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We consider the shipment of a  homogeneous 

commodity from a specified point or source to a 

particular destination or sink

In general, the source and the sink need not be 

directly connected; rather, the flow goes through 

the transshipment points or the intermediate nodes

The objective is to determine the maximal flow

from the source to the sink 

TRANSSHIPMENT  PROBLEMS
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FLOW  NETWORK  EXAMPLE

1

2

3

4

5

s t
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nodes 1, 2, 3, 4, and 5 are the transshipment 

points

arcs of the network are ( s, 1 ), ( s, 2 ), ( 1, 2 ),       

( 1, 3 ), ( 2, 5 ), ( 3, 4 ), ( 3, 5 ), ( 4, 5 ), ( 5, 4 ), ( 4, t ), 

( 5, t ) ; the existence of an arc from 4 to 5 and 

from 5 to 4 allows bidirectional flows between 

the two nodes

each arc may be constrained in terms of a 

limit on the flow  through the arc

TRANSSHIPMENT  PROBLEMS
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MAX  FLOW  PROBLEM

We denote by  fij the flow from  i to  j and this 

equals the amount of the commodity shipped 

from  i to  j  on an arc ( i , j ) that directly connects 

the nodes i  and j  

The problem is to determine the maximal flow  f 

from  s to  t taking into account the flow limits kij

of each arc ( i , j ) 

The mathematical statement of the problem is 
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MAX  FLOW  PROBLEM

max Z f=

. .
ij ij
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MAX  FLOW  PROBLEM

While the simplex approach can solve the max   

flow problem, it is possible to construct a highly 

efficient network method to find  f  directly

We develop such a scheme by making use of 

network or graph theoretic notions

We start by introducing some definitions
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DEFINITIONS  OF  NETWORK  TERMS

Each arc is directed and so for an arc ( i , j ),  f ij  ≥ 0

A forward arc at a node  i is one that leaves the 

node  i to some node  j and is denoted by ( i , j ) 

A backward arc at node  i is one that  enters node  

i from some node  j and is denoted by  ( j , i )
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DEFINITIONS  OF  NETWORK  TERMS

A path connecting node  i  to node j  is a sequence 

of arcs that starts at node  i  and terminates at 

node  j

we denote a path by  

P   =  { ( i, k ), ( k, l ), . . . , ( m, j ) }

in the example network

•( 1, 2 ),  ( 2, 5 ), ( 5, 4 ) is a path from 1 to 4

•( 1, 3 ),  ( 3, 4 ) is another path from 1 to 4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                10

DEFINITIONS  OF  NETWORK  TERMS

A cycle is a path with  i = j , i.e.,

P  = { ( i, k ), ( k, l ), . . . , ( m, i ) }

We denote the set of nodes of the network by N

the definition is  

N = { i : i is a node of the network }

In the example network

N = { s , 1, 2, 3, 4, 5, t }
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NETWORK  CUT  

A cut is a partitioning of nodes into two distinct 
subsets  S and  T with

We are interested in cuts with the property that 

the sets S and T provide an s – t cut

in the example network, 

provide an s – t cut

∪ ∩ ∅= =andS T S TN

s t∈ ∈andS T

, 1, 2 } { 3, 4, 5, }= { = s tandS T  
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NETWORK  CUT  

The capacity of a cut is

In the example network with

S = { s, 1, 2 } and   T = { 3, 4, 5, t }

we have

but for the cut with

S = {s, 1, 2, 3, 4 } and   T = { 5, t }

( , ) ij
i
j

kΚ
∈
∈

= ∑
S
T

S T

13 25( , ) k kΚ = +S T
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NETWORK  CUT  

Now, arc (5, 4) is directed from a node in T to a 

node in S and is not included in the summation
An important characteristic of the s – t cuts of 

interest is that if all the arcs in the cut are 

removed, then no path exists from s to t ; 

consequently, no flow is possible since any flow 

from s to t must go through the arcs in a cut 

The flow is limited by the capacity of the cut

4, 4,5 3,5 2,5( , ) tk k k kΚ + += +S T
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NETWORK  CUT  LEMMA

Corollaries of this lemma are

(i)

and

(ii)

( , ) ,f for any cutΚ≤ S T S T

( , ) ,max flow Κ≤ ∀S T S T

,
( , )max flow min Κ≤

S T
S T

For any directed network, the flow  f from         

s to  t is constrained by an  s – t cut
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MAX – FLOW – MIN – CUT  THEOREM

