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NETWORKS AND FLOWS

d A network is a system of lines or channels
connecting different points

d Examples abound in nearly all aspects of life:
Q electrical systems
Q communication networks
Q airline webs
Q local area networks

Q distribution systems
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NETWORKS AND FLOWS

d The network structure is also common to many
other systems that at first glance are not
necessarily viewed as networks

Q distribution system consisting of
manufacturing plants, warehouses and retalil
outlets

Q matching problems such as work to people,
assignments to machines and computer

dating
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NETWORKS AND FLOWS

Q river systems with pondage for electricity
generation
Q mail delivery networks
Q project management of multiple tasks in a
large undertaking such as construction or a
space flight
d We consider a broad range of network and

network flow problems


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

[HE TRANSPORTATION PROBLEM

d The basic idea of the transportation problem is
Illustrated with the problem of distribution of a
specified homogenous product from several
sources to a number of localities

d We consider a system with m warehouses, =n
markets and links between them with the specified

costs of transportation
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[HE TRANSPORTATION PROBLEM

Q all the supply comes from the m ware-
houses; we assoclate theindex =1, 2, ..., m
with a warehouse

Q all the demand is at the » markets; we
associate theindex j=1,2,...,n witha
market

QO shipping costs ¢;; for each unit from the

warehouse i to the market j
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[HE TRANSPORTATION PROBLEM

d The transportation problem is to determine the

optimal shipping schedule that minimizes shipping

costs for the set of m warehouses to the set of

n markets : the quantities shipped from the

warehouse i to each market j
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LP FORMULATION OF THE
TRANSPORTATION PROBLEM

d The decision variables are

X;i= quanity shipped from warehouse i to market j

=12, ... m

j=12,..,n

 The objective function is

n

m
min Z CiiXij
i=1 j=1


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

LP FORMULATION OF THE
TRANSPORTATION PROBLEM

J The constraints are:
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LP FORMULATION OF THE
TRANSPORTATION PROBLEM

1 Note that feasibility requires
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every available unit of supply at the m ware-
nouses iIs shipped to meet all the demands of the
n markets; this problem is known as the
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STANDARD TRANSPORTATION
PROBLEM

=

s.t.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

TRANSPORTATION PROBLEM
EXAMPLE

X11 X192 X13 X 14

a,q
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STANDARD TRANSPORTATION
PROBLEM

d The standard transportation problem has

Q mn variables x;;

Q m + n equality constraints

d Since
2 2% = 2% = b
i=l j=1 i=1 j=1
there are at most (m + n—-1) independent cons-
traints and consequently at most (m + n—1)

iIndependent variables x;;
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TRANSPORTATION PROBLEM
EXAMPLE

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 15
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THE LEAST - COST RULE
PROCEDURE

d This scheme is used to generate an initial basic
feasible solution which has no more than
(m +n-1) positive valued basic variables

d The key idea of the scheme is to select, at each
step, the variable x;; with the lowest shipping costs

c;; as the next basic variable


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

APPLICATION OF THE LEAST — COST
RULE

d ¢, Is the lowest ¢;; and we select x,, as a basic
variable
d We choose x,, as large as possible without
violating any constraints:
min {a,,b,} = min {3,4} = 3
d We set x,, = 3 and
X1 = Xpp = X3 =0
d We delete row 1 from any further consideration

since all the supplies from W, are exhausted
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APPLICATION OF THE LEAST — COST
RULE

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
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APPLICATION OF THE LEAST — COST
RULE

d The remaining demand at M, is
4-3 =1
which is the value for the modified demand at M,
d We again apply the criterion selection for the reduced
tableau: ¢,, Is the lowest-valued ¢;; withi=2, j=4

and we select x,, as a basic variable
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APPLICATION OF THE LEAST — COST
RULE

d We choose x,, as large as possible without
violating any constraints:
min {a,,b,} = min {7,1} =1
and we set x,, = 1 and
Xy = 0
1 We delete column 4 from any further consi-

deration since all the demand at M, is exhausted
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APPLICATION OF THE LEAST — COST
RULE

d The remaining supply at W, Is

which is the value for the modified supply at W,
d We repeat these steps until we find the nonzero
basic variables and obtain a basic feasible solution

 In the reduced tableau,
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APPLICATION OF THE LEAST — COST
RULE

