ECE 307 – Techniques for Engineering Decisions

Networks and Flows

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

NETWORKS AND FLOWS

- □ A network is a system of lines or channels connecting different points
- □ Examples abound in nearly all aspects of life:
 - O electrical systems
 - O communication networks
 - O airline webs
 - cuu duong than cong. com
 - O local area networks
 - O distribution systems

NETWORKS AND FLOWS

- □ The network structure is also common to many other systems that at first glance are not necessarily viewed as networks
 - distribution system consisting of manufacturing plants, warehouses and retail outlets
 - matching problems such as work to people, assignments to machines and computer dating

NETWORKS AND FLOWS

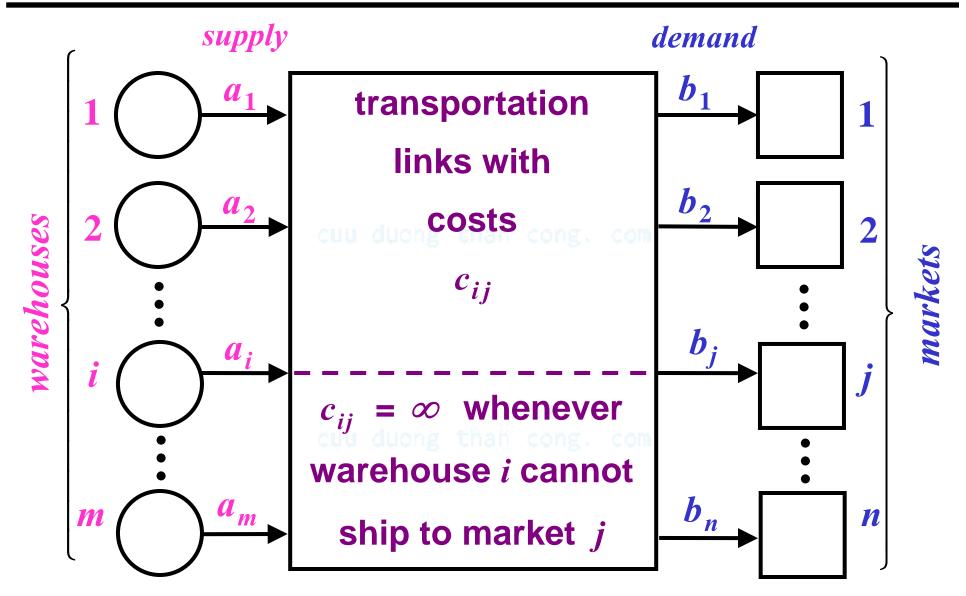
- river systems with pondage for electricity generation
- mail delivery networks
- project management of multiple tasks in a large undertaking such as construction or a space flight
- □ We consider a broad range of network and network flow problems

- ☐ The basic idea of the transportation problem is illustrated with the problem of distribution of a specified *homogenous* product from several sources to a number of localities *at least cost*
- \square We consider a system with m warehouses, n

cuu duong than cong. com

markets and links between them with the specified

costs of transportation



© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

6

O all the supply comes from the m ware-

houses; we associate the index i = 1, 2, ..., m

with a warehouse

cuu duong than cong. com

- O all the demand is at the n markets; we associate the index j = 1, 2, ..., n with a market
- O shipping costs c_{ij} for each unit from the

warehouse i to the market j

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

□ The transportation problem is to determine the

optimal shipping schedule that minimizes shipping

cuu duong than cong. com

costs for the set of m warehouses to the set of

n markets: the quantities shipped from the

warehouse i to each market j

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

LP FORMULATION OF THE TRANSPORTATION PROBLEM

☐ The decision variables are

 $x_{ij} = quanity shipped from warehouse i to market j$

cuu duong than cong. com

$$i = 1, 2, ..., m$$

$$j = 1, 2, ..., n$$

☐ The objective function is cong. com

$$min \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

☐ The constraints are:

$$\sum_{j=1}^{n} x_{ij} \leq a_{i} \qquad i = 1, 2, \dots, m$$

cuu duong than cong. com

$$\sum_{i=1}^{m} x_{ij} \geq b_{j} \qquad j = 1, 2, \dots, n$$

$$i=1,2,\ldots,m$$

$$x_{ij} \geq \theta$$

$$j = 1, 2, ..., n$$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

□ Note that feasibility requires

$$\sum_{i=1}^{m} a_i \geq \sum_{j=1}^{n} b_j$$

□ When

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

every available unit of supply at the *m* warehouses is shipped to meet all the demands of the *n* markets; this problem is known as the *standard*

transportation problem

STANDARD TRANSPORTATION PROBLEM

$$min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t.

cuu duong than cong. com

$$\sum_{j=1}^{n} x_{ij} = a_{i}$$

$$\sum_{i=1}^{m} x_{ij} = b_{j}$$

$$j = 1, \dots, m$$

$$x_{ij} \geq 0$$

TRANSPORTATION PROBLEM EXAMPLE

market j w/h i	M_1	M_2	M_3	M_4	supplies
W_1	x_{11} c_{11}	x_{12} c_{12}	x_{13} c_{13}	x_{14} c_{14}	a_1
W_2	x_{21}	x_{22}	x_{23}	x_{24}	a_2
W_3	x_{31}	x_{32}	x_{33}	x_{34}	a_3
demands	\boldsymbol{b}_1	\boldsymbol{b}_{2}	b_3	\boldsymbol{b}_{4}	