For any network, the value of the maximal flow 

from  s to  t is equal to the minimal cut, i.e., the 

cut  S ,  T with the smallest capacity

The  max-flow min-cut theorem allows us, in 

principle, to find the maximal flow in a network by 

finding the capacities of all the cuts and 

determining the cut with the smallest capacity
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MAX  FLOW

The maximal flow algorithm is based on finding a 

path through which a positive flow from s to  t can 

be sent, the so – called flow augmenting path; the 

procedure is continued until no such flow 

augmenting path can be found and therefore we 

have the maximal flow

The maximal flow algorithm is based on the 

repeated application of the labeling procedure
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LABELING  PROCEDURE

The labeling procedure is used to find a flow 

augmenting path from  s – t

We say that a node  j can be labeled if and only 

if flow can be sent from  s to  t
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LABELING  PROCEDURE

Step 0 :   start with node s

Step 1 :   label node  j  given that node  i is 

labeled only if

(i)  either there exists an arc ( i , j ) and 

f ij < kij

(ii) or there exists an arc ( j , i ) and   

f ji   > 0

Step 2 :   if  j = t , stop; else, go to Step 1
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THE  MAX  FLOW  ALGORITHM

Step 0 : start with a feasible flow

Step 1 : use the labeling procedure to find a flow 

augmenting path

Step 2 : determine the maximum value     for the   

max increase (decrease) of flow on all 

forward (backward) arcs

Step 3 : use the labeling procedure to find a flow 

augmenting path; if no such path exists, 

stop and go to Step 2

δ
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EXAMPLE

Consider the simple network with the flow 

capacities on each arc indicated

1

2

s t

7

89

9

3
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EXAMPLE

We initialize the network with a flow 1

1

2

(1,7)

(1,8)(0, 9)

(0, 9)

f =  1

(1, 3)s t
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EXAMPLE

We apply the labeling procedure

f = min { 6, 2, 7 } =  2 

1

2

6

7

2
s t

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                23

EXAMPLE

Consider the simple network with the flow and the 
capacity on each arc ( i, j ) indicated by ( f ij , kij )

(3,7)

(3, 8)(0, 9)

(0, 9)

f =  3

(3, 3)

1

2

s t
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EXAMPLE

We repeat application of the labeling procedure

f = min { 5, 9 }  =  5 

2
59

s t
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EXAMPLE

We increase the flow by 5

f =  8

(3,7)

(8, 8)(5, 9)

(0, 9)1

2

s t(3, 3)
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EXAMPLE

We repeat application of the labeling procedure

1
4 9

f = min { 4, 9 } =  4 

s t
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EXAMPLE

We increase the flow by 4 to obtain

(7,7)

(8, 8)(5, 9)

(4, 9)

f =  12

1

2

s t(3, 3)
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EXAMPLE

We repeat application of the labeling procedure

1

2
4

5

3

f = min { 4, 3, 5 } =  3

s t
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EXAMPLE

We increase the flow by 3

1

2

(7,7)

(8, 8)(8, 9)

(7, 9)

f =  15

(0, 3)

with no possibility of a flow augmenting path

s t
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UNDIRECTED  NETWORKS

A network with undirected arcs is called an 

undirected network: the flows on each arc ( i, j )

with the limit  kij  cannot violate the capacity 

constraints in either direction

Mathematically, we require

ij ij

ji ji

ij ji

f k

f k

f f 0

⎫
⎪
⎪
⎬
⎪
⎪
⎭

≤

≤

=

interpretation of 

unidirectional flow below 

capacity limit
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EXAMPLE  OF  A  NETWORK  WITH  
3 UNDIRECTED  ARCS

3

4

t

40
30

30

50

1

2

20

30

50

2515s
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EXAMPLE  OF  A  NETWORK  WITH 
UNDIRECTED  ARCS

To make the problem realistic, we may view the 

capacities as representing traffic flow limits: the 

directed arcs correspond to unidirectional streets 

and the problem is to place one-way signs on each 

street ( i, j) not already directed, so as to maximize

traffic flow from  s to  t

The procedure is to replace each undirected arc by 

two directed arcs ( i, j) and ( j, i) to deter-mine the 

maximal  s – t flow
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EXAMPLE  OF  A  NETWORK  WITH
3 UNDIRECTED  ARCS

