM

☐ In the same way we obtain the two additional

constraints for a table and for a chair

 \Box The i^{th} primal variable corresponds to the i^{th}

constraint in the dual problem statement

 \Box The j^{th} dual variable corresponds to the j^{th}

constraint in the primal problem statement ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

21

EXAMPLE 3: DIET PROBLEM

- □ A new diet requires that all food eaten come from one of the four "basic food groups": chocolate cake, ice cream, soda and cheesecake
- ☐ The four foods available for consumption are as given in the table
- Minimum requirements for each day are:
 - **O** 500 cal
 - O 6 oz chocolate than cong. com
 - O 10 oz sugar
 - \bigcirc 8 oz fat

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

https://fb.com/tailieudientucntt

EXAMPLE 3: DIET PROBLEM

food	calories	chocolate (oz)	sugar (oz)	fat (oz)	costs (cents)
brownie	400	3	2	2	50
chocolate ice cream (scoop)	200	uu duong th 2	an cong. co 2	4	20
cola (bottle)	150	O	4	1	30
pineapple cheesecake (piece)	500	0	4	5	80

PROBLEM FORMULATION

- □ Objective of the problem is to minimize the costs of the diet
- □ Decision variables are defined for each day's purchases
 - $x_1 = number of brownies$
 - x_2 = number of chocolate ice cream scoops
 - $x_3 = number of bottles of soda$
 - x_4 = number of pineapple cheesecake pieces

PROBLEM FORMULATION

☐ The problem statement is

$$min \quad Z = 50 x_1 + 20 x_2 + 30 x_3 + 80 x_4$$

s.t.

$$400 x_1 + 200 x_2 + 150 x_3 + 500 x_4 \ge 500 \ cal$$

$$3x_1 + 2x_2 \geq 6 oz$$

$$2x_1 + 2x_2 + 4x_3 + 4x_4 \ge 10 oz$$

$$2x_1 + 4x_2 + x_3 + 5x_4 \ge 8 oz$$

$$x_i \geq 0 \qquad i=1,4$$

EXAMPLE 3: DIET PROBLEM

☐ The dual problem is

$$max W = 500 y_1 + 6 y_2 + 10 y_3 + 8 y_4$$

s.t.

$$400 y_1 + 3 y_2 + 2 y_3 + 2 y_4 \le 50$$
 brownie

$$200 y_1 + 2 y_2 + 2 y_3 + 4 y_4 \le 20$$
 ice-cream

$$150 y_1 + 4 y_3 + y_4 \le 30 \quad \text{soda}$$

$$500 y_1 + 4 y_3 + 5 y_4 \le 80$$
 cheesecake

$$y_1, y_2, y_3, y_4 \geq \theta$$

INTERPRETATION OF THE DUAL

- We consider a sales person of "nutrients" who is interested in assuming that each dieter meets daily requirements by purchasing calories, sugar, fat and chocolate duong than cong. com
- ☐ The key decision is to determine the prices
 - y_i = price per unit to sell to dieters
- \Box Objective of sales person is to set the prices y_i so as to maximize revenues from selling to the dieter the daily ration of required nutrients

INTERPRETATION OF DUAL

- \square Now, the dieter can purchase a brownie for 50 ¢ and have $400\ cal$, $30\ oz$ of chocolate, $2\ oz$ of sugar and $2\ oz$ of fat
- □ Salesperson must set y_i sufficiently low to entice the buyer to get the required nutrients from the brownie:

$$400y_1 + 3y_2 + 2y_3 + 2y_4 \le 50$$

$$\frac{brownie}{constraint}$$

□ We derive similar constraints for the ice cream, the soda and the cheesecake

DUAL PROBLEMS

max
$$Z = \underline{c}^{T} \underline{x}$$
s.t.
$$\underline{A} \underline{x} \leq \underline{b}$$

$$\underline{x} \geq \underline{o} \underline{0} \text{ then cong. com}$$

$$W = \underline{b}^{T} \underline{y}$$
s.t.
$$\underline{A}^{T} \underline{y} \geq \underline{o} \underline{c} \text{ then cong. com}$$

$$\underline{y} \geq \underline{0}$$

$$(D)$$

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

29

WEAK DUALITY THEOREM

 \Box For any \underline{x} feasible for (P) and any \underline{y} feasible for

(D)

$$\operatorname{cuu} \operatorname{du}\underline{\boldsymbol{c}}^T\underline{\boldsymbol{x}} \text{ and } \leq \operatorname{c}\underline{\boldsymbol{b}}^T\underline{\boldsymbol{y}} \text{ com}$$