STANDARD TRANSPORTATION PROBLEM

- ☐ The standard transportation problem has
 - $\bigcirc mn$ variables x_{ij}
 - $\bigcirc m + n$ equality constraints

Cuu duong than cong. co

□ Since

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

there are at most (m + n - 1) independent constraints and consequently at most (m + n - 1) independent variables x_{ii}

TRANSPORTATION PROBLEM EXAMPLE

market j w/h i	M_{1}	$\boldsymbol{M_2}$	M_3	M_4	a_i
W_1	2	2 th	2	1	3
W_2	10	8	5	4	7
W_3	7	uu duo ng th 6	an cong. co	8	5
$oldsymbol{b}_{j}$	4	3	4	4	

THE LEAST - COST RULE PROCEDURE

☐ This scheme is used to generate an initial basic

feasible solution which has no more than

(m+n-1) positive valued basic variables

☐ The key idea of the scheme is to select, at each

step, the variable x_{ij} with the *lowest shipping costs*

 c_{ii} as the next basic variable

- \Box c_{14} is the lowest c_{ij} and we select x_{14} as a *basic* variable
- \Box We choose x_{14} as large as possible without violating any constraints:

$$min \{a_1, b_4\} = min \{3, 4\} = 3$$

 \Box We set $x_{14} = 3$ and

$$x_{11} = x_{12} = x_{13} = 0$$

☐ We delete row 1 from any further consideration since all the supplies from W_1 are exhausted

market j w/h i	M_{1}	M_{2}	M_3	M_4	a_{i}
W_1	2	uu duo $^{hg}2^{th}$	an con <mark>g 2</mark> 00	1	3
W_2	10	8	5	4	7
W_3	7	uu duong th	an cong. co	8	5
$oldsymbol{b}_{j}$	4	3	4	4	

 \Box The remaining demand at M_4 is

$$4 - 3 = 1$$

which is the value for the modified demand at M_4

☐ We again apply the *criterion selection* for the reduced

tableau: c_{24} is the lowest-valued c_{ij} with $i=2,\ j=4$

and we select x_{24} as a basic variable

 \square We choose x_{24} as large as possible without

violating any constraints:

$$min \{a_2, b_4\} = min \{7, 1\} = 1$$

and we set $x_{24} = 1$ and

$$x_{34} = 0$$

cuu duong than cong. com

☐ We delete column 4 from any further consi-

deration since all the demand at M_4 is exhausted

 \square The remaining supply at W_2 is

$$7-1=6,$$

which is the value for the modified supply at W_2

☐ We repeat these steps until we find the nonzero

basic variables and obtain a basic feasible solution

☐ In the reduced tableau,

market j w/h i	M_{1}	M_{2}	M_3	a_{i}
W_2	<u>cuu du</u> 10	ong than cong 8	5	6
W_3	cuu 7 du	ong than 6 ng	0	5
$oldsymbol{b}_{j}$	4	3	4	

- O pick x_{23} to enter the basis
- O set

$$x_{23} = min \{ 6, 4 \} = 4$$

cuu duong than cong. com

and set $x_{33} = \theta$

O eliminate column 3 and reduce the supply at

$$W_2$$
 to

cuu duong than cong. com

$$6 - 4 = 2$$

□ For the reduced tableau

market j w/h i	M_{1}	M_{2}	a_{i}
W_2	cuu duong th	en cong. com	2
W_3	cuu duo7g th	an cong. co6	5
$oldsymbol{b}_{j}$	4	3	

- O pick x_{32} to enter the basis
- O set

$$x_{32} = min \{ 3, 5 \} = 3$$

and set $x_{22} = \theta$

O eliminate column 2 in the reduced tableau and reduce the supply at W_3 to

$$5-3=2$$

☐ The last reduced tableau is

market j w/h i	$oldsymbol{M_1}$	a_{i}
W_2	u duong than cong. co	2
W_3	u duong than co7g. co	2
$oldsymbol{b}_{j}$	4	

- O pick x_{31} to enter the basis
- O set

$$x_{31} = min \{ 2, 5 \} = 2$$

cuu duong than cong. com

 \bigcirc reduce the demand at M_1 to

$$4-2=2$$

O the value of

$$x_{21} = 2$$

is obtained by default

INITIAL BASIC FEASIBLE SOLUTION

market j w/h i	M_{1}	M_{2}	M_3	M_4	a_{i}
W_1	2 9	uu duong2th	an cong. 2 00	3	3
W_2	2 10	8	4 5	1 4	7
W_3	2 7	3 uu duong th	an cong. co	8	5
$oldsymbol{b}_{j}$	4	3	4	4	

□ The feasible solution involves only the basic

variables and results in shipment costs of

$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} = 1 \cdot 3 + 4 \cdot 1 + 5 \cdot 4 + 6 \cdot 3 + 7 \cdot 2 + 10 \cdot 2$$