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 22
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APPLICATION OF THE LEAST — COST
RULE

Q pick x,; to enter the basis
Q set
X, = min{6,4} = 4
and set x;;=0
Q eliminate column 3 and reduce the supply at
W, to
6-4 =2

1 For the reduced tableau
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APPLICATION OF THE LEAST — COST
RULE

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 24
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APPLICATION OF THE LEAST — COST
RULE

QO pick x3, to enter the basis
Q set
X =min{3,5} = 3
and set x,,=0
Q eliminate column 2 in the reduced tableau
and reduce the supply at W, to
5-3=2

] The last reduced tableau Is
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APPLICATION OF THE LEAST — COST
. RULE

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 26
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APPLICATION OF THE LEAST — COST
RULE

Q pick x5 to enter the basis
Q set
Xy =min{2,5} = 2
QO reduce the demand at M, to
4-2 =2
QO the value of
Xy = 2

IS obtained by default
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INITIAL BASIC FEASIBLE SOLUTION

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 28
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APPLICATION OF THE LEAST — COST

RULE

d The feasible solution involves only the basic

variables and results in shipment costs of

31
2
=1

4
> cyx,

J=1

1-3+4.-1+5-44+6-3+7-2+10-2

79
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THE STANDARD TRANSPORTATION

PROBLEM

d The primal problem is
min/Z = ZZ Cii Xij
i=1 j=1

s.t.

vV

- (P)
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THE STANDARD TRANSPORTATION

PROBLEM
d The dual problem is

m n
max W =Zai ui+2ijj
i=1 j=1

s.t.

u;,v; are unrestricted in sign

(D)
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THE STANDARD TRANSPORTATION

PROBLEM
d The complementary slackness conditions for (D) are
i =1 ... m
x;lu; +v;, —c;1=10
j=1..,n

d Due to the equalities in (P), the other complemen-

tary slackness conditions fail to provide any additio-

nal useful information
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[HE TRANSPORTATION PROBLEM

d The complementary slackness conditions obtain

*

xij>0 = u; +v

*
i T G

I
S

u; +v,<c; = X
d We make use of the duality characteristics to
develop the u—v method for solving the standard

transportation problem
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THE u —v METHOD

d The u —v method starts with a basic feasible solution
for the primal problem, obtains the corresponding
dual variables (as if the solution were optimal)
and uses the duals to determine the adjacent basic
feasible solution;, the process continues until the

optimality condition is satisfied
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THE u —v METHOD

 For a basic feasible solution, we find the dual

variable u; and v; using the complementary

slackness conditions

u.+v. =c.. V basic x,

with u; and v; being unrestricted in sign
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THE u —v METHOD

d We compute using

~

cij = cij o ( u; + Vj ) V nonbasic xl.j

 the step Is the analogue of computing ¢’ In the
simplex tableau approach (relative cost improve-
ment vector)

d The complementary-slackness-based optimality test

IS performed :

Lj Lj

if ¢, 20 Y nonbasic x;; [x.. = 0} ,

then the basic feasible solution |s optimal
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THE u —v METHOD

J Otherwise, some nonbasic variable X5 D

C-- =

55 = Cpg — (ul-, + vq)< 0

exists and we determine

Cpg = MUN {cpci}
Pq 3 Xpg
Is nonbasic
J We, then, select b o to become a basic variable and
repeat the process for this new basic feasible

solution
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STANDARD TRANSPORTATION
PROBLEM EXAMPLE

d We apply the u—-v scheme to the example

previously discussed

A The basic step from the dual formulation is to

require

u.+v, =c,;. V basic x,;
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STANDARD TRANSPORTATION
PROBLEM EXAMPLE

d We start with the basic feasible solution and apply

the complementary slackness conditions

u, + v, = 1 = €y
u, + v, = 4 = €y
u, + v, = 5 = Cy
u, + v, = 6 = Cgy
u, + v, = [ = €z
u, + v, = 10 = ¢,

d We have 6 equations in 7 unknowns and so there

IS an Infinite number of solutions
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STANDARD TRANSPORTATION
PROBLEM EXAMPLE

d Arbitrarily, we set
v, =10

and solve the equations above to obtain
u, =1
u, =
v, =
vV, =
Uy, =

vV, =
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STANDARD TRANSPORTATION