3

s t

40
30

30

50

1

2

20

30

50

15 15
20 25 25

4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                34

EXAMPLE  OF  A  NETWORK  WITH
3 UNDIRECTED  ARCS

We apply the max flow scheme to the directed 

network and give the following interpretations to 

the flows on the max flow bidirectional arcs that 

are the initially undirected  arcs  ( i, j ) : if

fij > 0  ,  fji > 0  and fij > fji

set up the flow from  i to  j with value fij – fji

and remove the arc  ( j, i )

The computation of the max flow  f  for this 

example is left as a homework exercise
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EXAMPLE  OF  A  NETWORK  WITH
3 UNDIRECTED  ARCS

3

4

s t

40
30

30

50

1

2

20

30

50

15 15
20

25 25

(30 ,40)
(30 ,30)

(30 ,50)

(30 ,30)

(30 ,50)
(30 ,30)

(10 ,20)
(10 ,25)

(40 ,40) (40 ,50)
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EXAMPLE  OF  A  NETWORK  WITH
3 UNDIRECTED  ARCS  :  RESULT
flow: s 1 3 t = 30

flow: s 2 4 t = 30

flow: s 1 4 3 t = 10

and so the maximum flow is  30 + 30 + 10 = 70

one way signs should be put from 1     4 and  4     3

an alternative routing of a flow of 10 is the path    

s     1     2     4     3     t which would require one 

way signs from  1     2 and 4     3
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NETWORKS  WITH  MULTIPLE  
SOURCES  AND  MULTIPLE  SINKS

We next consider a network with several supply 

and several demand points

We introduce a super source      linking to all the 

sources and a super sink       linking all the sinks

We can consequently apply the max flow algorithm 

to the modified network  

ŝ

t̂
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NETWORKS  WITH  MULTIPLE  
SOURCES  AND  MULTIPLE  SINKS

.  
.  

.

ŝ t̂

s1

s m

t1

tn

t2

.  
.  

.

s2

n 
   

  e
   

   
 t 

   
  w

   
   

o 
   

  r
   

   
k
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MULTIPLE ─ SOURCE / MULTIPLE ─
SINK  NETWORK  EXAMPLE

1

2

3

4 7

6

5

8

10

20

5

5

15

10

5

5

5

5

10

10

10
sources  

each with a 
supply 20

sink with 
demand 20

sink with 
demand 15
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MULTIPLE ─ SOURCE / MULTIPLE ─
SINK  NETWORK  EXAMPLE

1

2

3

4 7

6

5

8

10

20

5

5

15

10

5

5

5

5

10

10

10

ŝ

t̂

20

15

super source 
node ŝ

t̂
super sink 

node

20 20
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MULTIPLE ─ SOURCE / MULTIPLE ─
SINK  NETWORK  EXAMPLE

The transshipment problem is feasible if and only 

if the maximal            flow   f   satisfies 

We need to show that 

the transshipment problem is infeasible since 

the network cannot accommodate the total 

demand of  35 ; 

the smallest shortage for this problem is 5

s t̂ˆ −

sinks
demandsf = ∑
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MULTIPLE ─ SOURCE / MULTIPLE ─
SINK  NETWORK  EXAMPLE

1

2

3

4 7

6

5

8

10

20

5

5

15

10

5

5

5

5

10

10

10

f

f

20

20

20

15

ŝ

t̂
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MULTIPLE ─ SOURCE / MULTIPLE ─
SINK  NETWORK  EXAMPLE

The minimum cut is shown and has capacity

15 + 5 + 5 + 5 = 30

and the maximum flow is, therefore, 30

Since the maximum flow fails to meet the total 

demand of 35 units, the problem is infeasible; the 

minimum shortage is 5
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APPLICATION  TO  MANPOWER  
SCHEDULING

Consider the case of a company that must  
complete its four projects in 6 months

project
earliest start 

month
latest finish 

month

manpower 
requirements

( person/month)

A 1 4 6

B 1 6 8

C 2 5 3

D 1 6 4
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APPLICATION  TO  MANPOWER  
SCHEDULING

There are the following additional constraints:

the company has only 4 engineers

at most  2 engineers may be assigned to any 

one project in a given month

no engineer may be assigned to more than  

one project at any time

The question is whether there is a  feasible  assign-

ment and if so determine the optimal assignment
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APPLICATION  TO  MANPOWER  
SCHEDULING