THE STANDARD TRANSPORTATION PROBLEM

☐ The primal problem is

$$min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t. cuu duong than cong. com

$$u_i \leftrightarrow \sum_{j=1}^n x_{ij} = a_i$$

$$i = 1.$$

$$v_{j} \leftrightarrow \sum_{i=1}^{m} x_{ij} = b_{j} \qquad j = 1, \dots, n$$

$$x_{ij} \geq 0$$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

30

THE STANDARD TRANSPORTATION PROBLEM

☐ The dual problem is

$$max W = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$

cuu duong than cong. com

s.t.

$$x_{ij} \leftrightarrow u_i + v_j \leq c_{ij} \quad i = 1, \dots, m$$

cuu duong the $j=1,\ldots,n$

 u_i, v_j are unrestricted in sign

(D)

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

THE STANDARD TRANSPORTATION PROBLEM

 \square The *complementary slackness conditions* for (D) are

$$i=1,\ldots,m$$

$$x_{ij}^*[u_i^*+v_j^*-c_{ij}^*]=0$$
 cuu duong than cong $j=1,\ldots,n$

 \square Due to the equalities in (P), the other *complemen*-

tary slackness conditions fail to provide any additio-

nal useful information

☐ The *complementary slackness conditions* obtain

$$x_{ij}^* > 0 \implies u_i^* + v_j^* = c_{ij}$$

$$u_i^* + v_j^* < c_{ij} \Rightarrow x_{ij}^* = 0$$

□ We make use of the duality characteristics to

develop the u-v method for solving the standard

transportation problem

THE u-v METHOD

 \Box The u-v method starts with a basic feasible solution

for the primal problem, obtains the corresponding

dual variables (as if the solution were optimal)

and uses the duals to determine the adjacent basic

feasible solution; the process continues until the

optimality condition is satisfied

THE u-v METHOD

☐ For a *basic feasible solution*, we find the dual

variable u_i and v_j using the *complementary*

cuu duong than cong. com

slackness conditions

$$u_i + v_j = c_{ij}$$

with u_i and v_j being unrestricted in sign

THE u-v METHOD

☐ We compute using

$$\tilde{c}_{ij} = c_{ij} - (u_i + v_j) \quad \forall nonbasic x_{ij}$$

- \Box the step is the analogue of computing $\underline{\tilde{c}}^T$ in the simplex tableau approach (relative cost improvement vector)
- ☐ The *complementary-slackness*-based optimality test is performed : cuu duong than cong. com

if
$$\tilde{c}_{ij} \geq 0 \quad \forall nonbasic \ x_{ij} \left[x_{ij} = 0 \right]$$
,

then the basic feasible solution is optimal

THE u-v METHOD

lacksquare Otherwise, some nonbasic variable $x_{ar par q}$ \exists

$$\tilde{c}_{\bar{p}\bar{q}} = c_{\bar{p}\bar{q}} - (u_{\bar{p}} + v_{\bar{q}}) < \theta$$

exists and we determine

$$\tilde{c}_{pq} = \min_{\bar{p}\bar{q} \ni x_{\bar{p}\bar{q}}} \left\{ \tilde{c}_{\bar{p}\bar{q}} \right\}$$
is nonbasic

 \square We, then, select x_{pq} to become a *basic variable* and repeat the process for this new *basic feasible*

solution

 \square We apply the u-v scheme to the example

previously discussed

cuu duong than cong. com

☐ The basic step from the dual formulation is to

require

cuu duong than cong. com

$$u_i + v_j = c_{ij}$$

 \forall basic x_{ij}

☐ We start with the *basic feasible solution* and apply

the complementary slackness conditions

$$u_1 + v_4 = 1 = c_{14}$$
 $u_2 + v_4 = 4 = c_{24}$
 $u_2 + v_3 = 5 = c_{23}$
 $u_3 + v_2 = 6 = c_{32}$
 $u_3 + v_1 = 7 = c_{31}$
 $u_2 + v_1 = 10 = c_{21}$

☐ We have 6 equations in 7 unknowns and so there

is an infinite number of solutions

☐ Arbitrarily, we set

$$v_4 = 0$$

and solve the equations above to obtain

cuu duon
$$u_1$$
h = 1 ong. com
$$u_2 = 4$$

$$v_3 = 1$$
 cuu duon v_1 h = 6 ong. com
$$u_3 = 1$$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 $v_2 = 5$

 \Box The \tilde{c}_{ij} for the *nonbasic variables* are

$$x_{11}$$
: $\tilde{c}_{11} = c_{11} - (u_1 + v_1) = 2 - (1+6) = -5$

$$x_{12}$$
: $\tilde{c}_{12} = c_{12} - (u_1 + v_2) = 2 - (1+5) = -4$

$$x_{13}$$
: $\tilde{c}_{13} = c_{13} - (u_1 + v_3) = 2 - (1+1) = 0$

$$x_{34}$$
: $\tilde{c}_{34} = c_{34} - (u_3 + v_4) = 8 - (1 + \theta) = 7$

$$x_{33}$$
: $\tilde{c}_{33} = c_{33} - (u_3 + v_3) = 6 - (1+1) = 4$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