 The Eij for the nonbasic variables are

X111 €y
X1, 1 Cpy
X131 Ci
X3y Cgy

X33 Ca3

(u,+v,)
(u,+v,)
(u,+v,)
(uz+v,)

(uy+v,)

2

PROBLEM EXAMPLE

(1+6)
(1+5)
(1+1)
(1+0)

(1+1)
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STANDARD TRANSPORTATION
PROBLEM EXAMPLE

d We determine

Cpg = min = C;p = =2
Pq 3 Xpg
is nonbasic

and consequently the nonbasic variable x; 1S
Introduced into the basis

d We determine the maximal value of x,, by

setting x,;, = 6 and make use of the tableau
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STANDARD TRANSPORTATION
EXAMPLE

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved.
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STANDARD TRANSPORTATION
EXAMPLE

 Therefore,
max @ = min{2,3} = 2
d Consequently, x,;, = 0 and leaves the basis
d We obtain the basic feasible solution
X14=1 x13= 2, X31=2, Xx3=3, xp3=4, xp3=3
and repeat to solve the u—v problem for this

new basic feasible solution
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STANDARD TRANSPORTATION
EXAMPLE
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STANDARD TRANSPORTATION
EXAMPLE

d The complementary slackness conditions of the

nonzero valued basic variables obtain

u,+v, =c¢, =
U, +TVy = Cyp =
u,+v, =c, =4
U; +v, =Cy =
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STANDARD TRANSPORTATION

EXAMPLE
J We set
u, =0
and therefore
vy = 2 v, =2
U, =95 U, =95

- We compute ¢;; for each nonbasic variable x;;
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C1o
€13
€
Y]
Ca3

Cay

STANDARD TRANSPORTATION

only possible improvement

EXAMPLE
(u,+v,) = 2
(u,+vy) = 2
(u,+v,) = 10
(u,+v,) = 8
(u;+v,) = 6
(u,+v,) = 8

(0+1)

(0+2)
(3+2)

(3+1)
(5+2)

(5+1)

1
0
5
A
14
2

d We introduce x,; as a basic variable and determine

ItS nonnegative value 6 In the tableau
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STANDARD TRANSPORTATION
EXAMPLE

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved. 49
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STANDARD TRANSPORTATION
EXAMPLE

d The limiting value of @ is

f=min{2,4,1} =1

d Consequently, x,, leaves the basis and xg;

enters the basis with the value 1

d We obtain the adjacent basic feasible solution in


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

STANDARD TRANSPORTATION
EXAMPLE

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 51
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STANDARD TRANSPORTATION
EXAMPLE

d We evaluate ¢;; for each nonbasic variable;

¢;; 2 0 and so we have an optimal solution with

shipping 3 from W, to M, with costs 6
shipping 1 from W, to M, with costs 7
shipping 3 from W, to M, with costs 18
shipping 1 from W, to M, with costs 6
shipping 3 from W, to M, with costs 15
shipping 4 from W, to M, with costs 16

and resulting in the least total costs of 68
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ELECTRICITY DISTRIBUTION
EXAMPLE

d We consider in an electric utility system in which
3 power plants are used to supply the demand of
4 cities

 The supplies available from the 3 plants are given

1 The demands of the 4 cities are specified

O The costs of supplying each 10° kWh are given
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ELECTRICITY COSTS

supplies

(10° kWh)

3 -
demands 125

=
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ELECTRICITY COSTS

supplies
(106 kWh)

balanced

transportation

mnnnhﬂ
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ELECTRICITY ALLOCATION EXAMPLE

J We note that

and so we have a balanced transportation

problem

d We find a basic feasible solution using the least-

cost rule
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ELECTRICITY ALLOCATION EXAMPLE:
~SOLUTION

supplies
(10° kWh)

2 50
H-

demands
(106 kWh)

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved.
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ELECTRICITY ALLOCATION EXAMPLE:

SOLUTION
d And we set
Xqy = 30
X1 =0
Xoy = 0

d We compute the supply left at plant 3 and remove
column 4 from further consideration

d We continue with the reduced system
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ELECTRICITY ALLOCATION EXAMPLE:
~SOLUTION

supplies
(10° kWh)

2 50
H -
14 16
demands
(lO6 kWh)

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved.
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ELECTRICITY ALLOCATION EXAMPLE:

SOLUTION
and so we set
X, = 20
Xy =0
X3 = 0

d We recompute the supply left at plant 1 and
remove column 2 from further consideration

d The new reduced system obtains
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ELECTRICITY ALLOCATION EXAMPLE:
SOLUTION

city supplies
(10° kWh)
1
1

plant

demands
(10° kWh)

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 61
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ELECTRICITY ALLOCATION EXAMPLE:
SOLUTION

and therefore we set

and remove row 1 from further consideration
since the supply at plant 1 is exhausted
 The operation Is repeated for the further reduced

system
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ELECTRICITY ALLOCATION EXAMPLE:

SOLUTION

supplies
(10° kWh)

© 2006-2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
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ELECTRICITY ALLOCATION EXAMPLE:
SOLUTION

and therefore we set

and remove column 1 from further consideration

since all the demand in city 1 is satisfied

d We are finally left with
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ELECTRICITY ALLOCATION EXAMPLE:
SOLUTION

supplies
(10° kWh)

demands
(10° kWh)

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved. 65
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ELECTRICITY ALLOCATION EXAMPLE:

SOLUTION
which allows us to set
X, = 20
X33 = 10

 The basic feasible solution has the costs

Z =30-5+20-6+15-8+30-9+20-13+10-16= 1080

d We improve this solution by using the u-v
scheme

d The first tableau corresponding to the initial basic

feasible solution is:
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ELECTRICITY ALLOCATION EXAMPLE:
~SOLUTION

supplies
(106 kWh)

1
S
= 2
3
demands
(10 kWh)

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved. 67
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STANDARD TRANSPORTATION
EXAMPLE

d We compute, the possible improvements at each
nonbasic variable:

Cyy = €4 — (uy+vy) = 14 - (4+48) = 2
Cpp = C€p — (U+vy) = 12 — (1+6)

Cyp = €3 — (uz+v,) = 9 — (4+6)

Ci3 = €3 — (u+vy) = 10 - (0+12)

€y = €y — (wp+v,) = 9 — (0+1)

Cpy = €y — (Upytv,) = 7 — (1+1)

Improvement possible <
better possibility «
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STANDARD TRANSPORTATION
EXAMPLE

d We bring x,; Into the basis and determine the
value of @ using the tableau structure
d From the tableau we conclude that
@ = min{15,20} = 15
and therefore x,, leaves the basis and obtain the

adjacent basic possible solution given in the table
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STANDARD TRANSPORTATION
EXAMPLE
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STANDARD TRANSPORTATION
EXAMPLE

1 The adjacent basic feasible solution is

Xy =45, x,=20, x3=15, x,3=95, x33=10, x53,=30
and the new value of Z is

Z = 20:6+15-10+45-9+5-13 + 10-16 + 305
= 1050 < 1080

d We again pursue a u—vimprovement strategy

by starting with the tableau
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STANDARD TRANSPORTATION
~ EXAMPLE

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved.
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STANDARD TRANSPORTATION
EXAMPLE

d The complementary slackness conditions obtain
the possible improvements

¢y, = ¢y — (w+vy) = 8 - (0+6) = 2
€y = €3 — (uz+vy)) = 14 — (6+6) = 2
Cryp = Cpy — (Uy+v,) = 12 - (3B+6) = 3
Cp = € — (ug+v)) = 9 — (6+46) = (=3)
Cy = ¢ — (u+vy) = 9 - (0-1) =|10
Cpp = €y — (Upy+v,) = 7 - (3-1) =|5

only possible improvement <
d We bring x4, Into the basis and determine its

value @ using
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STANDARD TRANSPORTATION

EXAMPLE
1

- II

© 2006-2009 George Gross, University of lllinois at Urbana-Champaign, All Rights Reserved.
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STANDARD TRANSPORTATION
EXAMPLE

and so
¢ = min{10,20} = 10

4 The adjacent basic feasible solution is, then,
Xy =45 X, =10  x53,=10
X3 =25 Xy3 =D X3, =30
and the value of Z becomes
Z=45-9+10-6+10-9+25-10 + 5-13 30-5=1,020

4 You are asked to prove, using complementary
slackness conditions, that this is the optimum
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NONSTANDARD TRANSPORTATION
PROBLEM

d The nonstandard transportation problem arises
when supply and demand are unbalanced: either
supply exceeds demand or vice versa

d We solve by transforming the nonstandard
problem into a standard one

A The approach is to create a fictitious entity and

thereby restore the problem to balanced status
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NONSTANDARD TRANSPORTATION
PROBLEM

J For the case
zm a, > zn bj
. -

i=1 Jj=
| I | L

supply demand

we create the fictitious market M, , to absorb all

n

the excess supply (Z; a; — Z‘i ij; we set ¢; ,.; = 0,
1= J=

V i=12,..,msince M, , does not exist in reality

The problem is then in standard form with j=1, ...

