ECE 307 – Techniques for Engineering Decisions

Dynamic Programming

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

1

DYNAMIC PROGRAMMING

□ Systematic approach to solving *sequential decision*

making problems

cuu duong than cong. com

□ Salient problem characteristic: ability to *separate*

the problem into stages

□ *Multi-stage* problem solving technique

STAGES AND STATES

We consider the problem to be composed of

multiple stages

A stage is the "point" in time, space, geographic due due than cong. con location or structural element at which we make a

decision; this "point" is associated with one or

more states

□ A *state* of the system describes a possible

configuration of the system in a given *stage*

STAGES AND STATES

RETURN FUNCTION

□ A decision d_n in the stage n transforms the state s_n in the stage *n* into the state s_{n+1} in the stage n+1 \Box The state s, and the decision d, have an impact on the objective function; the effect is measured in terms of the *return function* denoted by $r_n(s_n, d_n)$ The *optimal* decision at *stage* n is the *decision* d_{n}^{*}

that optimizes the *return function* for the *state* s_n

RETURN FUNCTION

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ROAD TRIP EXAMPLE

- □ A poor student is traveling from NY to LA
- □ To minimize costs, the student plans to sleep at
 - friends' houses each night in cities along the trip Based on past experience he can reach
 - **O** Columbus, Nashville or Louisville after 1 day
 - O Kansas City, Omaha or Dallas after 2 days
 - **O** San Antonio or Denver after 3 days
 - **O LA after 4 days**

ROAD TRIP EXAMPLE

ROAD TRIP

□ The student wishes to minimize the number of

miles driven and so he wishes to determine the

shortest path from NY to LA

cuu duong than cong. com

- □ To solve the problem, he works *backwards*
- □ We adopt the following notation
 - c_{ij} = distance between states *i* and *j*
 - $f_k(i) =$ distance of the shortest path to

LA from state i in the stage k

ROAD TRIP EXAMPLE CALCULATIONS

$$day 4 : f_{4}(8) = 1,030 \qquad f_{4}(9) = 1,390$$

$$day 3 : f_{3}(5) = min \left\{ \underbrace{(610+1,030),(790+1,390)}_{\text{current}} \right\} = 1,640$$

$$f_{3}(6) = min \left\{ \underbrace{(540+1,030),(940+1,390)}_{1,570} \right\} = 1,570$$

$$f_{3}(7) = min \left\{ \underbrace{(790+1,030),(270+1,390)}_{1,820} \right\} = 1,660$$

ROAD TRIP EXAMPLE CALCULATIONS

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ROAD TRIP EXAMPLE

day 1:

$$f_{1}(1) = min\left\{ \underbrace{(1,550+2,320),(900+2,220),(770+2,150)}_{*2,870*} \right\} = 2,870$$

- The shortest path is 2,870 miles and corresponds to the trajectory { (1, 2), (2, 5), (5, 8), (8, 10) }, i.e., from NY, the student reaches Columbus on the first day, Kansas City on the second day, Denver the third day and then LA
- Every other trajectory to LA leads to higher costs and so is, by definition, *suboptimal*

PICK UP MATCHES GAME

- □ There are 30 matches on a table and 2 players
- □ Each player can pick up 1, 2, or 3 matches and
 - continue until the last match is picked up
- □ The loser is the person who picks up the *last match*
- \Box How can the player P_1 , who goes first, ensure to
 - be the winner?

WORKING BACKWARDS: PICK UP MATCHES GAME

- □ We solve this problem by reasoning in a back
 - wards fashion so as to ensure that when a single
 - match remains, P_2 has the turn
- □ Consider the situation where 5 matches remain

and it is P_2 's turn; for P_1 to win we, consider all

possible situations:

WORKING BACKWARDS: PICK UP MATCHES GAME

□ We can reason similarly for the cases of 9, 13, 17,

- 21, 25, and 29 matches
- □ Therefore, P_1 wins if P_1 picks 30 29 = 1 match in the first move ducing that cong. com
- In this manner, we can assure a win for any number of matches in the game

- We consider the development of a transport
 network from the north slope of Alaska to one of 6
 possible shipping points in the U.S
- The network must meet the problem feasibility requirements
 - 7 pumping stations from a north slope ground storage plant to a shipping port
 - Use of only those paths that are physically and environmentally feasible

□ Objective: determine a *feasible* pumping

configuration that minimizes the

cuu duong than cong. com

construction costs of the branches

of an allowed path in the network of

feasible pumping configurations

- □ Possible approaches to solving such a problem:
 - **O** *enumeration*: exhaustive evaluation of all
 - possible paths; too costly since there are more than 100 possible paths
 - O myopic decision rule: at each node, pick as the

next node the one reachable by the cheapest path (in case of ties the pick is arbitrary) ; for

25 15 19 III-D IV-E V-C VI-D VII-C \mathbf{H} - \mathbf{E} I = ER

storage

cuu duong than cong. com

but such a path is not unique and cannot be

guaranteed to be *optimal*

• *serial dynamic programming* (*DP*) : we need to construct the problem solution by defining the

stages, states and decisions

DP SOLUTION

- □ We define a *stage* to represent each pumping
 - region and so each stage corresponds to the set of
 - vertical nodes in the initial, the intermediate
 - I, II, ..., VII and the final regions
- □ We use *backwards recursion*: start from a final during than cong. con destination and work backwards to the oil storage

DP SOLUTION

 \Box We define a *state* s_k to denote a final destination, a

particular pumping station in the intermediate

regions or the oil storage tank

□ A decision refers to the selection of the branch

from each state s_k , so there are at most three cuu duong than cong. com choices for a *decision* d_k :

 $L \leftrightarrow \text{left}$ $F \leftrightarrow \text{forward}$ $R \leftrightarrow \text{right}$