The solution approach is to set up the problem 
as a transshipment network 

the sources are the 6 months of duration
the sinks are the 4 projects
an arc (i, j) is introduced whenever a feasible 
assignment of the engineers working in 
month i  can be made to project j with

kij = 2         i = 1, 2, . . . , 6  ,     j = A , B , C , D  
there is no arc (1, C) since project  C cannot 
start before month 2
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APPLICATION  TO  MANPOWER  
SCHEDULING
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each arc has capacity 2
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APPLICATION  TO  MANPOWER  
SCHEDULING

The transshipment problem is feasible if the total 

demand  

6 + 8 + 3 + 4 = 21  

can be met

As a homework problem, determine whether a 

feasible schedule exists and if so, find it
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1
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6

A
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C

D

APPLICATION  TO  MANPOWER  
SCHEDULING

ŝ t̂

(6, 6)

(8, 8)

(3, 3)

(4, 4)

(6, 6)

(8, 8)

(3, 3)

(4, 4)

(4, 4)

(4, 4)

(4, 4)

(4, 4)

(3, 4)

(2, 4)

(4, 4)

(4, 4)

(4, 4)

(4, 4)

(3, 4)

(2, 4)

(2, 2)
(2, 2) (2, 2)

(2, 2)

(2, 2)

(2, 2)

(2, 2) (1, 2)

(2, 2)

(2, 2)

(2, 2)
(2, 2) (2, 2)

(2, 2)

(2, 2) (2, 2)

(2, 2)

(2, 2)

(2, 2)

(2, 2) (1, 2)

(2, 2)
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(3, 3)

(4, 4)

APPLICATION  TO  MANPOWER  
SCHEDULING

ŝ t̂

(4, 4)

(4, 4)

(4, 4)

(4, 4)

(3, 4)

(2, 4)

(2, 2)
(2, 2) (2, 2)

(2, 2)

(2, 2)

(2, 2)

(2, 2)
(1, 2)

(2, 2)

(2, 2)

(2, 2)
(2, 2) (2, 2)

(2, 2)

(2, 2) (2, 2)

(2, 2)

(2, 2)

(2, 2)

(2, 2)
(1, 2)

(4, 4)

(4, 4)

(4, 4)

(4, 4)

(3, 4)

(2, 4)

(6, 6)

(8, 8)

(3, 3)

(4, 4)

(2, 2)

21

21
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SHORTEST  ROUTE  PROBLEM

The problem is to determine the shortest path from  
s to  t for a network with a  set of nodes 

N =  { s = 1, 2, … , n = t }

and arcs  (i, j), where for each arc (i, j) of the 
network

dij =  distance or transit time
The determination of the shortest path from 1 to n  

requires the specification of the path

{ ( 1, i1 ) , ( i1, i2 ) , … , ( iq  , n )  }
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SHORTEST  ROUTE  PROBLEM

We can write an LP formulation of this problem in 

the form of a transshipment problem:

ship 1 unit from node 1 to node  n by 

minimizing the shipping costs using the 

data parameters

shipping costs for  1 unit from  i  to  j 

whenever  i  and  j  are not directly connected
=ijd
⎧⎪
⎨
⎪⎩ ∞
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THE  DIJKSTRA  ALGORITHM

The solution is very efficiently performed using 

the Dijkstra algorithm

The assumptions are

dij is given for each pair of nodes

dij

The scheme is, basically, a label assignment 

procedure, which assigns nodes with either a 

permanent or a temporary label

0≥
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THE  DIJKSTRA  ALGORITHM

The temporary label of a node  i is an upper bound 

on the shortest distance from node 1 to node  i

The permanent label is the actual shortest distance 

from node  1 to node  i
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THE  DIJKSTRA  ALGORITHM

Step 0 : assign the permanent label  0 to node 1
Step 1 : assign temporary labels to all the other 

nodes
d1j if node  j is directly connected to  
node 1

if node  j is not directly connected 
to node 1

and select the minimum of the temporary
labels and declare it  permanent ; in case of 
ties, the choice is arbitrary  

∞
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THE  DIJKSTRA  ALGORITHM

Step 2 : let  be the node most recently assigned 
a permanent label and consider each node  
j with a temporary label; recompute the 

label to be

Step 3 : select the smallest of the temporary labels 
and declare it permanent ; in case of ties, 
the choice is arbitrary  