☐ Proof:

$$\underline{A}^T \underline{y} \geq \underline{c} \implies \underline{c}^T \leq \underline{y}^T \underline{A} \implies \underline{c}^T \underline{x} \leq \underline{y}^T \underline{A} \underline{x}$$

$$\underline{c}^T \underline{x} \leq \underline{y}^T \underline{A} \underline{x} \leq \underline{y}^T \underline{b} = \underline{b}^T \underline{y}$$

COROLLARY 1 OF THE WEAK DUALITY THEOREM

$$\underline{x}$$
 feasible for $(P) \Rightarrow \underline{c}^T \underline{x} \leq \underline{y}^T \underline{b}$

for any feasible \underline{y} for (D)

$$\underline{c}^T \underline{x} \leq \underline{y}^{*T} \underline{b} = \min W$$

for any feasible \underline{x} for (P),

$$\underline{c}^T \underline{x} \leq \min W$$

COROLLARY 2 OF THE WEAK DUALITY THEOREM

$$\underline{y}$$
 feasible for $(D) \Rightarrow \underline{c}^T \underline{x} \leq \underline{y}^T \underline{b}$

for every feasible \underline{x} for (P)

$$max Z = max \underline{c}^T \underline{x} = \underline{c}^T \underline{x}^* < y^{*T} \underline{b}$$

for any feasible \underline{y} of (D),

$$y^T \underline{b} \geq max Z$$

COROLLARIES 3 AND 4 OF THE WEAK DUALITY THEOREM

If (P) is feasible and max Z is unbounded, i.e.,

$$Z \rightarrow +\infty$$
 ;

then, (D) has no feasible solution

If (D) is feasible and min Z is unbounded, i.e.,

$$\stackrel{ ext{cut}}{Z} o -\infty$$
 ;

then, (P) is infeasible

DUALITY THEOREM APPLICATION

□ Consider the maximization problem

CuuDuongThanCong.com

$$\max Z = x_1 + 2x_2 + 3x_3 + 4x_4 = \underbrace{\begin{bmatrix} 1, 2, 3, 4 \end{bmatrix}}_{\underline{x}} \underline{x}$$
s.t.
$$\begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 1 & 3 & 2 \end{bmatrix} \underline{x} \leq \begin{bmatrix} 20 \\ 20 \end{bmatrix}$$

$$\underline{A} \qquad \underline{b} \qquad \underline{b} \qquad \underline{b}$$

$$\underline{x} \geq 0$$

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

34

DUALITY THEOREM APPLICATION

☐ The corresponding dual is given by

min
$$W = \underline{b}^T \underline{y}$$

s.t. cuu duong than cong. com
$$\underline{A}^T \underline{y} \geq \underline{c}$$
cuu duong \underline{y} t $\geq \underline{c}$

■ With the appropriate substitutions, we have

DUALITY THEOREM APPLICATION

min

$$W = 20 y_1 + 20 y_2$$

s.t.

$$y_1 + 2y_2 \geq 1$$

cuu duong than cong. com

$$2y_1 + y_2 \geq 2$$

$$2y_1 + 3y_2 \ge 3$$

$$3y_1 + 2y_2 \geq 4$$

$$y_1 \geq \theta, y_2 \geq \theta$$

GENERALIZED FORM OF THE DUAL

□ Consider the primal decision

$$x_i = 1, i = 1, 2, 3, 4;$$

decision is feasible for (P) with

$$Z = \underline{c}^T \underline{x} = 10$$

☐ The dual decision

$$y_i = 1, \quad i = 1, 2$$

is feasible for (D) with

$$W = \underline{b}^T \underline{y} = 40$$

DUALITY THEOREM APPLICATION

□ Clearly,

$$Z(x_1,x_2,x_3,x_4) = 10 < 40 = W(y_1,y_2)$$

and so clearly, the feasible decision for (P) and

- (D) satisfy the Weak Duality Theorem
- □ Moreover, we have

corollary
$$1 \Rightarrow 10 \leq min W = W(y_1^*, y_2^*)$$

corollary 2
$$\Rightarrow$$
 max $Z = Z(x_1^*, x_2^*, x_3^*, x_4^*) \leq \underline{b}^T \underline{y} = 40$