DP SOLUTION

D The *return function* $r_k(s_k, d_k)$ is defined as the costs

associated with the *decision* d_k for the *state* s_k

□ The transition function is the total costs in cut ducing that congilication proceeding from a state in *stage* k + 1 to another

state in *stage* k, k = 0, 1, ..., 7

We solve the problem by moving *backwards* iteratively starting from each final *state* to the *states* in the *stage* 1 and so on

DP SOLUTION: STAGE 1 ↔ REGION VII TO A FINAL DESTINATION

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DP SOLUTION: $STAGE 2 \leftrightarrow \text{REGION VI TO } STAGE 1$

STAGE 2 CALCULATION

costs of proceeding from the state s_2 to a state s_1 in stage 1

$$f_{2}^{*}(s_{2}) = \min_{d_{2}} \left(\frac{\bullet}{r_{2}(s_{2}, d_{2})} + \underbrace{f_{1}^{*}(s_{1})}_{d_{2}} \right)$$

a function of only s_1

cuu duong than cong. com

for a given d_2 , the state s_1 is set

DP SOLUTION: STAGE 3 \leftrightarrow REGION V TO STAGE 2

		<i>d</i> ₃		d *	$f^*(\mathbf{c})$
3	R	ducing L	F	cong3	$\int_{100} J_3(s_3)$
	14		16	R	14
	14	17	15	R	14
	10	du 5 ng	13	~ R	10 iom
	9	12	9	<i>R</i> , <i>F</i>	9
	1	12	15	L	12

DP SOLUTION: STAGE 4 ↔ REGION IV TO STAGE 3

		d_4			
<i>s</i> ₄	R	diiont	F ai		$J_4(s_4)$
B	17	18	23	R	17
С	15	22	16	R	15
D	18 🛛	17	16	c F g.	com 16
E		16	21	L	16

- .

^{© 2006 – 2009} George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

$DP \text{ SOLUTION:}$ $STAGE 6 \leftrightarrow \text{REGION II TO STAGE 6}$											
$f_{6}^{*}(s_{6}) = \min_{d_{6}} \left\{ r_{6}(s_{6}, d_{6}) + f_{5}^{*}(s_{5}) \right\} $											
	S	<i>d</i> ₆			<i>d</i> *	$f^*(\mathbf{c})$	edin stinc				
	5 6	R	L	F	ч ₆		oce I de				
	A	25	duonį	24	°F · · ·	^{om} 24	in pr fina				
	B	21	25	24	R	21	to a				
	С	28	21	23	L	21	ve cc				
	D	27	26	29	< ∠ . <	om 26	llatin tate				
	E	26	23	22	F	22	umu				
	F		18	23	L	18	c. from				

DP SOLUTION: $STAGE 7 \leftrightarrow \text{REGION I TO } STAGE 7$

<i>f</i> [*] ₇ (<i>s</i> ₇)) = n	nin { d ₇	r ₇ (s ₇	, d ₇) +	$f_6^*(s_6)$	eding stination
G		d_7			$f^*(s)$	roced I des
3 7	R		F			n pı fina
A	27		32	R	27	sts i 0 a j
B	26	33	26	R , F	26	ve co s ₇ t
С	34	25	27 an	co L	_{om} 25	lativ ate
D	25	27	33	R	25	umu
E	27	35	30	R	27	cı rom

THE OPTIMAL TRAJECTORY

□ For the last *stage* corresponding the oil storage

s_8 d_8	A	B	С	D	E	d_8^*	$f_8^*(s_8)$
$f_8(s_8)$	33	30 :000	d 32 g	cha 33:o r	s 30	B,E	30

$$f_{8}^{*}(s_{8}) = min\{27+6, 26+4, 25+7, 25+8, 27+3\}$$

= 30 cuu duong than cong. com

□ To find the *optimal* trajectory, we retrace forwards

proceeding through the stages 7, 6, ..., 1 to get

THE OPTIMAL TRAJECTORY

□ In addition to this *optimal* solution, other

trajectories are possible since the path need not

be unique but there is no path that yields a

shorter total distance

OIL TRANSPORT PROBLEM SOLUTION

- We obtain the diagram shown on the next slide by retracing the steps of proceeding to a final destination at each *stage*
- The solution
 - **O** provides all the *optimal trajectories*
 - is based on logically breaking up the problem into *stages* with the calculations in each *stage* being a function of the number of *states* in the *stage*
 - **O provides also all the** *suboptimal paths*

OIL TRANSPORT PROBLEM OPTIMAL SOLUTIONS

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

35

OIL TRANSPORT PROBLEM SOLUTION

□ For example, we may calculate the least cost

optimal path to any *sub – optimal* shipping point

different than D

□ From the solution, we can also determine the *sub*-

optimal path if the construction of a feasible path

is not undertaken
OIL TRANSPORT: SENSITIVITY CASE

- □ Consider the case where we got to *stage* VI but the branch VI – D to VII – D cannot be built due to some environmental constraint
- We determine, then, the least-cost path from VI –
 D to find the final destination *D* whose value is 9 instead of 6

□ A company is expanding to meet a wider market

and considers:

O 3 location alternatives

O 4 different building types (sizes) at each site

Revenues and costs vary with each location and

building type

□ Revenues *R* increase monotonically with building

size; these are net revenues or profits

cuu duong than cong. com

Costs *C* increase monotonically with building size

□ The data for building sizes and the associated

revenues and costs are given in the table

		building size												
cito	B ₁		B ₂		B ₃		<i>B</i> ₄		none					
5110	\boldsymbol{R}_1	<i>C</i> ₁	R 2	uong 1 C ₂	nan co R ₃	<i>C</i> ₃	R ₄	<i>C</i> ₄	R ₀	C ₀				
Ι	0.50	1	0.65	2	0.8	3	1.4	5	0	0				
II	0.62	2	0.78	5	0.96	° [©] 6 °°	1.8	8	0	0				
III	0.71	4	1.2	7	1.6	9	2	11	0	0				