41

☐ We determine

$$\tilde{c}_{pq} = \min_{\bar{p}\bar{q} \ni x_{\bar{p}\bar{q}}} = \tilde{c}_{11} = -5$$
is nonbasic

and consequently the *nonbasic variable* x_{11} is

introduced into the basis

 \Box We determine the maximal value of x_{11} by

setting $x_{11} = \theta$ and make use of the tableau

market j w/h i	M_1	M_2	M_3	M_4	a_i
W_1	$\boldsymbol{\theta}$	uu duong th	an cong. co	3 − <i>θ</i>	3
W_2	2 – <i>\theta</i>		4	1 + <i>\theta</i>	7
W_3	2	3 uu duong th	an cong. co	n	5
$oldsymbol{b}_{j}$	4	3	4	4	

☐ Therefore,

$$max \theta = min \{ 2, 3 \} = 2$$

- \Box Consequently, $x_{21} = \theta$ and leaves the basis
- ☐ We obtain the *basic feasible solution*

$$x_{14} = 1$$
, $x_{11} = 2$, $x_{31} = 2$, $x_{32} = 3$, $x_{23} = 4$, $x_{24} = 3$

and ranget to calve the action problem

and repeat to solve the u-v problem for this

new basic feasible solution

market j w/h i	$v_1 = 2$	$v_2 = 1$	$v_3 = 2$	$v_4 = 1$	a_i
$u_1 = 0$	2 2	uu duong $f 2$ th	n con 2.0	1	3
$u_2 = 3$	10	8	5	3 4	7
$u_3 = 5$	7	3 Ju duona th	in cong. co	8	5
\boldsymbol{b}_{j}	4	3	4	4	

☐ The complementary slackness conditions of the

nonzero valued basic variables obtain

$$u_1 + v_1 = c_{11} = 2$$
 $u_1 + v_4 = c_{14} = 1$
 $u_2 + v_3 = c_{23} = 5$
 $u_2 + v_4 = c_{24} = 4$
 $u_3 + v_1 = c_{31} = 7$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 $u_3 + v_2 = c_{32} = 6$

https://fb.com/tailieudientucntt

46

□ We set

$$u_1 = 0$$

and therefore

cuu duong than cong. com

$$v_3 = 2$$

$$v_1 = 2$$

$$u_3 = 5$$

$$u_3 = 5$$

cuu duong than cong. com

$$v_2 = 1$$

$$v_2 = 0$$

 \square We compute $ilde{c}_{ij}$ for each nonbasic variable x_{ij}

$$\tilde{c}_{12} = c_{12} - (u_1 + v_2) = 2 - (\theta + 1) = 1$$
 $\tilde{c}_{13} = c_{13} - (u_1 + v_3) = 2 - (\theta + 2) = 0$
 $\tilde{c}_{21} = c_{21} - (u_2 + v_1) = 10 - (3 + 2) = 5$
 $\tilde{c}_{22} = c_{22} - (u_2 + v_2) = 8 - (3 + 1) = 4$
 $\tilde{c}_{33} = c_{33} - (u_3 + v_3) = 6 - (5 + 2) = -1$
 $\tilde{c}_{34} = c_{34} - (u_3 + v_4) = 8 - (5 + 1) = 2$

only possible improvement

 \square We introduce x_{33} as a *basic variable* and determine

its nonnegative value θ in the tableau

market j w/h i	M_{1}	M_2	M_3	M_4	a_i
W_1	2 + 0	u duong tha	n cong. com	1 – <i>\theta</i>	3
W_2			4 – <i>\theta</i>	3 + <i>\theta</i>	7
W_3	2 – 0 ci	u du3ng tha	n col $oldsymbol{ heta}$, col		5
$oldsymbol{b}_{j}$	4	3	4	4	

 \Box The limiting value of θ is

$$\theta = min \{ 2, 4, 1 \} = 1$$

cuu duong than cong. com

 \Box Consequently, x_{14} leaves the basis and x_{33}

enters the basis with the value 1

■ We obtain the adjacent basic feasible solution in

market j w/h i	$v_1 = 2$	$v_2 = 1$	$v_3 = 1$	$v_4 = 0$	a_{i}
$u_1 = 0$	3 2 °	u duong 2 th	in cong. $_{2^{\mathrm{co}}}$	1	3
$u_2 = 4$	10	8	<u>3</u> 5	4	7
$u_3 = 5$	7	6	1 6	8	5
\boldsymbol{b}_{j}	4	3	4	4	

 \Box We evaluate \tilde{c}_{ii} for each nonbasic variable; $\tilde{c}_{ii} \geq \theta$ and so we have an optimal solution with shipping 3 from W_1 to M_1 with costs 6 shipping 1 from W_3 to M_1 with costs 7 shipping 3 from W_3 to M_2 with costs 18 shipping 1 from W_3 to M_3 with costs shipping 3 from W_2 to M_3 with costs 15 shipping 4 from W_2 to M_4 with costs 16 and resulting in the least total costs of 68