CORROLARIES 5 AND 6

(P) is feasible and (D) is infeasible, then,

(P) is unbounded

(D) is feasible and (P) is infeasible, then,

cuu duong than cong. com

(D) is unbounded

☐ Consider the primal dual problems:

□ Now

$$\underline{x} = \underline{\theta}$$
 is feasible for (P)

but

$$-y_1 - 2y_2 \ge 1$$

is impossible for (D) since it is inconsistent with

cuu duong
$$y_1, y_2 \ge \theta$$
 com

☐ Since (*D*) infeasible, it follows from Corollary 5 that

cuu duo
$$Z o \infty$$
 ong. com

- ☐ You should be able to show this result by solving
 - (P) using the simplex scheme

OPTIMALITY CRITERION THEOREM

 \square We consider the primal-dual problems (P) and (D) with

$$\underline{x}^{\theta} \text{ is feasible for } (P) \\
\underline{y}^{\theta} \text{ is feasible for } (D) \\
\underline{c}^{T} \underline{x}^{\theta} = \underline{b}^{T} \underline{y}^{\theta}$$

$$\underline{x}^{\theta} \text{ is optimal for } (P) \\
\underline{x}^{\theta} \text{ is optimal for } (P) \\
\underline{y}^{\theta} \text{ is optimal for } (D)$$

☐ We next provide the proof:

$$\underline{x}^{\theta}$$
 is feasible for (P) Weak Duality \underline{y}^{θ} is feasible for (D) $\xrightarrow{Theorem}$ $\underline{c}^{T}\underline{x}^{\theta} \leq \underline{b}^{T}\underline{y}^{\theta}$

OPTIMALITY CRITERION THEOREM

but we are given that

$$\underline{c}^T \underline{x}^\theta = \underline{b}^T \underline{y}^\theta$$

and so it follows that

$$\forall$$
 feasible \underline{x} , y^{θ} feasible $\underline{c}^{T}\underline{x} \leq \underline{b}^{T}y^{\theta} = \underline{c}^{T}\underline{x}^{\theta}$

$$\underline{c}^T \underline{x} \leq \underline{b}^T y^\theta = \underline{c}^T \underline{x}^\theta$$

and therefore x^{θ} is optimal; similarly

$$\forall$$
 feasible \underline{y} , \underline{x}^{θ} feasible $\underline{b}^{T}\underline{y} \geq \underline{c}^{T}\underline{x}^{\theta} = \underline{b}^{T}\underline{y}^{\theta}$

so it follows that y^{θ} is optimal

MAIN DUALITY THEOREM

(P) is feasible and (D) is feasible; then,

 $\exists \ \underline{x}^* feasible \ for (P) \ which \ is \ optimal \ and$

 $\exists \ \underline{y}^*$ feasible for (D) which is optimal such that

cuu duong than cong. com

$$\underline{c}^T \underline{x}^* = \underline{b}^T \underline{y}^*$$

 \square \underline{x}^* and \underline{y}^* are optimal for (P) and (D) respectively, if and only if

$$\theta = \left(\underline{y}^{*T}\underline{A} - \underline{c}^{T}\right)\underline{x}^{*} + \underline{y}^{*T}\left(\underline{b} - \underline{A}\underline{x}^{*}\right)$$

$$= \underline{y}^{*T}\underline{b} - \underline{c}^{T}\underline{x}^{*}$$

□ We prove this equivalence result by defining the slack variables $\underline{u} \in \mathbb{R}^m$ and $\underline{v} \in \mathbb{R}^n$ such that \underline{x} and \underline{y} are feasible; at the optimum,

$$\underline{A} \underline{x}^* + \underline{u}^* = \underline{b} \qquad \underline{x}^*, \underline{u}^* \ge \underline{0}$$

$$\underline{A}^T \underline{y}^* - \underline{v}^* = \underline{c} \qquad \underline{y}^*, \underline{v}^* \ge \underline{0}$$

where the optimal values of the slack variables

 \underline{u}^* and \underline{v}^* correspond to the optimal values

$$\underline{x}^*$$
 and \underline{y}^* cuu duong than cong. com

□ Now,

$$\underline{y}^{*T}\underline{A}\underline{x}^{*} + \underline{y}^{*T}\underline{u}^{*} = \underline{y}^{*T}\underline{b} = \underline{b}^{T}\underline{y}^{*}$$

cuu duong than cong. com

$$\underbrace{\underline{x}^{*T}\underline{A}^{T}\underline{y}^{*}}_{\underline{y}^{*T}\underline{A}\underline{x}^{*}} - \underline{x}^{*T}\underline{v}^{*} = \underline{x}^{*T}\underline{c} = \underline{c}^{T}\underline{x}^{*}$$