Step 4 : if this is node  n , stop; else, go to Step 2

, j
permanetemporar t dn

j
y⎧ ⎫⎪ ⎪

⎨ ⎬
⎪ ⎪⎩ ⎭

+
label label

of node of node
min
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THE  DIJKSTRA  ALGORITHM

The shortest path is obtained by retracing the 

sequence of nodes with permanent labels starting 

from  n back to the node  1

The path is then given in the forward direction

starting from node 1 and ending at node n
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EXAMPLE  :  SHORTEST  PATH

Consider the undirected network

1

6

54

3

2

3

7

4
1

2

9

6

3

3

3
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EXAMPLE  :  SHORTEST  PATH

The problem is to

find the shortest path from  1  to  6

compute the length of the shortest path

We apply the Dijkstra algorithm and assign 

iteratively a permanent label to each node
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EXAMPLE  :  SHORTEST  PATH

0 0 01 : ( ) ,3,7,4, ,∞ ∞⎡ ⎤
⎣ ⎦=Steps and L0 001 : ( ) , ,7,4, ,3 ∞ ∞⎡ ⎤
⎣ ⎦=Steps and L
0

1

02 : (1) ,3,5,4, ,12⎡ ⎤
⎣ ⎦= ∞Steps L 0 32 : (1) , , 45, , ,12⎡ ⎤
⎣ ⎦= ∞Steps L

2

02,3 4 : (2) ,3,5,4,7,12⎡ ⎤
⎣ ⎦=Steps and L 02,3 4 : (2) , , , ,7,123 45⎡ ⎤
⎣ ⎦=Steps and L

3

initial label

label in iteration 1

label in iteration 2
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02,3 4 : (4) 10, , , ,5 ,3 4 7⎡ ⎤
⎣ ⎦=Steps and L

EXAMPLE  :  SHORTEST  PATH

02,3 4 : (3) , , , , ,113 5 4 7⎡ ⎤
⎣ ⎦=Steps and L

4

5

0,3,5,4,7,10(4) ⎡ ⎤
⎣ ⎦=L

6

label in iteration 4

label in iteration 3
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EXAMPLE  :  SHORTEST  PATH

1

0

2

4

5

1

6

54

3

2

3

7

4
1

2

9

6

3

3

33

The shortest distance is 10 obtained from the path
{ ( 1, 4 ) , ( 4, 5 ) , ( 5, 6 ) }
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PATH  RETRACING

We retrace the path from  n back to  1 using the 

scheme:

pick node  j preceding node  n as the node 

with the property 

In the retracing scheme, certain nodes may be 

skipped

permanent label of

node  j
+ d jn =

shortest

distance

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                64

SHORTEST  PATH  BETWEEN  ANY  
TWO  NODES

The Dijkstra algorithm may be applied to 

determine the shortest distance between any pair 

of nodes   i ,  j   by taking  i  as the source node and  

j   as the sink node

We give as an example the following five – node 

network
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EXAMPLE  :  FIVE – NODE NETWORK

0 1 2 3 4
4 8 10

4 4 83 3 2 3
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EXAMPLE  :  FIVE – NODE NETWORK

0 0( ) ,3,4,8,10,∞⎡ ⎤
⎣ ⎦=L 00( ) , ,4,8,103 ,∞⎡ ⎤
⎣ ⎦=L
0

0(1) ,3,4,7,10⎡ ⎤
⎣ ⎦=L 0 4(1) , , ,7,103⎡ ⎤
⎣ ⎦=L

1

0(2) ,3,4,6,8⎡ ⎤
⎣ ⎦=L 0 3 4(2) , , , ,86⎡ ⎤
⎣ ⎦=L

2
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0 3 4(3) , , , 8,6⎡ ⎤
⎣ ⎦=L

3
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2 4

8 =  4

2 4

node

d

0 

+

→ →

We retrace the path to get

and  so  the  path  is  

EXAMPLE  :  FIVE – NODE NETWORK
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EXAMPLE  :  FIVE – NODE NETWORK

0 1 2 3 4
4 8 10

4 4 83 3 2 3

1

0

2
4

3
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APPPLICATION  :  EQUIPMENT  
REPLACEMENT  PROBLEM

We consider the problem of replacing old 

equipment or continuing its maintenance

As equipment ages, the level of maintenance 

required increases and typically, this results in 

increased operating costs

O&M costs may be reduced by replacing aging 

equipment; however, replacement requires addit-

ional capital investment and so higher fixed costs
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APPPLICATION  :  EQUIPMENT  
REPLACEMENT  PROBLEM

