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SAMPLE  SPACE

Consider an experiment with uncertain outcomes 

but with the entire set of all possible outcomes 

known

The sample space S is the set of all possible 

outcomes;  an outcome is an element of S
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SAMPLE  SPACE

Examples of sample spaces

flipping a coin: 

tossing a die:

flipping two coins: 

tossing two dice:

hours of life of a device:

{ }S H,T=

{ }1, 2, 3, 4, 5, 6S =

{ }( , ), ( , ), ( , ), ( , )S = H H H T T H T T

{ }( ) : 1, ... , 6= i, j i, j =S

{ }:= x 0 x <∞≤S
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SUBSETS

We say a set  E is a subset of a set F if  E    is 

contained in F  and we write E ⊂ F    or F ⊃ E

If E and F  are sets of events, then E ⊂ F 

implies that each event in  E is also an event in F

Theorem

E ⊂ F and  F ⊂ E ⇔ E = F
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SUBSETS

EF

F ⊂ E

S
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EVENTS

An event E is an element or a subset of the  sample 

space S

Some examples of events are:

flipping a coin: 

tossing a die:                     is the event that   the 

die lands on an even number

{ } { },= =H TE F

{ }2,4,6=E
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EVENTS

flipping two coins:                               is the 

event of the outcome T on the second coin

tossing two dice:                                             

is the event of sum of the two tosses is 7

hours of life of a device:                            is the 

event that the life of a device is greater than 5

and at most 10 hours

( ) ( ){ },=E H,H H,T

{ }(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)=E

{ }< ≤5  10= xE
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UNION  OF  SUBSETS

We consider two subsets E and F  ; the union of 

E and F  denoted by E ∪ F is the set of all the      

elements that are either in E or in F or in both E

and F

E and F   represent subsets of events, the E ∪F

occurs only if either E or F or both occur

E ∪ F is equivalent to a logical or
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UNION  OF  SUBSETS

Examples:

E = set of outcomes of tossing two dice with 

sum being an even number

F   = set of outcomes of tossing two dice with 

sum being an odd number

E ∪ F       

{ } { } { }, ,⇒ ∪= = =H T H T ≡E F E F S

{ } { } { }, ⇒= 2,4,6 = 1,2,3 = 1,2,3,4,6∪E F E F

= S⇒
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UNION  OF  SUBSETS

S

E  ∪ F

E F
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INTERSECTION  OF  SUBSETS

We consider two subsets E and F  ; the 

intersection of E and F , denoted by E ∩ F , is the 

set of all the elements that are both in E and in F  

E and F   represent subsets of events, then the 

events in E ∩ F  occur only if both E and F occur

E ∩ F is equivalent to a logical and
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INTERSECTION  OF  SUBSETS

We define       to be the empty set, i.e., the set 

consisting of no elements

For event subspaces E and F , if E ∩ F = if 

and only if E and F are mutually exclusive events

Examples:

{ } { } ⇒ ∩ =E F E F= H , = T ∅

{ } { } { }⇒ ∩1,3,5 1,2,3 1,3= , = =E F E F

∅

∅
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INTERSECTION  OF  SUBSETS

1E F

S

E ∩ F
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GENERALIZATION  OF  CONCEPTS

We consider the countable subsets E 1, E  2, E 3, …

in the state space S

The term            is defined to be that subset 

consisting of those elements that are in E i for at 

least one value of i = 1, 2, …

The term            is defined to be the subset 

consisting of those elements that are in each subset

E i , i = 1, 2,…

∪E i
i

∩ i
i

E
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COMPLEMENT  OF  A  SUBSET

The complement E c of a set  E is the set of all 

elements in the sample space S not in E

By definition, S c =

For the example of tossing two dice, the subset

is the 

collection of events that the sum of dice is 7; 

then, E c is the collection of events that the sum 

of dice is not 7

{ }(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)=E

∅
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COMPLEMENT  OF  A  SUBSET

E  c

S

E
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DE  MORGAN’S  LAWS

De Morgan’s laws establish some important 

relationships between ∩, ∪ and c

The first law states:

The second law states:                       
= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
1 1
∪ ∩E E

c
cn n

i i
i i

= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
1 1
∩ ∪E E

c
n n c

i i
i i
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DEFINITION  OF  PROBABILITY

Consider an event E in the sample space S and

let us denote by n (E )  the number of times that 

the event E occurs in a total of n random draws

We define the probability P {E } for the sample 

space of the event E by

{ }
→

=
n

nP lim
n∞

( )E
E
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PROBABILITY  AXIOMS

Axiom 1:

the probability that the outcome of the experiment 
is the event  E    lies in [ 0, 1 ]

Axiom 2:

the probability associated with all the events in 
the sample space S is 1 as S is the collection of 

all the events of the sample space

{ }≤ ≤ 1P0 E

{ } = 1P S
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PROBABILITY  AXIOMS

Axiom 3: For any collection of mutually exclusive 

events E  1 , E  2 , . . .  with E  i  ∩ E  j   = , i ≠ j ,

i.e., for a collection of mutually exclusive events, 

the probability of at least one of the events of the 

collection occurring is the sum of the 

probabilities of all the events in the collection

{ }=
⎧ ⎫
⎨ ⎬
⎩ ⎭

∑∪E Ei i
ii

P P ,

∅
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APPLICATIONS  OF  THE  AXIOMS

In a coin tossing experiment, we assume that a 

head is equally likely to appear as a tail so that:

If the coin is biased and we have the situation that 

the head is twice as likely to appear as the tail, 

then

{ }{ } { }{ }= = 0.5P H P T

{ }{ } { }{ }= 0.666 = 0.333P H P Tand
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EXAMPLE

In a die tossing experiment, we assume that each 

of the six sides is equally likely to appear so that 

The probability of the event that the toss results 

in an even number is:

{ }{ } { }{ } { }{ } { }{ } { }{ } { }{ }
•

=1 2 3 4 5 6 0.166P = P = P = P = P = P

{ }{ } { }{ } { }{ } { }{ }
•⎛ ⎞

⎜ ⎟
⎝ ⎠

2,4,6 = 2 + 4 + 6 = 0.166 3 = 0.5P P P P
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SIMPLE  PROBABILITY  THEOREMS

The theorem on a complementary set states that 

the probability of the complement of the event  E 

is 1 minus the probability the event itself

For example, if the probability of obtaining an 

outcome {H} on a biased coin is 0.375, then the 

probability of obtaining an outcome {T } is 0.625

{ } { }= −1cP PE E
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SIMPLE  PROBABILITY  THEOREMS

The theorem on a subset considers two subsets E
and F of  S  and states

For example, the probability of rolling a 1 with a 
die is less than or equal  to the probability of 
rolling an odd value with that same die
Theorem on the union of  two subsets concerns 
two subsets E and F of  S and states that

{ } { }⊂ ⇒ ≤P PE F E F

{ } { } { } { }∪ = + − ∩P P P PE F E F E F
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SIMPLE  PROBABILITY  THEOREMS

For example, in the experiment of tossing two fair 

coins                                                  

and the four outcomes are equally likely; the 

subset of the events that either the first or the 

second coin falls on H is the union of the subsets 

of events   

that the first coin is H and the

{ } { } { } { }{ }, , ,= H,H H,T T,H T,TS

{ } { }{ },= H,H H,TE
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SIMPLE  PROBABILITY  THEOREMS

{ } { } { } { }

{ }{ },

∪ = + − ∩

= −

=

0.5 + 0.5

0.25

0.75

��	�

H H

P P P P

P

E F E F E F

subset of events                                 

that the second coin toss is H and so

{ } { }{ },= H,H T,HF
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CONDITIONAL  PROBABILITY

A conditional event E  is one that occurs given 

that some other event F has already occurred

The conditional probability P {E  ⎥ F } is the 

probability that event  E  occurs given that event 

F  has occurred and is defined by 

{ } { }
{ }

= P
P

P
E F

E F
F
∩
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CONDITIONAL  PROBABILITY

As an example, consider that a coin is flipped 

twice and assume that each of the events in         

is equally likely to occur; then, {H} and {T} are 

equally likely to occur

The conditional probability that both flips result in 

{H}, given that the first flip is {H} is obtained as 

follows: 

