ECE 307 – Techniques for Engineering Decisions

Basic Probability: Case Studies

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

OIL WILDCATTING: SITE DATA

□ We consider two possible exploratory well sites

O site 1: fairly uncertain

O site 2: fairly certain for a low production level

□ Geological fact: If the rock strata underlying site

1 are characterized by a "dome" structure, there

are better chances of finding oil than if no dome

structure exists

OIL WILDCATTING: SITE DATA

state	site 1 with \$ 100k drilling costs	site 2 with \$ 200k drilling costs	
	cuu duong th payoffs	probability payoffs	
dry	- 100k	0.2	- 200k
low production	150king th	an cong 0.8 om	50k
high production	500k	0	_

MODELING OF SITE 1

	dome structure	with prob	0.6
$\tilde{S} = structure \ r.v. = <$			
	other	with prob	0.4

conditioning on the event $\{S = dome\}$

state x (r.v. outcome)	$P\left\{ state = x S = dome \right\}$	
dry	0.60	
low production	0.25	
high production	0.15	

conditioning on the event $\{S = no dome\}$

<i>state</i> outcome <i>x</i> and th	$P\left\{ state = x \mid S = no \ dome ight\}$
dry	0.850
low production ong th	an cong. com 0.125
high production	0.025

DECISION TREE DIAGRAM

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COMPUTATION OF PROBABILITIES OF STATES : SITE 1

$$P\{dry\} = P\{state of site 1 = dry\}$$

$$= P\{state = dry \mid \underline{S} = dome\} \bullet P\{\underline{S} = dome\} + Q\{\underline{S} = dome + Q\{\underline{S} = dome\} + Q\{\underline{S} = dome\} + Q\{\underline{S} = dome\} + Q\{\underline{S}$$

$$P\left\{state = dry \mid \underline{S} = no \ dome\right\} \bullet P\{\underline{S} = no \ dome\}$$

$$= (0.6)(0.6) + (0.85)(0.4)$$

= 0.7

COMPUTATION OF PROBABILITIES OF STATES : SITE 1

 $P\{low prod\} = P\{state of site 1 = low prod\}$

$$= P\{state = low prod. | S = dome\} \bullet P\{S = dome\} + uu duong than cong. com$$

$$P\{\text{state} = \text{low prod.} \mid \underline{S} = \text{no dome}\} \bullet P\{\underline{S} = \text{no dome}\}$$

$$= (0.25)(0.6) + (0.125)(0.4)$$

= 0.2

CONFIGURATION OF PROBABILITIES OF STATES : SITE 1

 $P\{high prod.\} = P\{state of site 1 = high prod.\}$

$$= P\{ state = high prod. | S = dome \} \bullet P\{S = dome \} + uu duong than cong. com$$

$$P\{\text{state} = \text{high prod.} \mid \underline{S} = \text{no dome}\} \bullet P\{\underline{S} = \text{no dome}\}$$

$$= (0.15)(0.6) + (0.025)(0.4)$$

= 0.1

DECISION DIAGRAM WITH PROBABILITIES

EVALUATION OF PAYOFFS

□ Site 1 evaluation:

$$\underbrace{E\{payoffs\}}_{EMV} = \sum (payoffs \text{ in state } x) P\{state = x\}$$
$$= -100 \cdot (0.7) + 150 \cdot (0.2) + 500 \cdot (0.1)$$

= 10k\$

□ Site 2 evaluation:

 $E\{payoffs\} = -200 \cdot (0.2) + 50 \cdot (0.8)$

= 0 k

VARIANCE EVALUATION

□ Site 1 evaluation:

$$\sigma_{1}^{2} = 0.7[-100 - 10]^{2} + 0.2[150 - 10]^{2} + 0.1[500 - 10]^{2}$$

= 36,400(k\$)²
and so

 $\sigma_1 = 190.8 \, k$

□ Site 2 evaluation:

uu duong than cong. com

$$\sigma_{2}^{2} = 0.2[-200-0]^{2} + 0.8[50-0]^{2}$$
$$= 10,000(k\$)^{2}$$

VARIANCE EVALUATION

and so

 $\sigma_2 = 100k$ \$

cuu duong than cong. com

□ Therefore site 1 has greater variability and

therefore greater *risk* than site 2 since

 $\sigma_1 \approx 2\sigma_2 > \sigma_2$

JOINT PROBABILITIES

state outcome	$\mathbf{D}(x + x + z - z + z)$	S structure		
x	$P\{Slate = x\}$	dome	no dome	
dry	0.7 0.36 cuu duong th in cong. com		0.34	
low prod.	0.2	0.15	0.05	
high prod.	cuu 0.1 ong th	0.09	0.01	
$P\{S = \}$		0.60	0.40	