ELECTRICITY DISTRIBUTION EXAMPLE

- □ We consider in an electric utility system in which
 - 3 power plants are used to supply the demand of
 - 4 cities
- ☐ The supplies available from the 3 plants are given
- ☐ The demands of the 4 cities are specified
- \Box The costs of supplying each $10^6 kWh$ are given

ELECTRICITY COSTS

to			city				
from		1	2	3	4	supplies (10 ⁶ kWh)	
	1	8	6 u duong tha	10 n cong. con	9	35	
plant	2	9	12	13	7	50	
	3	14	u du .9 g tha	n co 16 con	5	40	
demar (10 ⁶ kV		45	20	30	30	125	

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

ELECTRICITY COSTS

to			city				
from		1	2	3	4	$(10^6 kWh)$	
		bala	9	35			
pl	tr	anspo	ortatio	n	7	50	
		prob	olem	n cong. con	5	40	
deman (10 ⁶ kV		45	20	30	30	125	

CuuDuongThanCong.com https://fb.com/tailieudientucntt

ELECTRICITY ALLOCATION EXAMPLE

☐ We note that

$$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j$$

cuu duong than cong. com

and so we have a balanced transportation

problem

cuu duong than cong. com

■ We find a basic feasible solution using the least-

cost rule

to	0		city				
from		1	2	3	4	supplies (10 ⁶ kWh)	
	1	8 (uu duo g 6 ch	ın con 10 0	9	35	
plant	2	9	12	13	0 7	50	
	3	14	uu duong th	in cong	30 5	10	
deman (10 ⁶ kV		45	20	30	30	125	

□ And we set

$$x_{34} = 30$$

cuu duon
$$x_{14} = \theta_{\text{ong. com}}$$

$$x_{24} = 0$$

☐ We compute the supply left at plant 3 and remove

cuu duong than cong. com

column 4 from further consideration

■ We continue with the reduced system

to			city	supplies	
from		1	2	3	$(10^6 kWh)$
	1	du (8 du	20 ong that 6 mg	. com 10	15
plant	2	9	0 12	13	50
	3	<u>cuu du</u> 14	ong ti 0 n cong	. com	10
deman (10 ⁶ kV		45	20	30	

and so we set

$$x_{12} = 20$$

$$x_{22} = \theta_{\text{ong. com}}$$

$$x_{32} = \theta$$

☐ We recompute the supply left at plant 1 and

cuu duong than cong. com

remove column 2 from further consideration

☐ The new reduced system obtains

to		ci	supplies	
from		1 3		$(10^6 kWh)$
	1	15 cuu duo 8	n cong. com 10	15
plant	2	9	13	50
	3	cuu duo ng th 14	n cong. com 16	10
deman (10 ⁶ кИ		30	30	

and therefore we set

$$x_{11} = 15$$

$$x_{13} = \theta_{\text{ong. com}}$$

and remove row 1 from further consideration

since the supply at plant 1 is exhausted

cuu duong than cong. com

☐ The operation is repeated for the further reduced

system

to		ci	supplies (10 ⁶ kWh)	
from		1 3		(10° KW n)
	2	cuu3010ng th	an cong. com	20
plant	3	<i>O</i> cuu duan 14 th	an cong. com	10
deman (10 ⁶ kW		30	30	

and therefore we set

$$x_{21} = 30$$

$$x_{31} = \theta$$

and remove column 1 from further consideration since all the demand in city 1 is satisfied

■ We are finally left with

to		city	supplies (10 ⁶ kWh)
from		3	(10 KWN)
	2 cut	duong the cong. co	20
plant	3	10 duong than con16 co	10
demand (10 ⁶ kW		30	

which allows us to set

$$x_{23} = 20$$

$$x_{33} = 10$$

□ The basic feasible solution has the costs

$$Z = 30 \cdot 5 + 20 \cdot 6 + 15 \cdot 8 + 30 \cdot 9 + 20 \cdot 13 + 10 \cdot 16 = 1080$$

 \Box We improve this solution by using the u-v

scheme

cuu duong than cong. com

☐ The first tableau corresponding to the initial basic

feasible solution is:

	to		city			supplies
from		1	2	3	4	$(10^6 kWh)$
	1	(15) 8 a		n cong. com		35
plant	2	30		20 13		50
	3	CI	u duong tha	10	<u>30</u> 5	40
	ands kWh)	45	20	30	30	

☐ We compute, the possible improvements at each nonbasic variable:

$$\tilde{c}_{31} = c_{31} - (u_3 + v_1) = 14 - (4 + 8) = 2
\tilde{c}_{22} = c_{22} - (u_2 + v_2) = 12 - (1 + 6) = 5
\tilde{c}_{32} = c_{32} - (u_3 + v_2) = 9 - (4 + 6) = -1
\tilde{c}_{13} = c_{13} - (u_1 + v_3) = 10 - (0 + 12) = -2
\tilde{c}_{14} = c_{14} - (u_1 + v_4) = 9 - (0 + 1) = -8
\tilde{c}_{24} = c_{24} - (u_2 + v_4) = 7 - (1 + 1) = -5$$

improvement possible ◆

better possibility -

 \square We bring x_{13} into the basis and determine the

value of θ using the tableau structure

☐ From the tableau we conclude that

$$\theta = min \{ 15, 20 \} = 15$$

and therefore x_{11} leaves the basis and obtain the

adjacent basic possible solution given in the table

cities plants	1	2	3	4	a_i
1	15 – <i>\theta</i>	20	$oldsymbol{ heta}$ in cong. co		35
2	30 + 0		20 – <i>\theta</i>		50
3	ÇI	iu duong th	n college col	30	40
\boldsymbol{b}_{j}	45	20	30	30	