□ The company can afford to invest at most 21

million *\$* in the total expansion project

□ The goal is to determine the *optimal* expansion

cuu duong than cong. com

policy, i.e., the buildings to be built at each site

□ We use the *DP* approach to solve this problem;

first, however, we need to define the DP structure

elements cuu duong than cong. com

□ For the facilities siting problem, we realize that

without the choice of a site, the building type is cuu duong than cong. com irrelevant and so the elements that control the

entire decision process are the building sites

stage	\leftrightarrow	site
	ſ	amount of funds available
<i>state</i>	u duong	for construction
decision	\leftrightarrow	building type
return function	\leftrightarrow	revenues
cu transition function	u duong	impact of a decision on the
		availablity of resources

- □ We use backwards DP to solve the problem and start with site I ↔ stage 1, a purely arbitrary choice, where this stage 1 represents the last decision in the 3 – stage sequence and so is made after the decision for the other two sites have been taken
- The amount of funds available is unknown since the decision at sites II and III are already made, and so

 $0 \leq s_1 \leq 21$

□ There are no additional decisions to be made in *stage 0* and we define

$$s_{\theta} = \theta$$
 and $f_{\theta}^*(s_{\theta}) = \theta$

uu duong than cong. com

□ We start with *stage* 1 and move backwards to *stages*

2 and 3

- □ As we move backwards from *stage* (n-1) to *stage* n, as a result of the *decision* d_n , the funds available
 - for construction in stage (n-1) are

$$s_{n-1} = s_n - c_n \leftarrow \text{ costs of decision } d_n$$

□ The recursion relation is given by

$$f_n^*(s_n) = \max_{d_n} \left\{ f_n(s_n, d_n) + f_{n-1}^*(s_{n-1}) \right\}, \ n = 1, 2, 3$$

with

$$s_{n-1} = s_n - c_n$$

cut ducing that cong. com
and

$$f_n(s_n, d_n) = r_n(s_n, d_n) = (R_n) \leftarrow \frac{\text{revenues for}}{\text{decision } d_n}$$

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

n

DP SOLUTION: STAGE $1 \leftrightarrow SITE I$

$$f_{1}^{*}(s_{1}) = \max_{\substack{0 \le d_{1} \le 4}} \{ \underbrace{r_{1}(s_{1}, d_{1})}_{R_{1}} \}$$

$s_1 d_1$	0	1	2	3	4	d_1^*	$f_1^*(\mathbf{s_1})$
$21 \ge s_1 \ge 5$	0	.50	.65	.80	1.40	4	1.40
$4 \ge s_1 \ge 3$	0	.50	.65	.80		3	.80
2	0	.50	.65		0.75	2	.65
1	0	.50			Çi n	1	.50
0	0	0	0	0	0	0	0

DP SOLUTION: STAGE 2 \leftrightarrow SITE II

 \Box The amount of funds s_2 available is unknown

since the decision at site III is already made

 \Box The value of d_2 is a function of s_2 and we

construct a decision table using

$$f_{2}^{*}(s_{2}) = \max_{\substack{0 \leq d_{2} \leq 4 \\ \text{where}}} \{\underbrace{r_{2}(s_{2}, d_{2})}_{R_{2}} + f_{1}^{*}(s_{1})\}$$

 $s_1 = s_2 - c_2$

DP SOLUTION: STAGE $2 \leftrightarrow$ SITE II

$S_2 d_2$	0	1	2	3	4	d_{2}^{*}	$f_2^*(s_2)$
$21 \geq s_2 \geq 13$	1.40	2.02	2.18	2.36	3.20	4	3.20
12	1.40	2.02	2.18	2.36	2.60	4	2.60
11	1.40	2.02	2.18	2.36	2.60	4	2.60
10	1.40	2.02	2.18	1.76	2.45	4	2.45
9	1.40	2.02	1.58	1.61	2.30	4	2.30
8	1.40	2.02	1.58	1.61	1.80	1	2.02
7	1.40	2.02	1.43	1.46		1	2.02
6	1.40	1.42	1.28	0.96		3	1.46
5	1.40	1.42	0.78			1	1.42
4	0.80	1.27	t than		0.07	1	1.27
3	0.80	1.12	5 chan	cong.	ÇQIII	1	1.12
2	0.65	0.62				0	0.65
1	0.50					0	0.50
0	0.00					0	0.00

SAMPLE CALCULATIONS

 \Box Consider the case $s_2 = 10$ and $d_2 = 0$; then,

$$C_2 = 0$$
 and $R_2 = 0$;

also therefore, due dueng that cong. com $s_1 = 10$ and $d_1^* = 4$

so that

$$f_1^*(s_1) = 1.4;$$

consequently,

$$f_2(s_2) = 1.4$$

SAMPLE CALCULATIONS

 \Box Consider next the case $s_2 = 10$ and $d_2 = 4$; then,

$$C_2 = 8$$
 and $R_2 = 1.8$;

also therefore,

$$s_1 = 2$$
 and $d_1^* = 2$

so that

$$f_1^*(s_1) = .65$$

consequently,

$$f_2(s_2) = 2.45$$

which we can show is the optimal value

$$f_{2}^{*}(s_{2}) = 2.45$$

DP SOLUTION : STAGE $3 \leftrightarrow$ SITE III

□ At *stage* 3 , the first decision is actually taken and

so exactly 21 million is available and $s_3 = 21$

We compute the elements in the table using

$$f_{3}^{*}(s_{3}) = \max_{d_{3}} \{ \underbrace{r_{3}(s_{3}, d_{3})}_{R_{3}} + f_{2}^{*}(s_{2}) \}$$

cuu duong than cong. com

where

$$s_{2} = s_{3} - C_{3}$$

OPTIMAL SOLUTION

Optimal profits are 4.45 million and the optimal path

is obtained by retracing steps from stage 3 to stage

1:

OPTIMAL SOLUTION

$$d_3^* = 4 \leftrightarrow \text{construct } B_4$$
 at site III

$$s_2 = s_3 - C_3 = 21 - 11 = 10$$

 $d_2^* = 4 \leftrightarrow \text{construct } B_4$ at site II

$$s_1 = s_2 - C_2 = 10 - 8 = 2$$

 $d_1^* = 2 \leftrightarrow \text{construct } B_2$ at site I

$C_1 = 5$ and $C_1 + C_2 + C_3 = 21$

SENSITIVITY CASE

- □ We next consider the case where the maximum investment available is 15 million
- By inspection, the results in *stages* 1 and 2 remain unchanged; however, we must recompute *stage* 3 results with the 15 million limit

SENSITIVITY CASE

□ The *optimal* solution obtains maximum profits of

3.31 million and the decision is as follows:

 $d_3^* = 1 \leftrightarrow \text{construct } B_1 \text{ at site III}$ $s_{2} = s_{3} - C_{3} = 15 - 4 = 11$ $d_2^* = 4 \leftrightarrow \text{construct } B_4$ at site II $s_1 = s_2 - C_2 = 11 - 8 = 3$ $d_1^* = 3 \leftrightarrow \text{construct } B_3$ at site I $C_1 = 3 \text{ and } C_1 + C_2 + C_3 = 15$ © 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

OPTIMAL CUTTING STOCK PROBLEM

□ A paper company gets an order for:

- 8 rolls of 2 ft paper at 2.50 \$/roll
- 6 rolls of 2.5 *ft* paper at 3.10 *\$/roll*
- 5 rolls of 4 *ft* paper at 5.25 *\$/roll*
- O 4 rolls of 3 ft paper at 4.40 \$/roll
- The company only has 13 *ft* of paper to fill these orders; partial orders can be filled
- Determine how to fill orders to maximize profits

□ A *stage* is an order and since there are 4 orders we

construct a 4-stage DP

□ A *state* in *stage n* is the remaining *ft* of paper left

for the order being processed at stage n and all

the remaining stages

□ A decision in *stage n* is the amount of rolls to

produce in *stage n* :

$$d_n = \left[\frac{F_0}{L_n}\right]$$
, the largest integer in $\frac{F_0}{L_n}$

where

$$L_n =$$
length of order $n(ft)$

 F_0 = length of available paper (ft)

□ The *return function* at *stage n* is the additional

revenues gained from producing d_n rolls

□ The *transition function* measures amount of paper

remaining at stage n

$$s_{n-1} = s_n - d_n L_n$$
 $n = 2,3,4$
cuu duong than cong. com

$$s_{\theta} = s_1 - d_1 L_1$$

and s_0 should be as close as possible to θ

□ Clearly,

cuu duong than cong. com

$$\boldsymbol{d}_1 = \left[\frac{\boldsymbol{s}_1}{\boldsymbol{L}_1}\right]$$

□ The recursion relation is

$$f_n^*(s_n) = \max \left\{ r_n(s_n, d_n) + f_{n-1}^*(s_{n-1}) \right\}$$
$$0 \le d_n \le \left[\frac{s_n}{L_n} \right]$$

where

$$s_{n-1} = s_n - d_n L_n$$

and

cuu duong than cong. com

$$f_{\theta}^*(\mathbf{s}_{\theta}) = \theta$$

$$f_n(s_n, d_n) = r_n d_n + f_{n-1}^*(s_n - d_n L_n), \quad n = 1, 2, 3, 4$$

□ We assume an arbitrary order of the *stages* and

pick

stage n	cuu duong 1	than cona 2	3	4
length of order (<i>ft</i>)	2.5	4	3	2

□ We proceed backwards from *stage* 1 to *stage* 4

and we know that

			D	P	SOI	LU	TIC) N:	S '.	TAC	FE	1			
	J	$f_{1}^{*}($	<mark>\$ 1</mark>)	=0	$\max_{\leq d_1 \leq d_1}$; 5 {1	r ₁ (s ₁	,d ₁)	} =	$m = m = 0 \leq d$	$ax_{1} \leq 5$	3.10	d_1		
				C	$l_1 \leq$	$\left\lceil \frac{1}{2} \right\rceil$	$\left \frac{3}{5}\right =$	= 5							
S ₁															
di	0	J	2	3	4	5	6	7	8	9	10	11	12	13	
0	0	0	0	0 3.10	0 3.10	0	0	0	0	0	0	0	0	0	
2	-	_	-	_	_	6.20	6.20								
3					-	_	_	-	9.30	9.30					
4	-	-	-	110	- Zuu	фio	ng_th	ian_icc	ng_	com	12.40	12.40	_		
5	-	-	-	-	-		-	-	-		_	_		15.50	
$f_1^*(S_i)$	0	0	0	3.10	3.10	6.20	6.20	6.20	9.30	9.30	12.40	12.40	12.40	15.50	
d * 1	0	0	0	1	1	2	2	2	3	3	4	4	4	5	

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 64

DP SOLUTION: STAGE 2

$$f_{2}^{*}(s_{2}) = \max_{0 \le d_{2} \le 3} \left\{ 5.25 d_{2} + f_{1}^{*}(s_{2} - 4 d_{2}) \right\}$$
$$d_{2} \le \left[\frac{13}{4} \right] = 3$$

l c					çut	u duc	ng t	han c	ong .	ÇQIII				
<i>d</i> ₂	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	3.10	3.10	6.20	6.20	6.20	9.30	9.30	12.40	12.40	12.40	15.50
1		-	-	-	5.25	5.25	5.25	8.35	8.35	11.45	11.45	11.45	14.55	14.55
2		-	-	-	-	-	-	-	10.50	10.50	10.50	13.60	13.60	16.70
3	-	-	<u> </u>		÷cui	u d uc	n g i t	ha r, c	on g .	COR	-		15.75	15.75
$f_{2}^{*}(s_{2})$	0	0	0	3.10	5.25	6.20	6.20	8.35	10.50	11.45	12.40	13.60	15.75	16.70
<i>d</i> * ₂	0	0	0	0	1	0	0	1	2	1	0	2	3	2