☐ This implies that

$$\underline{y}^{*T}\underline{u}^{*} + \underline{v}^{*T}\underline{x}^{*} = \underline{b}^{T}\underline{y}^{*} - \underline{c}^{T}\underline{x}^{*}$$

cuu duong than cong. com

■ We need to prove optimality which is true if and

only if

cuu duong than cong. com

$$\underline{y}^{*T}\underline{u}^* + \underline{v}^{*T}\underline{x}^* = 0$$

☐ However,

$$\underline{x}^*, \underline{y}^*$$
 are optimal

Duality Theorem

$$\underline{c}^{T}\underline{x}^{*} = \underline{b}^{T}\underline{y}^{*} \Rightarrow \underline{y}^{*T}\underline{u}^{*} + \underline{v}^{*T}\underline{x}^{*} = 0$$

☐ Also,

$$y^{*T}\underline{u}^{*} + \underline{v}^{*T}\underline{x}^{*} = 0 \implies \underline{b}^{T}y^{*} = \underline{c}^{T}\underline{x}^{*}$$

Criterion Theorem

 \underline{x}^* is optimal for (P) and \underline{y}^* is optimal for (D)

□ Note that

$$\underline{x}^*, \underline{y}^*, \underline{u}^*, \underline{v}^* > 0 \implies component - wise each element \geq 0$$

$$y^{*T}\underline{u}^* + \underline{v}^*\underline{x}^* = 0 \implies y_i^*u_i^* = 0 \quad \forall i = 1, ..., m$$
 and

$$v_j^* x_j^* = \theta \quad \forall j = 1, \dots, n$$

☐ At the optimum,

$$y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n}a_{ij}x_{j}^{*}\right)=0$$
 $i=1,...,m$

and

$$x_{j}^{*}\left(\sum_{i=1}^{m}a_{ji}y_{i}^{*}-c_{j}\right)=0 \quad j=1,...,n$$

 \square Hence, for i = 1, 2, ..., m

$$y_i^* > \theta \Rightarrow b_i = \sum_{j=1}^n a_{ij} x_j^*$$

and

$$b_i - \sum_{j=1}^n a_{ij} x_j^* > 0 \Rightarrow y_i^* = 0$$

 \square Similarly for j = 1, 2, ..., n

$$x_{j}^{*} > 0 \Longrightarrow \sum_{i=1}^{m} a_{ji} y_{i}^{*} = c_{j}$$

and

$$\sum_{i=1}^{m} a_{ji} y_{i}^{*} - c_{j} > 0 \implies x_{j}^{*} = 0$$

$$max \qquad Z = x_1 + 2x_2 + 3x_3 + 4x_4$$

s.t.

cuu duong than cong. com

$$x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 \qquad (P)$$

$$2x_1 + x_2 + 3x_3 + 2x_4 \le 20$$

$$x_i \geq 0 \quad i = 1, ..., 4$$

$$W = 20y_1 + 20y_2$$

s.t.

$$y_1 + 2y_2 \ge 1$$

$$2y_1 + y_2 \geq 2$$

$$2y_1 + 3y_2 \geq 3$$

cuu duong than cong. cor

$$3y_1 + 2y_2 \geq 4$$

$$y_1 \geq \theta$$

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

(D)

$$\underline{x}^*,\underline{y}^*$$
 optimal \Rightarrow

$$y_{1}^{*}\left(20-x_{1}^{*}-2x_{2}^{*}-2x_{3}^{*}-3x_{4}^{*}\right)=0$$

$$y_{2}^{*}\left(20-2x_{1}^{*}-x_{2}^{*}-3x_{3}^{*}-2x_{4}^{*}\right)=0$$

$$\underline{y}^* = \begin{bmatrix} 1.2 \\ 0.2 \end{bmatrix}$$
 is given as an optimal solution with