☐ The adjacent basic feasible solution is

$$x_{21} = 45$$
, $x_{12} = 20$, $x_{13} = 15$, $x_{23} = 5$, $x_{33} = 10$, $x_{34} = 30$

and the new value of Z is

$$Z = 20 \cdot 6 + 15 \cdot 10 + 45 \cdot 9 + 5 \cdot 13 + 10 \cdot 16 + 30 \cdot 5$$

$$= 1050 < 1080$$

cuu duong than cong. com

 \square We again pursue a u-v improvement strategy

by starting with the tableau

cities plants	$v_1 = 6$	$v_2 = 6$	$v_3 = 10$	$v_4 = -1$	supplies
$u_1 = 0$	CI	20 6	15 10		35
$u_2=3$	45)		5		50
$u_3 = 6$	ÇI	u duong tha	10	30 5	40
demands	45	20	30	30	

STANDARD TRANSPORTATION EXAMPLE

☐ The complementary slackness conditions obtain the possible improvements

$$\tilde{c}_{11} = c_{11} - (u_1 + v_1) = 8 - (\theta + 6) = 2
\tilde{c}_{31} = c_{31} - (u_3 + v_1) = 14 - (6 + 6) = 2
\tilde{c}_{22} = c_{22} - (u_2 + v_2) = 12 - (3 + 6) = 3
\tilde{c}_{32} = c_{32} - (u_3 + v_2) = 9 - (6 + 6) = -3
\tilde{c}_{14} = c_{14} - (u_1 + v_4) = 9 - (\theta - 1) = 10
\tilde{c}_{24} = c_{24} - (u_2 + v_4) = 7 - (3 - 1) = 5$$

only possible improvement

 \Box We bring x_{32} into the basis and determine its value θ using

STANDARD TRANSPORTATION EXAMPLE

plants cities	1	2	3	4	a_i
1		20 – <i>\theta</i>	15 + <i>\theta</i>		35
2	45	ru auong un	5		50
3	c	$oldsymbol{ heta}$ Iu duong th	10- heta in cong. co	30	40
$oldsymbol{b}_{j}$	45	20	30	30	

STANDARD TRANSPORTATION EXAMPLE

and so

$$\theta = min \{ 10, 20 \} = 10$$

☐ The adjacent basic feasible solution is, then,

$$x_{21} = 45$$
 $x_{12} = 10$ $x_{32} = 10$

$$x_{13} = 25$$
 $x_{23} = 5$ $x_{34} = 30$

and the value of Z becomes

$$Z = 45 \cdot 9 + 10 \cdot 6 + 10 \cdot 9 + 25 \cdot 10 + 5 \cdot 13 \cdot 30 \cdot 5 = 1,020$$

☐ You are asked to prove, using complementary slackness conditions, that this is the optimum

- ☐ The nonstandard transportation problem arises when supply and demand are unbalanced: either supply exceeds demand or vice versa
- □ We solve by transforming the nonstandard problem into a standard one
- ☐ The approach is to create a fictitious entity and thereby restore the problem to balanced status

☐ For the case

$$\sum_{i=1}^{m} a_{i} > \sum_{j=1}^{n} b_{j}$$
supply demand

we create the fictitious market M_{n+1} to absorb all

the excess supply
$$\left(\sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j\right)$$
; we set $c_{i, n+1} = 0$,

 $\forall i=1,2,...,m$ since M_{n+1} does not exist in reality

The problem is then in standard form with j = 1, ...

, n+1, an augmented number of markets

☐ For the case

$$\sum_{j=1}^{n} b_{j} > \sum_{i=1}^{m} a_{i}$$
demand supply

the problem is *not*, in effect, *feasible* since all the demands cannot be met and therefore the least-cost shipping schedule is that which will supply as much as possible of the demands of the markets

☐ For the overdemand case, we introduce the

fictitious warehouse W_{m+1} to supply the shortage;

$$\left[\sum_{j=1}^{n} b_{j} - \sum_{i=1}^{m} a_{i}\right] \text{ we set } c_{m+1,j} = 0$$

for j = 1, 2, ..., n and the problem is in standard

form with i = 1, ..., m + 1 (augmented number of

warehouses)