The problem is how often to replace equipment 

so as to minimize the total costs given by

total 

costs
+

capital

costs
=

O&M

costs

fixed variable
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EXAMPLE: EQUIPMENT  
REPLACEMENT

Equipment replacement is planned during the 
next  5 years
The cost elements are

pj = purchase costs in year  j
sj = salvage value of original 

equipment after  j  years of use
cj = O&M costs in year  j  of operation 

of equipment with the property that
… cj <  cj + 1 < cj + 2 <   …

We formulate this problem as a shortest route 
problem on a directed network
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EQUIPMENT  REPLACEMENT  
PROBLEM

1 2 3 4 5 6d12 d23 d34 d45 d56

d24
d25

d26

d13

d14

d15
d16

d35

d36

start of

planning period

end of

planning 

period

d46
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APPPLICATION  :  EQUIPMENT  
REPLACEMENT  PROBLEM

where, the “distances” d ij are defined to be 

finite if  i  <  j , i.e., year  i precedes the year  j , 

with

1

j i

ij i j id p s c j iτ
τ

−

−
=

= − + >∑

purchase

price in

year i

salvage value 

after  j – i

years of use

O&M  costs

for  j – i  years

of operation
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APPPLICATION  :  EQUIPMENT  
REPLACEMENT  PROBLEM

For example, if the purchase is made in year 1

The solution is the shortest distance path from 

year 1  to year  6  ;  if for example the path is

{ ( 1, 2) , (2, 3) , (3, 4) , (4, 5) , (5, 6) }

then the solution is interpreted as the replace-

ment of the equipment each year with

1 5

5

16
1

d p s cτ
τ =

= − + ∑

5

1 1
1

5 5i
i

total costs p s c
=

= − +∑
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

This problem concerns the storage of books in a 

limited size library

Books are stored according to their size, in terms 

of height and thickness, with books placed in 

groups of same or higher height; the set of book 

heights { Hi } is arranged in ascending order with

H1 <   H2 <   … <   Hn
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

Any book of height  Hi may be shelved on a shelf 
of height at least Hi  , i.e.,  Hi , Hi+1 , Hi+2 ,  . . .
The length  Li of shelving required for height Hi

is computed given the thickness of each book; 
the total shelf area required is

if only  1 height class  [ corresponding to the 
tallest book ]  exists, total shelf area required 
is the total length of the thickness of all books 
times the height of the tallest book

i i
i

H L∑
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

if  2 or more height classes are considered, 

the total area required is less than the total 

area required for a single class

The costs of construction of shelf areas for each 

height class  Hi  have the components

si fixed costs [ independent of shelf area ]

ci variable costs / unit area
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

For example, if we consider the problem with  2

height classes  Hm and  Hn with  Hm <  Hn

all books of height  ≤ Hm are shelved in shelf 

with the height  Hm

all the other books are shelved on the shelf  

with height  Hn

The corresponding total costs are
m n

m m m n n nj j
j j m

s c H L s c H L
1 1= = +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ + +∑ ∑
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

The problem is to find the set of shelf heights and 

lengths to minimize the total shelving costs

The solution approach is to use a network flow 

model for a network with

the set of  (n + 1) nodes

corresponding to the  n book heights with

1        H1 <  H2 <  … <  Hn

and the starting node with height 0

{ }0, 1, 2, . . . , n=N

↔ n↔
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

directed arcs  (i , j) only if  j > i resulting in 

a total of                    arcs 

“distance” dij on each arc given by

n n( 1)
2
+

1ij

j

j j j k
k i

s c H L if j id = +

⎧
⎪
⎨
⎪
⎩

+ >= ∑
∞ otherwise
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

{ }( 0, 7 ) , ( 7, 9 ) , ( 9,15 ) , (15,17 )

For this network, we solve the shortest route 

problem  for the specified “distances” dij

Suppose that for a problem with  n =  17 ,  we 

determine the optimal trajectory to be

the interpretation of this solution is :
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COMPACT  BOOK  STORAGE  IN A  
LIBRARY

store all the books of height  ≤ H7 on the 

shelf of height  H7

store all the books of height  ≤ H9 but > H7

on the shelf of height H9

store all the books of height  ≤ H15 but > H9

on the shelf of height H15

store all the books of height  ≤ H17 but > H15

on the shelf of height H17
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