cuu duong than cong. com

$$min W = 28$$

$$x_{1}^{*} + 2x_{2}^{*} + 2x_{3}^{*} + 3x_{4}^{*} = 20$$

$$2x_{1}^{*} + x_{2}^{*} + 3x_{3}^{*} + 2x_{4}^{*} = 20$$

$$y_{1}^{*} + 2y_{2}^{*} = 1.2 + 0.4 > 1 \Rightarrow x_{1}^{*} = 0$$

$$2y_{1}^{*} + y_{2}^{*} = 2.4 + 0.2 > 2 \Rightarrow x_{2}^{*} = 0$$

$$2y_{1}^{*} + 3y_{2}^{*} = 2.4 + 0.6 = 3$$

$$3y_{1}^{*} + 2y_{2}^{*} = 3.6 + 0.4 = 4$$

so that

cuu duong than cong. com

$$2x_{3}^{*} + 3x_{4}^{*} = 20 \qquad \Rightarrow x_{3}^{*} = 4$$

$$3x_{3}^{*} + 2x_{4}^{*} = 20 \qquad \Rightarrow x_{4}^{*} = 4$$

$$\Rightarrow x_{4}^{*} = 4$$

USES OF THE COMPLEMENTARY SLACKNESS CONDITION

- ☐ Key applications use
 - O finding optimal (P) solution given optimal (D) solution and vice versa
 - verification of optimality of solution (whether a feasible solution is optimal)
- ☐ We can start with a feasible solution and attempt to construct an optimal dual solution; if we succeed, then the feasible primal solution is *optimal*

DUALITY

DUALITY

☐ Suppose the primal problem is minimization, then,

$$Z = \underline{c}^T \underline{x}$$

$$\underline{A} \underline{x}_{\text{IU}} \ge_{\text{ICN}} \underline{b}$$
 than cong. com

$$\underline{x} \geq \underline{\theta}$$

$$W = \underline{b}^T \underline{y}$$

cuu duong than cong. com
$$(oldsymbol{D})$$

$$\underline{A}^T \underline{y} \leq \underline{c}$$

$$\frac{}{y} \geq \underline{\theta}$$

INTERPRETATION

☐ The economic interpretation is

$$Z^* = \max Z = \underline{c}^T \underline{x}^* = \underline{b}^T \underline{y}^* = W^* = \min W$$

$$b_i - \text{constrained resource quantities,}$$

$$y_i^* - \text{optimal dual variables} \qquad i = 1, 2, \dots, m$$

□ Suppose,

$$b_i \rightarrow b_i + \Delta b_i \Rightarrow \Delta Z = y_i^* \Delta b_i$$

□ In words, the optimal dual variable for each primal constraint gives the net change in the optimal value of the objective function Z for a one unit change in the constraint on resources

INTERPRETATION

- ☐ Economists refer to this as a *shadow price* on the constraint resource
- The shadow price determines the value/worth of ducing than cong. com having an additional quantity of a resource
- ☐ In the previous example, the optimal dual variables indicate that the worth of another unit of resource 1 is 1.2 and that of another unit of

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

resource 2 is 0.2

59

GENERALIZED FORM OF THE DUAL

☐ We start out with

max
$$Z = \underline{c}^T \underline{x}$$
 s.t. $\underline{A}\underline{x} = \underline{b}$ (P)

 \square To find (D), we first put (P) in symmetric form

$$\frac{y_{+}}{y_{-}} \leftrightarrow \frac{Ax}{-Ax} \leq \frac{b}{-b} \begin{bmatrix} A \\ -A \end{bmatrix} \xrightarrow{x} \leq \begin{bmatrix} b \\ -b \end{bmatrix} \quad symmetric \\ form \\ \underline{x} \geq \underline{\theta}$$

GENERALIZED FORM OF THE DUAL

☐ Let

$$\underline{y} = \underline{y}_{+} - \underline{y}_{-}$$

☐ We rewrite the problem as

$$min W = \underline{b}^T \underline{y}$$

s.t.