 \square Note that the variable $x_{m+1,j}$ is the *shortage* at

market j and is the shortfall in the demand b_j

experienced by the market M_j due to inadequate

supplies

 \Box For each market j, $x_{m+1,j}$ is a measure of the

infeasibility of the problem

□ This problem is concerned with the schedule of 2 plants A and B in the purchase of the raw supplies from 3 growers

cuu duong than cong. com

grower	availability (ton)	price (\$/ton)
Smith	200	10
Jones	u duong 300 cong. c	om 9
Richard	400	8

and shipping costs in \$/ton given by

to	plant			
from	u duong t A n cong. c	B		
Smith	2	2.5		
Jones	$\frac{1}{u}$ duong than cong. c	1.5		
Richard	5	3		

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

82

☐ The plants' labor costs and capacity limits are

plant	$oldsymbol{A}$	В
capacity (ton)	450	550
labor costs due	ng than cong. 25	20

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

83

- \Box The selling price for canned goods is 50 \$ / ton and the company can sell all it produces
- ☐ The problem is to determine the *maximum* profit schedule
- Note that this is an unbalanced problem since

$$supply = 200 + 300 + 400 = 900 tons$$

$$demand = 450 + 550 = 1000 tons > 900 tons$$

☐ Clearly, the decision variables are the amounts purchased from each grower and shipped to each plant

☐ The objectives is formulated as

$$\max Z = \left[\underbrace{50 - 25 - 10 - 2}_{13}\right] x_{SA} + \left[\underbrace{50 - 25 - 9 - 1}_{15}\right] x_{JA}$$

cuu duong than cong. com

$$+ \left[\underbrace{50 - 25 - 8 - 5}_{12}\right] x_{RA} + \left[\underbrace{50 - 20 - 10 - 2.5}_{17.5}\right] x_{SB}$$

cuu duong than cong. com

$$+ \left[\underbrace{50 - 20 - 9 - 1.5}_{\mathbf{19.5}}\right] x_{JB} + \left[\underbrace{50 - 20 - 8 - 3}_{\mathbf{19}}\right] x_{RB}$$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

85

☐ The supply constraints are

$$x_{SA} + x_{SB} \leq 200$$

$$x_{JA} + x_{JB} \leq 300$$

$$x_{RA} + x_{RB} \leq 400$$

□ The demand constraints are

$$x_{SA} + x_{IA} + x_{RA} \leq 450$$

$$x_{SB} + x_{JA} + x_{RB} \leq 550$$

- ☐ Clearly, all decision variables are nonnegative
- □ The unbalanced nature of the problem requires the

introduction of a fictitious grower F with the

supply 100 corresponding to the supply shortage;

in this way the nonstandard problem becomes

cuu duong than cong. com

standard

■ We set up the standard transportation problem

plant j	\boldsymbol{A}	В	supply
grower i			
S			200
	13	17.5	
$oldsymbol{J}$	cuu duong th	an cong. com	300
	15	19.5	
\boldsymbol{R}		'	400
	12	19	
$oldsymbol{F}$	cuu duong th	an cong. com	100
	0	0	
demand	450	550	

- ☐ Please note that the objective is a *maximization*
 - rather than a minimization
- \Box We therefore recast the mechanics of the u-v
 - scheme for the maximization problem
- ☐ As a homework exercise, show that the duality

complementary slackness conditions allow us to

change the u - v algorithm in the following way:

O the selection of the nonbasic variable x_{ij} to enter the basis is from those x_{ij} where the corresponding

$$c_{ij} > u_i + v_j$$

and we evaluate and focus on all $\tilde{c}_{ij} > \theta$ so that x_{ij} is a candidate to enter the basis

O we pick $x_{pq\text{cuu}}$ duong than cong. com

$$\tilde{c}_{pq} = \max_{\bar{p}\bar{q} \ni x_{\bar{p}\bar{q}}} \left\{ \tilde{c}_{\bar{p}\bar{q}} \right\}$$

is nonbasic

plant j grower i	\boldsymbol{A}	В	supply
S	200 13	0	200
$oldsymbol{J}$	250 15	50 19.5	300
R	0	400 19	400
$oldsymbol{F}$	cuio duong th	100	100
demand	450	550	

 \square We construct the u-v relations for this solution

$$u_1 + v_1 = 13$$

$$u_2 + v_2 = 19.5$$

$$u_2 + v_1 = 15$$
 $u_3 + v_2 = 19$

$$u_4 + v_2 = 0$$

 \Box We arbitrarily set $u_1 = \theta$ and compute

$$v_1 = 13$$
, $u_2 = 2$, $v_2 = 17.5$, $u_3 = 1.5$, $u_4 = -17.5$

lacksquare We evaluate the $ilde{c}_{ij}$ corresponding to the nonbasic variables

$$\tilde{c}_{31} = c_{31} - (u_3 + v_1) = 12 - (1.5 + 13) = -2.5$$

$$\tilde{c}_{41} = c_{41} - (u_4 + v_1) = \theta - (-17.5 + 13) = 4.5$$

$$\tilde{c}_{12} = c_{12} - (u_1 + v_2) = 17.5 - (\theta + 17.5) = \theta$$

single possible improvement

 \Box Thus, x 41 enters the basis and we determine θ

plant j grower i	\boldsymbol{A}	В	supply	
S	200		200	
J	250 – 0 15	50 + 0 19.5	300	
R		400 19	400	
F	cui <mark>0</mark> duong th	100 - 0	100	
demand	450	550		