{ } { } { } { }{ }, , ,= H,H H,T T,H T,TS
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CONDITIONAL  PROBABILITY

{ } { }{ },= H,H H,TF

{ }{ }= H,HE

{ }
{ }

{ }
{ }{ }

{ } { }{ },
= =

P P H,H
P P P H,H H,T

E F
E F

F

∩
= 0.5

0.25

0.5
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CONDITIONAL  PROBABILITY 
APPLICATION

Bev must decide whether to select either a French

or a Chemistry course

She estimates to have probability of 0.5 to get an 

A in a French course and that of  0.333 in a 

Chemistry course (which she actually prefers) 

She decides by flipping a fair coin and determines 

the probability she can get A in Chemistry:
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CONDITIONAL  PROBABILITY 
APPLICATION

C is the event that she takes Chemistry

A is the event that she receives an A in 

whichever course she takes

then                    is the probability she gets A in 

Chemistry

{ } { } { } ( ) ( )∩ = = =0.5 0.333 0.166P P PC A C A C

{ }P ∩C A

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                 33

BAYES’ THEOREM

Consider two subsets of events E and F in S ; 

then,

The proof of this theorem makes use of the 

definition of conditional probability

{ } { } { }
{ } { } { } { }

=
+ c c

P P
P

P P P P
F E E

E F
F E E F E E

{ } { }
{ }

{ } { }
{ }

∩
= =

P PPP
P P

F E EE F
E F

F F
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BAYES’ THEOREM

and that any subset F is the union of two 

nonintersecting subsets

which then results in the expression

{ } { }= c∩ ∪ ∩F F E F E

{ } { } { }
{ } { } { } { }

= +

= +

c

c c

P P P

P P P P

F F E F E

F E E F E E

∩ ∩
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APPLICATION  OF  BAYES’ THEOREM 
TO  DIAGNOSIS

A laboratory test is 95 % effective in correctly 

detecting a certain disease when it is present, but 

the test yields a false positive result for 1 % of the 

healthy persons tested, i.e., with probability 0.01, 

the  test  result incorrectly concludes that a 

healthy person has the disease  

We are given that 0.5 % of the population actually 

has the disease
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APPLICATION  OF  BAYES’ THEOREM 
TO  DIAGNOSIS

We compute the probability that a person has the 

disease given that his test result is positive

D is the  event that the tested person actually 

has the disease and

P {D } =  0.005

E is the event that the test result is positive
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A  DIAGNOSIS  EXAMPLE  
COMPUTATION

We evaluate

{ } { } { }
{ } { } { } { }+

=
c c

P P
P

P P P P

E D D
D

E D D E D D
E

( ) ( )
( ) ( ) ( ) ( )

0.95 0.005
=

0.95 0.005 + 0.01 0.995

= 0.323

i

i i
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In answering a question on a multiple choice test, 

a student either knows the answer or he guesses: 

the probability is  p  that the student knows the 

answer and so ( 1 – p ) is the probability that he 

guesses; a student who guesses has a probability 

of  1/m to be correct where  m is the number of 

multiple choice alternatives

MULTIPLE  CHOICE  EXAM  
APPLICATION
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MULTIPLE  CHOICE  EXAM  
APPLICATION

We wish to compute the conditional probability 

that a student knows the answer to a question 

which he answered correctly 

To evaluate we define

C  is the event that the student answers the 

question correctly

K  is the event that he actually knows the 

answer with P { K   } = p

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                 40

MULTIPLE  CHOICE  EXAM  
APPLICATION

If  m = 5 and  p = 0.5, the probability that a student 

knew the answer to a question he correctly 

answered is 5/6

{ } { }
{ }

{ } { }
{ } { } { } { }

∩
=

=
+ c c

P
P

P

P P

P P P P

K C
K C

C

C K K

C K K C K K

( )( )
( )( ) ( )( ) ( )/⎡ ⎤⎣ ⎦−

= =
+ −+

1
1 1 1 1 1

p
p m p

mp
m p
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CONDITIONAL  PROBABILITY  
GENERALIZATION