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

65

DP SOLUTION: STAGE 3

$$f_{3}^{*}(s_{3}) = \max_{0 \le d_{3} \le 4} \left\{ 4.40 \, d_{3} + f_{2}^{*}(s_{3} - 3 \, d_{3}) \right\}$$
$$d_{3} \le \left[\frac{13}{3} \right] = 4$$

S ₂					cut	u dua	ng t	:han	cong.	com				
d,	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	3.10	5.25	6,20	6.20	8.35	10.50	11.45	12.40	13,60	15.75	16.70
1	—		-	4.40	4.40	4.40	7.50	9.65	10.60	10.60	12.75	14.90	15.85	16.80
2	_	-	-		_	-	8.80	8.80	8.80	11.90	14.05	15.0	15.0	17.15
3	-	—	_	100	-	-	-	-	-	13.20	13.20	13.20	16.30	18.45
4	-	-	-	100	Tout	u d uc	ng t	haπ	con g .	соп	-	-	17.60	17.60
$f_{3}^{*}(s_{3})$	0	0	0	4.40	5.25	6.20	8,80	9.65	10.60	13.20	14.05	15.0	17.60	18.45
<i>d</i> * ₃	0	0	0	1	0	0	2	1	1	3	2	2	4	3

$$f_{4}^{*}(s_{4}) = \max_{0 \leq d_{4} \leq 6} \left\{ 2.5 d_{4} + f_{3}^{*}(s_{4} - 2 d_{4}) \right\}$$
$$d_{4} \leq \left[\frac{13}{12} \right] = 6$$

<i>d</i> ₄	0	1	2	3	4	5	6	d_4^*	$f_4^*(s_4)$
s ₄ = 13	18.45	17.5	18.2	17.15	16.2	16.9	15	0	18.45

□ The maximum profits are \$18.45

DP OPTIMAL SOLUTION

□ The *optimal* solution is obtained by retracing

$$f_1^*(s_1 = 0) = 0$$
 with $d_1^* = 0 \leftrightarrow$ no rolls of 2.5 ft
curl ducing than cong. com

$$f_2^*(s_2 = 4) = 5.25$$
 with $d_2^* = 1 \leftrightarrow 1$ roll of 4 ft

 $f_3^*(s_3 = 13) = 18.45$ with $d_3^* = 3 \leftrightarrow 3$ rolls of 3 ft

$$f_4^*(s_4 = 13) = 18.45$$
 with $d_4^* = 0 \leftrightarrow$ no rolls of 2 ft

SENSITIVITY CASE

- **Consider the case that due to an incorrect**
 - measurement, in truth, there are only 11 ft

available for the rolls

 \Box We note that the solution for the original 13 ft

covers this possibility in the *stages* 1, 2 and 3 but we need to re-compute the results of *stage* 4,

which we now call stage 4'

SENSITIVITY CASE : STAGE 4'

□ The *stage* 4' computations become

$$d_{4'} \leq \left[\frac{11}{2}\right] = 5$$

<i>d</i> _{4'}	0	1	2	3	4	5	$d_{4'}^{*}$	$f_{4'}^*(\mathbf{S_4})$
<i>s</i> ₄ = 11	15	15.7	14.65	13.7	14.4	12.5	1	15.7

□ The *optimal* profits in this sensitivity case are \$15.7

SENSITIVITY CASE OPTIMUM

□ The retrace of the solution path obtains

 $\bigcirc \quad d_{4'}^* = 1 \quad \leftrightarrow \quad 1 \text{ roll of } 2 ft$ $\bigcirc \quad d_{3'}^* = 3 \quad \leftrightarrow \quad 3 \text{ rolls of } 3 \text{ ft}$ $O \quad d_{2'}^* = 0 \quad \leftrightarrow \text{ no rolls of } 4 \text{ ft}$ $d_{1'}^* = 0 \quad \leftrightarrow \text{ no rolls of } 2.5 \, ft$ \mathbf{O}

ANOTHER SENSITIVITY CASE

We consider the case with the initial 13 *ft*, but in addition we get the constraint that at least 1 roll of 2 *ft* must be produced:

cuu duong d_4 a \geq 1 ng. com

- Note that no additional work is needed since the computations in the first tables have all the necessary dataged ducing that cong. com
- □ This sensitivity case *optimum* profits are \$18.2
- □ The *optimum* solution is :
OPTIMAL CUTTING STOCK PROBLEM

$$f_{4''}^*(s_4 = 13) = 18.2$$
 with $d_{4''}^* = 2 \leftrightarrow 2$ rolls of 2 ft

 $f_{3''}^*(s_3 = 9) = 13.2$ with $d_{3''}^* = 3 \leftrightarrow 3$ rolls of 3 ft

cuu duong than cong. com

and since $s_2 = s_1 = 0$ $d_{2''}^* = 0 \leftrightarrow$ no rolls of 4 ft

 $d_{1''}^* = 0 \iff \text{no rolls of } 2.5 \ ft$

□ The constraint reduces *optimum* from \$ 18.45 to

\$18.2 and so it costs \$.25

INVENTORY CONTROL PROBLEM

□ This problem is concerned with the development

of an *optimal* ordering policy for a retailer

cuu duong than cong. com

□ The sales of a seasonal item has the demands

month	Oct	cu Novone	Dec	Jan	Feb	Mar
demand	40	20	30	40	30	20

INVENTORY CONTROL PROBLEM

□ All units sold are purchased from a vendor at 4

\$/unit ; units are sold in lots of 10, 20, 30, 40 or 50

with the corresponding discount

lot size	10	20 Ju duong th	30 an cong. co	40	50
discount %	4	5	10	20	25

INVENTORY CONTROL PROBLEM

- There are additional ordering costs: each order incurs fixed costs of \$2 and \$8 for shipping, handling and insurance
- □ The storage limitations of the retailer require that no more than 40 units be in inventory at the end of the month and the storage charges are 0.2 \$/unit; there is 0 inventory at the beginning and at the end of the period under consideration
- Underlying assumption: demand occurs at a constant rate throughout each month