JOINT PROBABILITIES

$$P\{state = low \ prod \ and \ S = dome\}$$

$$= \underbrace{P\left\{state = low \ prod \mid \underline{S} = dome\right\}}_{0.25} \left\{ \underbrace{P\left\{\underline{S} = dome\right\}}_{0.6} \right\}$$

cuu duong than cong. com

= 0.15

DECISION DIAGRAM WITH PROBABILITIES

REVERSE PROBABILITIES

$$P\{\tilde{S} = dome \mid state = dry\}$$

$$= \frac{P\{\tilde{S} = dome \text{ and } state = dry\}}{P\{state = dry\}}$$

$$= \frac{P\{state = dry \mid \tilde{S} = dome\} \cdot P\{\tilde{S} = dome\}}{P\{state = dry\}}$$

 $P\{state = dry\} = P\{state = dry \mid \underline{S} = dome\} \cdot P\{\underline{S} = dome\} + P\{state = dry \mid \underline{S} = dom$

$$P\{state = dry \mid \underline{S} = no \ dome\} \cdot P\{\underline{S} = no \ dome\}$$

REVERSE PROBABILITIES

$$P\{S = dome \mid state = dry\} = \frac{(0.6)(0.6)}{(0.6)(0.6) + (0.85)(0.4)}$$
$$= \frac{0.36}{0.36 + (0.85)(0.4)}$$
$$= \frac{0.36}{0.7}$$
$$= 0.51$$
$$P\{S = no \ dome \mid state = dry\} = 1 - P\{S = dome \mid state = dry\}$$
$$= 1 - 0.51$$

= 0.49

DECISION ANALYSIS MONTHLY PROBLEM: MAY DATA

May subscription data	expiring subscriptions (%)	renewal ratio (%)
gift subscriptions	10 duong than cong. co	75
promotional subscriptions	20	50
previous subscribers	10 Iu duong than cong. co	10
total	100	

DECISION ANALYSIS MONTHLY PROBLEM: JUNE DATA

June subscription data	expiring subscriptions (%)	renewal ratio (%)
gift subscriptions	u duong than cong. co	85
promotional subscriptions	10	60
previous subscribers	45 In ducing than cong. co	20
total	100	

DECISION ANALYSIS MONTHLY PROBLEM: SUBSCRIPTIONS DATA

□ The overall proportion of renewals had dropped

from May to June

□ Figures indicate that the proportion of renewals

had increased in each category

We need to analyze the data in a meaningful

fashion and interpret it

DECISION ANALYSIS MONTHLY PROBLEM

□ We can view the data in the two tables as providing probabilities for the renewal *r.v*.

 $\mathbf{R} = \left\{ egin{array}{c} renewal \\ no renewal \end{array}
ight.$

□ However, the information is given as conditional probabilities with the conditioning on the subscription type with *r.v.* S_{off}

$$\tilde{S} = \begin{cases} so \\ promotional \\ previous \end{cases}$$

DECISION ANALYSIS MONTHLY PROBLEM

□ We use the May and June data and compute:

$$P\{\underline{R} = renewal\} = P\{\underline{R} = renewal \mid \underline{S} = gift\} \cdot P\{\underline{S} = gift\} + P$$

$$P\{\underline{R} = renewal \mid \underline{S} = promo\} \cdot P\{\underline{S} = promo\} +$$

$$P\{\underline{R} = renewal \mid \underline{S} = previous\} \cdot P\{\underline{S} = previous\}$$

□ The renewal probabilities are computed for each

month

DECISION ANALYSIS MONTHLY PROBLEM

$$P\{\underline{R}_{May} = renewal\} = (0.75)(0.7) + (0.5)(0.2) + (0.1)(0.1)$$
$$= 0.635$$

$$P\{R_{\tilde{z}_{June}} = renewal\} = (0.85)(0.45) + (0.6)(0.1) + (0.2)(0.45)$$
$$= 0.5325$$