$$\underline{A}^T \underline{y} \geq \underline{c}$$

y is unsigned

 \Box The *c.s.* conditions apply

$$\underline{x}^{*T} \left(\underline{A}^T \underline{y}^* - \underline{c} \right) = \underline{\theta}$$

s.t.
$$y_{1} \leftrightarrow x_{1} + x_{2} + x_{3} - x_{4}$$

$$y_{2} \leftrightarrow x_{1} \qquad \leq 8$$

$$y_{3} \leftrightarrow \qquad \leq 4$$

$$y_{4} \leftrightarrow \qquad -x_{2} \qquad \leq 4$$

$$y_{5} \leftrightarrow \qquad \qquad x_{3} \qquad \leq 4$$

$$y_{6} \leftrightarrow \qquad -x_{3} \qquad \leq 2$$

$$y_{7} \leftrightarrow \qquad \qquad x_{4} \leq 10$$

$$x_{1}, x_{4} \geq 0$$

$$x_{2}, x_{3} \quad unsigned$$

$$min W = 8y_1 + 8y_2 + 4y_3 + 4y_4 + 4y_5 + 2y_6 + 10y_7$$

s.t.

$$x_{1} \leftrightarrow y_{1} + y_{2} \geq 1$$

$$x_{2} \leftrightarrow y_{1} + y_{3} - y_{4} = -1$$

$$x_{3} \leftrightarrow y_{1} + y_{5} - y_{6} = 1$$

$$x_{4} \leftrightarrow y_{1} + y_{7} \geq -1$$

cuu duong than cong. com

$$y_2, \dots, y_7 \ge 0$$

 y_1 unsigned

☐ We are given that

$$x^* = \begin{bmatrix} 8 \\ -4 \\ \text{th } 4 \end{bmatrix} \text{ ong. com}$$

is optimal for (P)

 \Box Then the *c.s.* conditions obtain

$$x_{1}^{*}(y_{1}^{*} + y_{2}^{*} - 1) = 0$$

$$x_{1}^{*} = 8 > 0 \implies y_{1}^{*} + y_{2}^{*} = 1$$

 \Box The other c.s. conditions obtain

$$y_i^* \left(\sum_{j=1}^4 a_{ij} x_j^* - b_i \right) = 0$$

 \square Now, $x_4^* = \theta$ implies $x_4^* - 10 < \theta$ and so

$$y_7^* = 0$$

 \square Also, $x_3^* = 4$ implies

$$y_6^* = \theta$$

 \Box Similarly, the *c.s.* conditions

$$x_{j}^{*}\left(\sum_{i=1}^{7}a_{ji}y_{i}^{*}-c_{j}\right)=0$$

have implications on the y_i^* variable

 \square Since, $x_2^* = -4$ then, we have

cuu duon
$$y^*_3=\theta$$
cong. com

 \square Now, with $y_7^* = \theta$ we have

$$y_1^* > -1$$

 \Box Since, $x_1^* = 8$ we have

$$y_{2}^{*} = 1 - y_{1}^{*}$$

□ Suppose

$$y_1^* = 1$$

and so,

$$y_2^* = \theta$$

☐ Furthermore,

$$y_{1}^{*} + y_{3}^{*} - y_{4}^{*} = 1 - y_{4}^{*} = -1$$

implies

$$y_4^* = 2$$

☐ Also

$$y_1^* + y_5^* - y_6^* = 1$$

implies

cuu duong than cong. com

$$1+y_5^*=1$$

and so

cuu duong than cong. com

$$y_5^* = \theta$$

□ Therefore

$$W(\underline{y}^*) = (8)(1)+(8)(\theta)+(4)(\theta)+(4)(2)+$$

$$(4)(\theta)+(2)(\theta)+(10)(\theta)$$

and so

cuu duong than cong. com

$$W^* = 16 = Z^* \Leftrightarrow \text{optimality of } (P) \text{ and } (D)$$

PRIMAL - DUAL TABLE

primal (maximize)	dual (minimize)
\underline{A} (coefficient matrix)	\underline{A}^{T} (transpose of the coefficient matrix)
$\underline{\boldsymbol{b}}$ (right-hand side vector)	<u>b</u> (cost vector)
\underline{c} (price vector) cuu du	ong than \underline{c} (right hand side vector)
i^{th} constraint is = type	the dual variable y_i is unrestricted in sign
i^{th} constraint is \leq type	the dual variable $y_i \ge \theta$
i^{th} constraint is \geq type	the dual variable $y_i \leq \theta$
x_j is unrestricted	j^{th} dual constraint is = type
$x_j \ge \theta$	$j^{\it th}$ dual constraint is \geq type
$x_j \leq 0$	$j^{\it th}$ dual constraint is \leq type

ECE 307 © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

https://fb.com/tailieudientucntt