□ We formulate the problem as a *DP* and use a

backward process for solution

□ Each *stage* corresponds to a month

month	Oct	<i>Nov</i>	Dec than cor	Jan g. com	Feb	Mar
stage n	6	5	4	3	2	1

 \Box The state variable in stage *n* is defined as the amount of entering inventory given that there are *n* additional months remaining – the present month n plus the months $n-1, n-2, \dots, 1$ \Box The decision variable d_n in stage *n* is the amount of units ordered to satisfy the demands D_i in the *n* remaining months, i = 1, 2, ..., nThe transition function is defined by

$$s_{n-1} = s_n + d_n - D_n$$

$$n = 1, 2, ..., 6$$

$$s_0 = 0$$

$$s_6 = 0$$

$$demand in month n$$

$$0 = 0 = 2009 \text{ George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.}$$

$$n = 1, 2, ..., 6$$

 \Box The return function in the stage *n* is given by

$$r_{1}(s_{1},d_{1}) = \phi(d_{n}) + h_{n}(s_{n} + d_{n} - D_{n})$$

ordering $0.2(s_{n} + d_{n} - D_{n})$
costs storage costs

with

$$d_n = 10, 20, 30, 40 \text{ or } 50$$

$$\phi(d_n) = \underbrace{10}_{\text{fixed}} + 4[1 - \underbrace{\rho(d_n)}_{\text{factor}}]d_n$$

fixed costs discount factor

d	n	0	10	20	30	40	50
ø(d	(_n)	0	48	86	118	138	160

□ In the *DP* approach, at each *stage* we minimize

$$f_{n}^{*}(s_{n}) = \min_{d_{n}} \left\{ \phi(d_{n}) + h_{n} \left[s_{n} + d_{n} - D_{n} \right] + f_{n-1}^{*}(s_{n-1}) \right\}$$

$$n = 1, \dots, 6$$

$$s_{\theta} = \theta$$
 and so $f_{\theta}^*(s_{\theta}) = \theta$

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

81

$$\begin{cases} s_{\theta} = \theta \\ D_{1} = 20 \end{cases} \Rightarrow s_{1} = 20, 10 \text{ or } \theta \Rightarrow d_{1}^{*} = \theta, 10 \text{ or } 20 \\ f_{1}^{*}(s_{1}) = \min \left\{ \phi(d_{1}) + \theta \right\} = \phi(d_{1}^{*}) \\ d_{1} \end{cases}$$

<i>s</i> ₁	20	10	0
d [*] ₁	cuu duong ti	an cong. com 10	20
$f_{1}^{*}(s_{1})$	0	48	86

$$s_{1} = s_{2} + d_{2} - 30 \text{ since } D_{2} = 30$$

$$f_{2}^{*}(s_{2}) = \min \left\{ \phi(d_{2}) + 0.2 \left[s_{2} + d_{2} - 30 \right] + f_{1}^{*}(s_{1}) \right\}$$

$$d_{2}$$

		¢	*	f *(c)				
S ₂	0	10	20	30	40	50	a ₂	$J_2(3_2)$
0				204	188	164	50	164
10			172	168	142		40	142
20		134	136	122	122	6	30	122
30	86	98	90				0	86
40	50	52					0	50

$$s_{2} = s_{3} + d_{3} - 40 \text{ since } D_{3} = 40$$

$$f_{3}^{*}(s_{3}) = \min_{d_{3}} \left\{ \phi(d_{3}) + 0.2 \left[s_{3} + d_{3} - 40 \right] + f_{2}^{*}(s_{2}) \right\}$$

		c	ý					
S ₃	0	10	20	30	40	50	d_3^*	$f_{3}(s_{3})$
0					302	304	40	302
10				282	282	286	30, 40	282
20		0	250	262	264	252	20	250
30		212	230	244	230	218	10	218
40	164	192	212	210	196		0	164

$$s_3 = s_4 + d_4 - 30$$
 since $D_4 = 30$

$$f_{4}^{*}(s_{4}) = \min_{d_{4}} \left\{ \phi(d_{4}) + 0.2 \left[s_{4} + d_{4} - 30 \right] + f_{3}^{*}(s_{3}) \right\}$$

		cuu duong4 than cong. com							
S ₄	0	10	20	30	40	50	<i>d</i> ₄	$J_4(s_4)$	
0				420	422	414	50	414	
10			388	402	392	384	50	384	
20		350	370	372	362	^a 332	50	332	
30	302	332	340	342	210		0	302	
40	284	302	310	290			0	284	

$$s_4 = s_5 + d_5 - 20$$
 since $D_5 = 20$

$$f_{5}^{*}(s_{5}) = \min_{d_{5}} \left\{ \phi(d_{5}) + 0.2 \left[s_{5} + d_{5} - 20 \right] + f_{5}^{*}(s_{5}) \right\}$$