Consider three events A, B and C in the sample 

space  S

We apply the conditional probability definition 

repeatedly to evaluate

{ } { } { }

{ } { } { }

∩ ∩ = ∩ ⋅ ∩

= ∩ ⋅ ⋅

P P P

P P P

A B C A B C B C

A B C B C C

{ }∩ ∩P A B C
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CONDITIONAL  PROBABILITY  
GENERALIZATION

However, we also have that

and therefore

{ } { } { }

{ } { } { }

⋅ =

= ⋅∩

∩ ∩ ∩

PP P

P P P

B CA B

A B C C A B

C

C

C

{ } { } { }= ⋅∩ ∩P P PA B C A B C B C
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INDEPENDENT  EVENTS

Two events E and F are said to be independent if 

and only if:

Equivalently, E and F   are independent if and 

only if:

We give an example concerning picking cards 

from an ordinary deck of 52 playing cards

{ } { }( ) { }( )=P P P∩E F E F

{ } { }=P PE F E

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                 44

INDEPENDENT  EVENTS

E is the event that the selected card is an ace

F  is the event that the selected card is a spade

then, E and F   are independent since

{ } { } { }= = =
1 4 13
52 52 52

P P P∩     E F E Fand  so and
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INDEPENDENT  EVENTS

Two coins are flipped and all 4 distinct outcomes 
are assumed to be equally likely 
E is the event that the first coin is H and F  is the 

event that the second coin is T
Then, E and F  are independent events with

and

{ } { } { }{ }
{ } { } { }{ }

{ } { }{ } ( )( )

, , ,

, , ,

,

= =

= =

= = =

0.5

0.5

0.5 0.5 0.25

P P H H H T

P P H T T T

P P H T∩

 

E

F

E F
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PROBABILITY  DISTRIBUTIONS

A probability distribution describes mathematically 

the set of probabilities associated with each 

possible outcome of a random variable (r.v.)

A discrete probability distribution is a distribution 

characterized by a random variable that can 

assume a finite set of possible values

A continuous probability distribution is a distribution 

characterized by a random variable that can 

assume infinitely many values
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

Discrete probability distribution specification: the 

probability distribution of a  discrete random 

variable      with  n discrete possible values may 

be expressed in terms of either a

a probability mass function that provides the list 

of the probabilities for each possible outcome

�
Y
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

P {     =  yi }, i = 1,2, … , n ;

or,

a cumulative distribution function (CDF ) that 

gives the probability that  a random variable is 

less than or equal to a specific value

P {     ≤ yi },    i = 1, 2, … , n
�
Y

�
Y
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

As an example consider a set of raisin cookies 

with at most 5 raisins 

Assume that the probability that  one of them has 

0, 1, 2, 3, 4 or 5 raisins is 0.02, 0.05, 0.2, 0.4, 0.22, and 

0.11, respectively

The probability mass function of the random 

variable     , defined to be the random number of 

raisins on a cookie, can be given either in tableau 

format or as a graph

�
Y
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

probability mass 
function

cumulative distribution 
function (CDF )

y

0 0.02 0.02

1 0.05 0.07

2 0.20 0.27

3 0.4 0.67

4 0.22 0.89

5 0.11 1.00

{ }
�

P Y = y { }≤
�

P Y y
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

probability mass function cumulative distribution 
function (CDF)

0    1   2    3   4    5

0.4
0.3
0.2
0.1

{ }
�

P Y = y

y
0   1   2   3   4   5

1.00
0.75
0.50
0.25

{ }≤
�

P Y y

y
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THE  EXPECTED  VALUE  

The expected value            of the random variable    

is the probability-weighted average of all its 

possible values: for the set of possible values      

{ x 1, x 2, … , x n} for the variable 

The expectation operator          is also defined for 

any function          of the r.v.