, ntl, an augmented number of markets


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

NONSTANDARD TRANSPORTATION
PROBLEM

1 For the case

n

ij > Zai

j=1 i=1
I | 1

demand supply

the problem is not , in effect, feasible since all the
demands cannot be met and therefore the least-
cost shipping schedule is that which will supply
as much as possible of the demands of the

markets
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NONSTANDARD TRANSPORTATION
PROBLEM

J For the overdemand case, we introduce the

fictitious warehouse W,k ., to supply the shortage;

n m
=1 '

= l:l

for j=1,2,...,n and the problem is in standard
form with i=1,...,m+1(augmented number of

warehouses)
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NONSTANDARD TRANSPORTATION
PROBLEM

1 Note that the variable x IS the shortage at

m+1, j
market j and is the shortfall in the demand b,
experienced by the market M; due to inadequate
supplies

d For each market j, x,., ; IS ameasure of the

infeasibility of the problem
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

4 This problem is concerned with the schedule of 2
plants 4 and B in the purchase of the raw

supplies from 3 growers

availability (ton) price ( $/ton)

Smith 200 10
Jones 300 9
Richard 400 38
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

and shipping costs in $/ton given by

Smith

Jones

Richard
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

d The plants’ labor costs and capacity limits are

-

capacity
450 550

(ton)

labor costs

($/ton)
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

A The selling price for canned goods is 50 $/ton
and the company can sell all it produces
d The problem is to determine the maximum profit
schedule
d Note that this is an unbalanced problem since
supply = 200 + 300 + 400 = 900 tons
demand = 450 + 550 = 1000 tons > 900 tons
 Clearly, the decision variables are the amounts
purchased from each grower and shipped to each
plant
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

 The objectives is formulated as

max Z =

50-25-10-2
13

50—25-8-5 |x,, +

12

50-20-9-1.5
19.5

50-25-9-1

15

50—20—-10—2.5 | xg,

17.5

50—20-8-3

19
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

d The supply constraints are

Xgq T Xgp

IA

200
X, + X, < 300

Xpqy + Xpgp < 400
J The demand constraints are

Xg, + X, + Xp, < 450

Xgg + X5 + Xpgp < 550
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

 Clearly, all decision variables are nonnegative

d The unbalanced nature of the problem requires the
Introduction of a fictitious grower F with the
supply 100 corresponding to the supply shortage;
In this way the nonstandard problem becomes

standard

d We set up the standard transportation problem
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

A supply
grower i
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

 Please note that the objective Is a maximization
rather than a minimization

d We therefore recast the mechanics of the u-v
scheme for the maximization problem

d As a homework exercise, show that the duality
complementary slackness conditions allow us to

change the u —v algorithm in the following way:
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EXAMPLE: CANNING OPERATIONS
SCHEDULING

Q the selection of the nonbasic variable x;; to
enter the basis is from those x;; where the

corresponding
Cij > u,; + vj

and we evaluate and focus on all ¢;;>0 so
that x;; Is a candidate to enter the basis

O we pick x,,

Is nonbasic
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EXAMPLE SOLUTION

A supply
grower i
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EXAMPLE SOLUTION

J We construct the u—v relations for this solution

u,+v, =13 u,+v,=19.5
u,+v, =15 u,+v,=19
u,+v, =0
d We arbitrarily set u, =0 and compute

v,=13, u,=2, v,=175 uy=15 u,= -17.5
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EXAMPLE SOLUTION

d We evaluate the ¢;; corresponding to the

nonbasic variables

Cy=Cqy—(u,+v))=12 — (15+13) =-25
Cpy=Cy—(u,+v,)= 0 —(-175+13) = 45«
c,=cp—(u,+v,)=175- (0+175) = 0

single possible improvement

J Thus, x 41 enters the basis and we determine @
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EXAMPLE SOLUTION