		¢	d *	f*(c)				
<i>S</i> ₅	0	10	20	30	40	50	<i>u</i> ₅	$J_{5}(3_{5})$
0			500	504	474	468	50	468
10		462	472	454	446	452	40	446
20	414	434 °	422	426	430	n	0	414
30	386	384	394	410			10	384
40	336	356	378				0	336

$$D_6 = 40$$
 and $s_6 = 0$

$$s_5 = s_6 + d_6 - 40 = d_6 - 40$$

$$f_{6}^{*}(s_{6}) = \min_{d_{6}} \left\{ \phi(d_{6}) + 0.2 \left[s_{6} + d_{6} - 40 \right] + f_{5}^{*}(s_{5}) \right\}$$

d_{6}	0	10	20	30	40	50	d_{6}^{*}	$f_6^*(\mathbf{s_6})$
$f_6(s_6)$		Q	iu duonį	than (606	608	40	606

$$d_{6}^{*}=40 \Rightarrow d_{5}^{*}=50 \Rightarrow d_{4}^{*}=0 \Rightarrow d_{3}^{*}=40 \Rightarrow d_{2}^{*}=50 \Rightarrow d_{1}^{*}=0$$

OPTIMAL SOLUTION

 $d_6^* = 40$ which implies to $s_5 = 0$ and costs 606

$$d_5^* = 50$$
 which implies to $s_4 = 30$ and costs 468

 $d_4^* = 0$ which implies to $s_3 = 0$ and costs 302

 $d_3^* = 40$ which implies to $s_2 = 0$ and costs 302

 $d_2^* = 50$ which implies to $s_1 = 20$ and costs 164

$$d_1^* = \theta$$
 with costs θ

OPTIMAL SOLUTION

OPTIMAL SOLUTION

optimal trajectory is

$s_0 = 0 \rightarrow s_1 = 20 \rightarrow s_2 = 0 \rightarrow s_3 = 0 \rightarrow s_4 = 30 \rightarrow s_5 = 0$

with total costs for the sequence of decisions of

θ + 164 + 138 + θ + 166 + 138 = 606

- □ We consider a 5-year investment of
 - O 10 k invested in year 1
 - 1 k\$ invested in each year 2, 3, 4 and 5 into 2 mutual funds with different yields for both the

short-term (1 year) and the long-term (up to $\boldsymbol{5}$

years)

cuu duong than cong. com

□ A decision at the beginning of each year is the

allocation of investment in each fund

- □ We operate under the protocol that
 - once invested, the money cannot be withdrawn until the end of the 5 year horizon
 - all short term gains may be reinvested in either of the two funds or withdrawn in which
 - case the withdrawn funds earn no further
 - interest cuu duong than cong. com
- The objective is to maximize the total returns at the end of 5 years

- □ The earnings on the investment are
 - $O\ LTD$: the long-term dividend specified as % /

year return on the accumulated capital O STD : the short-term interest dividend is the cash returned to the investor at the end of the period; cash may be reinvested and any money not invested in either of the funds earns nothing

C I		STD ra	te i _n foi	r year n		LTD
fund	1	cui2 duor	g ti <u>3</u> n o	ng.4:om	5	rate I
A	0.02	0.0225	0.0225	0.025	0.025	0.04
B	0.06	0.0475	0.05	0.04	0.04	0.03

□ We use backwards *DP* to solve the problem

□ The *stages* are the 5 investment periods

stage $n \Delta \text{ year } 6-n$ n=1,2,3,4,5

DP SOLUTION METHOD

 \Box For stage *n*, the state s_n is the amount of capital

available for investment in the year 6-n

- □ The decision d_n is the amount of capital invested in fund A in year 6-n; the amount of capital
 - invested in fund B in the year 6-n is therefore

$$s_n - d_n$$
 cuu duong than cong. com

□ In each year, we need to determine the amount to

invest in fund A and in fund B

DP SOLUTION METHOD

- The use of *backward recursion* considers year 5 first and then each of the previous years in sequence
 Basic considerations:
 - - O for each year 6 n, n = 1, 5
 - d_n is invested in fundA with returns $d_n i_A$ (SDT)
 - $(s_n d_n)$ is invested in fund *B* with returns $(s_n - d_n)i_B(SDT)$
 - O for the year 6 n + 1

$$s_{n-1} = d_n i_A + (s_n - d_n) i_B + 1000$$
 $n = 2,3,4,5$
 $s_5 = 10,000$

THE OBJECTIVE

The objective is to maximize the total returns $max \ R = \sum_{n=1}^{5} r_{n}$

□ We express all returns in the end of the year 5 dollars: r_n is the future value of long – term earnings in the years 1, 2, 3 and 4

$$r_n = (1 + I_A)^n d_n + (1 + I_B)^n (s_n - d_n) \quad n = 1, ..., 5$$

□ But for n = 1, r_1 is the present value of all earnings

in stage 1

$$\mathbf{r}_{1} = (\mathbf{1} + \mathbf{I}_{A}) \mathbf{d}_{1} + (\mathbf{1} + \mathbf{I}_{B}) (\mathbf{s}_{1} - \mathbf{d}_{1}) + \mathbf{i}_{A} \mathbf{d}_{1} + \mathbf{i}_{B} (\mathbf{s}_{1} - \mathbf{d}_{1})$$
[©] 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 98

^{© 2006 – 2009} George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

$$r_{1} = \text{earnings in stage 1 (returns realized at}$$

$$f_{1}^{*}(s_{1}) = \max_{d_{1}} \{r_{1}\} = \max_{d_{1}} \begin{cases} d_{1}(I_{A} + i_{1A} - I_{B} - i_{1B}) + \\ s_{1}(1 + I_{B} + i_{1B}) \end{cases}$$

$$= \max_{0 \le d_{1} \le s_{1}} \begin{cases} d_{1}(0.04 + 0.025 - 0.03 - 0.04) + \\ s_{1}(1 + 0.03 + 0.04) \end{cases}$$

$$= \max_{d_{1}} \begin{cases} d_{1}(-0.005) + s_{1}(1.07) \\ s_{1}(1 + 0.03) + s_{1}(1.07) \\ s_{1}(1 - 0.005) + s_{1}(1 - 0.005) + s_{1}(1.07) \\ s_{1}(1 - 0.005) + s_{1}(1 - 0.005) + s_{1}(1 - 0.005) \\ s_{1}(1 - 0.005) + s_{1}(1 - 0.005) + s_{1}(1 - 0.005) \\ s_{1}(1 - 0.005) + s_{1}(1 - 0.0$$