{ } { }=
=

== ∑
1� � �

n

X i i
i

x xE X P Xμ
�
X

{ }
�

E X

�
X

�
X

{ }iE

( )if
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THE  EXPECTED  VALUE  

Let

then

In general ,  

( )
� �
Y = f X

( ){ } { }( )� �
E f X f E X≠

{ } ( ){ }� �
E Y = E f X
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THE  EXPECTED  VALUE  

If            is affine, then,

=  a + b

then

=

then

{ }
�

f X

1� � nX ...  X+ +

{ } { }+
� �

E Y a bE X=

�
X

( ){ } { }( )� �
E f X E Xf=

{ } { } { }1� � �
. . . nE E EY X X + +=

�
Y

�
Y
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THE  VARIANCE

The variance of the random variable      is 

the expected value of the squared difference 

between the uncertain quantities and their 

expected value :

{ } { } ( ) { }⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭
− =− = ∑2 2

1 �� �� �
� Xi i

n

i =
x xX X E X XE Pvar μ

{ }
�
Xvar

�
X

{ }
�

E X
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THE  VARIANCE

if 

then
� �
Y =  a + bX

{ } ( ) { }
{ }
( ) { }( ){ }

{ }{ }
( ) { }{ }

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

−

−

−

2

2

2

2

2

����	���


� �

�

� �

� �

� �

�

var Y  = b var X

var a + bX=

= E a + bX a + bE X

= E bX bE X

= b E X E X

var X
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THE  VARIANCE

if

then

Standard deviation         is given by

{ } { }= ≠1� � � � � �
. . . and j in i+ + i jY = X X P X X P X ∀

{ }
� �X = Xvarσ

�
Xσ

{ } { } { }1� � � n + +var Y = var X var X. . .
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COVARIANCE  AND  CORRELATION 
COEFFICIENT   

The covariance is defined by

The correlation is defined by

{ } { }( ) { }( ){ }

{ } { } { }
= =

⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ = =

− −

− −= ∑∑
1 1 � �

� � � � � �

� �

�

,i ji j

n m

i j
X x Y y

cov X,Y E X E X Y E Y

x E X y E Y P

{ }
=

� �
� �

� �
σ σ

ρ
X Y

XY
cov X,Y

{ }
� �

cov X , Y

� �
XYρ
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A company is willing to sell a product G:  
different levels of product sold result in different 
net profits and have different probabilities: 

The standard deviation and variance of the net 
profits       for the product are computed as

APPLICATION  EXAMPLE   

�
X

level of sales probability net profits [M $]

high 0.38 8

medium 0.12 4

low 0.50 0
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EXAMPLE

{ } { } ( ) ( ) ( )

{ } { } { }

( ) ( ) ( )

{ }

⎡ ⎤ =⎣ ⎦−

= = + +

=

= =

=

=

= − + − + −

=

=

∑

∑

2 2 2

2

2

1

1

8 0.38 4 0.12 0 0.50

3.52

13.8496 3.72

0.38 8 3.52 0.12 4 3.52 0.5 0  3.52

13.8496 (

�

�

� �

�

�

�

i i

ii

n

i =

X

n

i=

X

E X P X x

M$

P X x

var X M$

x

var x E X

M$)

σ
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EXAMPLE

Consider the following probabilities:

and compute the covariance and correlation 

between 

{ }

{ } { }

{ } { }

{ }

= 10 = 2 = 0.9   

= 2 = 0.3 = 20 = 2 = 0.1

= 4 = 0.7 = 10 = 4 = 0.25

= 20 = 4 = 0.75

� �

� � �

� � �

� �

|  

|  

|  

|

P Y X

P X P Y X

P X P Y X

P Y X

� �
X   Yand

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                 62

EXAMPLE

y

x

10

20

2 4
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EXAMPLE

Using the definition of conditional probability:

{ } { } { }
( ) ( )

{ } { } { }
( ) ( )

{ } { } { }
( ) ( )

{ } { } { }
( ) ( )

2 10 10 2 2

0.9 0.3    =  0.27

2 20 20 2 2

0.1 0.3    =  0.03

4 10 10 4 4

0.25 0.7    =  0.175

4 20 20 4 4

0.75 0.7    =  0.525

� � � � �

� � � � �

� � � � �

� � � � �

P X = Y = = P Y = X = P X =

=

P X = Y = = P Y = X = P X =

=

P X = Y = = P Y = X = P X =

=

P X = Y = = P Y = X = P X =

=

,

,

,

,
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EXAMPLE 

{ } { } { }

{ } { }

{ } ( )