A supply
grower i
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EXAMPLE SOLUTION

1 It follows that

0 = min {250,100} = 100

and so the adjacent basic feasible solution is

xq., =200, x,, =150, x,, =100, x,, =150, x;, =400

d We repeat the u—v procedure to obtain
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EXAMPLE SOLUTION

u, +v, =13 u,+v,=19.5
u,+v, =15 u; +v, =19
u,+v, =0

d We solve by arbitrarily setting #, =0 and obtain

vi=13, u,=2, v,=175, u;=15, u,= - 13
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EXAMPLE SOLUTION

d We compute the ¢, for the nonbasic variables

¢, =175 - (0+175) = 0
¢, =12 —(15+13) = -25
¢, =0 —(-13+175)= —45
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EXAMPLE SOLUTION

~

d Since each ¢, is < ¢ no more improvement in

the maximization is possible and so the maximum

profits are

Z = (200)13 + (150)15 + (100)0 +(150)19.5 + (400)19

15,375 §
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SCHEDULING PROBLEM AS A
STANDARD TRANSPORTATION PROBLEM

d The problem is concerned with the weekly
production scheduling over a 4 —week period

Q production costs from each item

Q demands that need to be met are

o =
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SCHEDULING PROBLEM AS A
STANDARD TRANSPORTATION PROBLEM

Q weekly plant capacity is 700
O overtime Is possible for weeks 2 and 3 with
- the production of additional 200 units
- additional cost per unit of $5
Q § 3 for weekly storage of excess production
Q the objective Is to minimize the total costs for the
4-week schedule
A The decision variables are

x;; = production in week i for use in week j market
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SCHEDULING PROBLEM AS A
STANDARD TRANSPORTATION PROBLEM

demand 1 2 3

production

M is avery large number

normal

o/t

normal

18
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ASSIGNMENT PROBLEM

d We are given
n machines M  , M ,,.... M < i
n Jobs Y APTR PSR A S |

¢ ;; = costofdoingjob j on machine i

c ,-j=M If job j cannot be done on machine i

each machine can only do one job and we wish to
determine the optimal match, i.e., the assignment
with the lowest total costs of doing all the jobs j
on the » machines available
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ASSIGNMENT PROBLEM

 The brute force approach is simply enumeration:
consider » =10 and there are 3,628,800 possible
choices!

d We can, however, introduce categorical decision

variables

1 job j is assigned to machine i

ij

0 otherwise
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ASSIGNMENT PROBLEM

and the problem constraints can be stated as

Z x;; =1 Vi eachmachine does exactly 1 job
j=1

D> x,, =1 Vj eachjobis assigned

i=1
toonly 1 machine

 The objective, then, is

n n
min £ = chijxij

i=1 j=1
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ASSIGNMENT PROBLEM

4 This assignment problem iIs a standard

transportation problem with

a, = 1 Vi
bj = 1 Vj
Z“i= be

i=1 j=1
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NONSTANDARD ASSIGNMENT
PROBLEM

d Suppose we have m machines and »n jobs with
m #* n

d We may convert this into an equivalent standard
assignment problem With equal number of machines
and jobs

d The conversion requires the introduction of

either fictitious Jobs or fictitious machines
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NONSTANDARD ASSIGNMENT
PROBLEM

d Inthecase m > n:
we create ( m —n) fictitious jobs and we have
m machines and n+m—-n=m jobs; we assign
the machinery costs for the fictitious goods to
be 0 : note that there is no change in the
objective function since a fictitious job
assigned to a machine is, in effect, a machine

that is idle
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NONSTANDARD ASSIGNMENT
PROBLEM

J Forthecase n > m :

we create (n-m) fictitious machines with

machine costs of 0 and the solution

obtained has the (n—-m ) jobs that cannot be

done due to lack of machines
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NONSTANDARD ASSIGNMENT
PROBLEM

4 In principle, any assignment problem may be
solved using the transportation problem
technique; in practice , this is not good since
there exists degeneracy in every basic feasible
solution

1 We note that in the standard assignment problem for
m machines with m =n , there are exactly m x;;
that are 1 (nonzero) but every basic feasible
solution of the transportation problem has (2m -
1) basic variables and therefore contains (m — 1)
zero valued basic variables
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