 \Box r_2 = returns realized at the end of 5 years due to

the decision in *stage* 2

$$= d_{2} (1 + I_{A})^{2} + (s_{2} - d_{2})(1 + I_{B})^{2}$$

$$= d_{2} \left[(1 + I_{A})^{2} - (1 + I_{B})^{2} \right] + s_{2} (1 + I_{B})^{2}$$

$$s_1 = s_2 i_{1B} + d_2 (i_{1A} - i_{1B}) + 1,000$$

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

101

 \Box We select d_2^* to maximize

$$f_{2}^{*}(s_{2}) = \max_{d_{2}} \{r_{2} + f_{1}^{*}(s_{1})\}$$

$$= \max_{d_{2}} \{d_{2}(1.04^{2} - 1.03^{2}) + s_{2}(1.03)^{2} + f_{1}^{*}(s_{1})\}$$

$$= \max_{0 \leq d_{2} \leq s_{2}} \{d_{2}(.0207) + 1.0609s_{2} + 1.07[.04s_{2} + d_{2}(-.015) + 1,000]\}$$

$$= \max_{d_{2}} \{d_{2}(.0046) + 1.1037s_{2} + 1070\}$$

$$d_{2}^{*} = s_{2} \quad \text{with} \quad f_{2}^{*}(s_{2}) = 1.108s_{2} + 1070$$

$$= 0.000 \text{ George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.}$$

 \Box r_3 = returns realized at the end of 5 years due to

the decision d_3

$$= d_{3} (1 + I_{A})^{3} + (s_{3} - d_{3})(1 + I_{B})^{3}$$

$$= d_{3} \left[(1 + I_{A})^{3} - (1 + I_{B})^{3} \right] + s_{3} (1 + I_{B})^{3}$$

uu duong than cong. com

$$s_2 = s_3 i_{3B} + d_3 (i_{3A} - i_{3B}) + 1,000$$

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

103

 \Box We select d_3^* to maximize

$$f_{3}^{*}(s_{3}) = \max_{d_{3}} \left\{ r_{3} + f_{2}^{*}(s_{2}) \right\}$$

$$= \max_{d_{3}} \left\{ \frac{d_{3}(1.04^{3} - 1.03^{3}) + s_{3}(1.03)^{3} + 1.108s_{2} + 1,070}{1.108s_{2} + 1,070} \right\}$$

$$= \max_{0 \le d_{3} \le s_{3}} \left\{ 2,178 + 1.1481s_{3} + .0018d_{3} \right\}$$

 $d_3^* = s_3$ with $f_3^*(s_3) = 1.15s_3 + 2,178$

 \Box r_4 = returns realized at the end of 5 years due to the decision d_4

$$= d_{4} (1 + I_{A})^{4} + (s_{4} - d_{4})(1 + I_{B})^{4}$$

$$= d_{4} \left[(1 + I_{A})^{4} - (1 + I_{B})^{4} \right] + s_{4} (1 + I_{B})^{4}$$

$$s_3 = s_4 i_{4B} + d_4 (i_{4A} - i_{4B}) + 1,000$$

\Box We select d_4^* to maximize

$$f_{4}^{*}(s_{4}) = \max_{d_{4}} \{r_{4} + f_{3}^{*}(s_{3})\}$$

$$= \max_{d_{4}} \{d_{4}(1.04^{4} - 1.03^{4}) + s_{4}(1.03)^{4} + 1.15s_{3} + 2,178\}$$

$$= \max_{0 \le d_{4} \le s_{4}} \{3328 + 1.1772s_{4} + .0156d_{4}\}$$

$$d_{4}^{*} = s_{4} \quad \text{with} \quad f_{4}^{*}(s_{4}) = 1.193s_{4} + 3,328$$

 $\Box r_5 = \text{ returns realized at the end of 5 years due to}$ the decision d_5

$$= d_{5} (1 + I_{A})^{5} + (s_{5} - d_{5})(1 + I_{B})^{5}$$

cuu duong than cong. com
$$= d_{5} [1.04^{5} - 1.03^{5}] + s_{5} (1.03)^{5}$$

 $s_5 = 10,000 \leftarrow capital available for investment$

$$s_4 = s_5 i_{5B} + d_5 (i_{5A} - i_{5B}) + 1,000$$

$$= 10,000i_{5B} + d_{5}(i_{5A} - i_{5B}) + 1,000$$

\Box We select d_5^* to maximize

$$f_{5}^{*}(s_{5}) = \max_{\substack{0 \leq d_{5} \leq s_{4}}} \left\{ \underbrace{10,000(1.03)^{5}}_{11,593} + d_{5}\underbrace{(1.04^{5} - 1.03^{5})}_{0.0574} + f_{4}^{*}(s_{4}) \right\}$$

$$\left[1,000 + 600 + d_{5}(-.04)\right] 1.193 + 3,328$$
$$= \max_{0 \le d_5 \le s_5} \left\{ 16,830 + d_5 \frac{(.0574 - 0.048)}{0.097} \right\}$$

cuu duong than cong. com

= 16,830 + 0.097(10,000)

cuu duong than cong. com

$d_5^* = 10,000$ with $f_5^*(s_5) = 16,927$

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

OPTIMAL SOLUTION

optimal return at end of 5 years is 16,927 using the following strategy

beginning	investment in	
of year	cuu fund A tan cong	com fund B
1	10,000	0
2	<i>STD returns</i> + 1,000	0
3	STD returns + 1,000	
4	<i>STD returns</i> + 1,000	0
5	0	STD returns + 1,000

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

110