Due to the change of the mix,

$$P\{R_{\tilde{k}_{June}} = renewal\} < P\{R_{\tilde{k}_{May}} = renewal\}$$

even though the renewal proportion increased

in each category

DISCRIMINATION CASE STUDY

□ We explore the relationship between the race of

convicted defendants in murder trials and the

imposition of the death penalty in these trials on

the defendants

□ This is a good example to illustrate the care

required in correctly interpreting data

DISCRIMINATION CASE STUDY: DATA

defendants		death penalty imposed		total	
		yes no		defendants	
white		cuu duong th 19	an cong. com 141	160	
rac	black	17	149	166	
total		cuu duong th 36	an cong. com 290	326	

DISCRIMINATION CASE STUDY: USING THE DATA

□ We define the *r.v.*s

 $D = death \ penalty = \begin{cases} 1 & death \ penalty \ is imposed \\ 0 & otherwise \end{cases}$

 $\tilde{R} = race = \begin{cases} white & defendant is white \\ black & defendant is black \\ cuu duong than cong. com \end{cases}$

□ We use data of the table to determine

$$P\left\{ \underbrace{D}_{\tilde{L}} = 1 \mid \underbrace{R}_{\tilde{L}} = white \right\} \text{ and } P\left\{ \underbrace{D}_{\tilde{L}} = 1 \mid \underbrace{R}_{\tilde{L}} = black \right\}$$

DISCRIMINATION CASE STUDY: USING THE DATA

□ The table provides values

$$P\left\{ \begin{array}{l} D \\ z \end{array} = 1 \middle| \begin{array}{l} R \\ z \end{array} = white \right\} = \frac{19}{160} = 0.119$$
$$P\left\{ \begin{array}{l} D \\ z \end{array} = 1 \middle| \begin{array}{l} R \\ z \end{array} = black \right\} = \frac{17}{166} = 0.102$$

□ These two probabilities indicate little difference

between the treatment of the two races

□ We use additional data to probe deeper

DISCRIMINATION CASE STUDY: USING MORE DATA

race of	race of	death penalty imposed		total
victim	defendant	yes	no	defendants
	white	19	132	151
white	black 🛛 🖉	iong t 11 n con	∷ con52	63
	total	30	184	214
	white	0	9	9
black	black	iong til con	97	103
	total	6	106	112
total for all cases		36	290	326

DISCRIMINATION CASE STUDY: USING MORE DATA

Next, we bring in the race of the victim by defining the *r.v*.

$$V_{\tilde{k}} = \begin{cases} white & \text{victim is white} \\ cuu duong & \text{than cong. com} \\ black & \text{victim is black} \end{cases}$$

□ We have the following probabilities

$$P\left\{ \begin{array}{l} D = 1 \mid R = white, V = white \right\} = \frac{19}{151} = 0.126 \\ P\left\{ \begin{array}{l} D = 1 \mid R = black, V = white \right\} = \frac{11}{63} = 0.175 \end{array}$$

^{© 2006 – 2009} George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DISCRIMINATION CASE STUDY: USING MORE DATA

$$P\left\{ \begin{array}{l} D = 1 \mid R = white, V = black \right\} = \frac{0}{9} = 0$$

$$P\left\{ \begin{array}{l} D = 1 \mid R = black, V = black \right\} = \frac{6}{103} = 0.058$$

Data disaggregation on the basis of conditioning

also on V_{2} shows that blacks appear to get the death penalty more frequently, about 5% more

than whites independent of the race of the victim

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

Λ

APPARENT PARADOX

- No difference between the overall imposition of death penalty and the race of the convicted murderers in the aggregated data case
- Clear difference in the disaggregated data case where the race of the victim is explicitly considered: *blacks* appear to get the penalty with 5% higher incidence than *whites*
- □ The classification of the victim's race allows the distinct differentiation of the R = white from the R = black cases

KEY ISSUE

- □ Since the number of *black* victims for $\underline{R} = white$ cases is 0, the result is a 0 rate of death penalty, making no contribution to the overall rate for the R = white cases during that congilies com
- □ In addition, the many *black* victims for the

 $R_{\tilde{x}} = black$ cases results in the relatively low death

penalty rate for *black* defendant / *black* victim

cases and brings down the overall death penalty

rate for *black* victims