☐ It follows that

$$\theta = min \{ 250, 100 \} = 100$$

cuu duong than cong. com

and so the adjacent basic feasible solution is

$$x_{11} = 200, \ x_{21} = 150, \ x_{41} = 100, \ x_{22} = 150, \ x_{32} = 400$$

 \square We repeat the u-v procedure to obtain

$$u_1 + v_1 = 13$$

$$u_2 + v_2 = 19.5$$

$$u_2 + v_1 = 15$$

$$u_3 + v_2 = 19$$

cuu duong than cong. com

$$u_4 + v_1 = 0$$

 \square We solve by arbitrarily setting $u_1 = \theta$ and obtain

cuu duong than cong. com

$$v_1 = 13$$
, $u_2 = 2$, $v_2 = 17.5$, $u_3 = 1.5$, $u_4 = -13$

 \square We compute the $\tilde{c}_{_{ij}}$ for the nonbasic variables

$$\tilde{c}_{12} = 17.5 - (\theta + 17.5) = \theta$$

$$\tilde{c}_{31} = 12 - (1.5 + 13) = -2.5$$

cuu duong than cong. com

$$\tilde{c}_{42} = \theta - (-13 + 17.5) = -4.5$$

 \square Since each \tilde{c}_{ij} is $\leq \theta$ no more improvement in

the maximization is possible and so the maximum

cuu duong than cong. com

profits are

$$Z = (200)13 + (150)15 + (100)0 + (150)19.5 + (400)19$$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

98

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM

- ☐ The problem is concerned with the weekly production scheduling over a 4 week period
 - O production costs from each item

first two weeks	an cong. \$10		
last two weeks	<i>\$</i> 15		

O demands that need to be met are

week	uu quong	tha ₂ cor	3	4
demand	300	700	900	800

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM

- O weekly plant capacity is 700
- O overtime is possible for weeks 2 and 3 with
 - the production of additional 200 units
 - additional cost per unit of \$5
- \$3 for weekly storage of excess production
- O the objective is to *minimize* the *total costs* for the 4-week schedule than cong. com
- □ The decision variables are

 x_{ij} = production in week i for use in week j market

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM

	demand	1	2	3	4	F	supply
production	production M is a very large number						
1	171	15 a ve	13	16		0	700
	normal	M	10	an co 13	com 16	0	700
2	o/t	M	15	18	2 200	0	200
	normal	M	M	15	3,200 18	0	700
3	o/t	N	duona A	on cora.	200 – 2,	700 0	200
4		M	2,70 <i>M</i>	M	200 – 2, 15	0	700
dem	and	300	700	900	800	500	

☐ We are given

n machines
$$M_1, M_2, ..., M_n \leftrightarrow i$$

$$n \text{ jobs}$$
 $J_1, J_2, \dots, J_n \leftrightarrow j$

 $c_{ij} = cost of doing job j on machine i$

 $c_{ij} = M$ if job j cannot be done on machine i each machine can only do one job and we wish to determine the optimal match, i.e., the assignment with the lowest total costs of doing all the jobs j on the n machines available

☐ The brute force approach is simply enumeration:

consider n = 10 and there are 3,628,800 possible

choices!

cuu duong than cong. com

☐ We can, however, introduce *categorical* decision

variables

$$x_{ij} = \begin{cases} 1 & \text{job } j \text{ is assigned to machine } i \\ 0 & \text{otherwise} \end{cases}$$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

103

and the problem constraints can be stated as

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i \text{ each machine does exactly 1 job}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j \text{ each job is assigned}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j \text{ each job is assigned}$$

to only 1 machine

☐ The objective, then, is

min
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

https://fb.com/tailieudientucntt

104

□ This assignment problem is a standard

transportation problem with

$$a_i = 1 \quad \forall i$$

$$\forall i$$

$$b_j = 1 \qquad \forall j$$

$$\sum_{i=1}^n a_i = \sum_{j=1}^n b_j$$

- \square Suppose we have m machines and n jobs with
 - $m \neq n$
- ☐ We may convert this into an equivalent *standard*
 - assignment problem with equal number of machines
 - and jobs

- cuu duong than cong. com
- ☐ The conversion requires the introduction of
 - either fictitious jobs or fictitious machines

 \square In the case m > n:

we create (m-n) fictitious jobs and we have m machines and n+m-n=m jobs; we assign the machinery costs for the fictitious goods to be θ : note that there is no change in the objective function since a fictitious job assigned to a machine is, in effect, a machine that is idle

 \square For the case n > m:

we create (n-m) fictitious machines with

cuu duong than cong. com

machine costs of θ and the solution

obtained has the (n-m) jobs that cannot be

done due to lack of machines

- ☐ In principle, any assignment problem may be solved using the transportation problem technique; in practice, this is not good since there exists *degeneracy* in every basic feasible solution
- We note that in the *standard assignment problem* for m machines with m=n, there are exactly m x_{ij} that are 1 (nonzero) but every basic feasible solution of the transportation problem has $(2m-1)^m$
 - 1) basic variables and therefore contains (m-1) zero valued basic variables