{ } ( ) ( )

( ) ( )
{ } ( ) ( )

( ) ( )

−

2 2

2 2

+

0.445 0.555

10 10 2 2

10 4 4

0.27 + 0.175 = 0.445

20 1 0.445 = 0.555

0.3 2 + 0.7 4 = 3.4

0.3 ( -1.4) + 0.7 0.6 = 0.917

10 + 20 = 5.55

0.445 ( -5.55) + 0.555 4.45 = 4.970

�

�

� � � �

� � �

�

�

�

X

Y

P Y = = P Y = X = P X =

P Y = X = P X =

=

P Y = =

E X =

=

E Y =

=

σ

σ
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EXAMPLE 

0.5252.674.450.6204

0.175-3.33-5.550.6104

0.03-6.234.45-1.4202

0.277.77-5.55-1.4102

ix jy { }-
�ix E X { }-

�jy E Y
{ }
{ }

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

-

-
�

�

i

j

X

Y

x E

y E

⋅ { }� � i ix , yX,YP
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EXAMPLE

{ } ( ) ( ) ( ) ( )

{ }

( ) ( )

 = 0.27 7.77 + 0.03 -6.23 + 0.525 2.67

= 2.73

2.73
= = = 0.60

0.917 4.970� �
� �

� �

� �XY
X Y

cov X , Y

cov X , Y
ρ

σ σ
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The specification of continuous probability distribution

of a continuous r.v. may be expressed either in 
terms of a 

a probability density function (p.d.f.)

or, a cumulative distribution function (c.d.f.)

which expresses the probability that the 
value of       is less or equal to a given value x

CONTINUOUS  PROBABILITY 
DISTRIBUTIONS

( ) { }≤ = ∫� ��X

x
X=F x P X x f d

−∞
ξ ξ( )

{ }≈ < ≤ +
� �Xf x dx P x X x dx( )

�
X

( )
�
Xf ⋅

( )
�
XF ⋅

�
X
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EXPECTED  VALUE,  VARIANCE, 
STANDARD  DEVIATION

The expected value is given by

The variance is defined by

The standard deviation of       is

{ } = ∫
�� XE X f d∞

−∞ ξ ξ ξ+ ( )

{ } { }⎡ ⎤= −⎣ ⎦∫
2

�� � Xvar X E X f d∞

−∞
ξ ξ ξ+ ( )

{ }=
� �X var Xσ

�
Xμ

{ }
� �

 var X Xof

�
X

�
Xσ
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THE  COVARIANCE  AND  THE  
CORRELATION

The  covariance cov of the two continuous

r.v.s

where                is the joint density function of      

and 

The correlation coefficient is computed by

{ } { }( ) { }( ) ( ),
+ +

− −
= − −∫ ∫ � �� � � � X,Ycov X,Y x E X y E Y f d d

∞ ∞

∞ ∞
ξ η ξ η

{ }
=

� �
� �

� �ρ
σ σX,Y

X Y

cov X, Y

{ }
� �
X,Y

� �
X Yand

( ),⋅ ⋅
� �
X,Yf

�
X

�
Y

� �
ρ X,Y
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APPLICATION  

We wish to guess the age       of a movie star 

based on the following data: 

we are sure that she is older than 29 and not 

older than 65

we assume the probability that she is between 

40 and 50 is 0.8 and

we also estimate that                               and

�
A

{ }> 50 = 0.15
�

P A

{ } { }≤ >=44 44
� �

P A P A

{ }≤ 40 = 0.05
�

P A
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APPLICATION  

We construct the table of cumulative probability

{ }≤ =29
�

P A 0.00

{ }≤ =40 0.05
�

P A

{ }≤ =44 0.50
�

P A

{ }≤ =50 0.85
�

P A

{ }≤ =65 1.00
�

P A
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APPLICATION

years  x

{ }≤
�

P A x

10 20 30 40 50 50 60

1.00

0.75

0.5

0.25

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                 73

APPLICATION

10 20 30 40 50 60 70

years  x

{ }P age
~

≤40< 50

( )
�
Af x

x
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