ECE 307 – Techniques for Engineering Decisions

Simulation

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

SIMULATION

- ☐ Simulation provides a *systematic* approach for dealing with uncertainty by "*flipping a coin*" to deal with each uncertain event
- □ In many real world situations, simulation may be the only viable means to quantitatively deal with a problem under uncertainty
- ☐ Effective simulation requires implementation of appropriate approximations at many and, sometimes, at possibly every stage of the problem

- □ The problem is concerned with the fabric purchase by a fashion designer
- ☐ The two choices for textile suppliers are:

supplier 1: fixed price - constant 2 \$/yd

supplier 2: variable price dependent on quantity

2.10 \$/yd for the first 20,000 yd 1.90 \$/yd

3

for the next 10,000 yd 1.70 \$/yd for the

next 10,000 yd 1.50 \$/yd thereafter

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

lacksquare The purchaser is uncertain about the demand $oldsymbol{\mathcal{D}}$

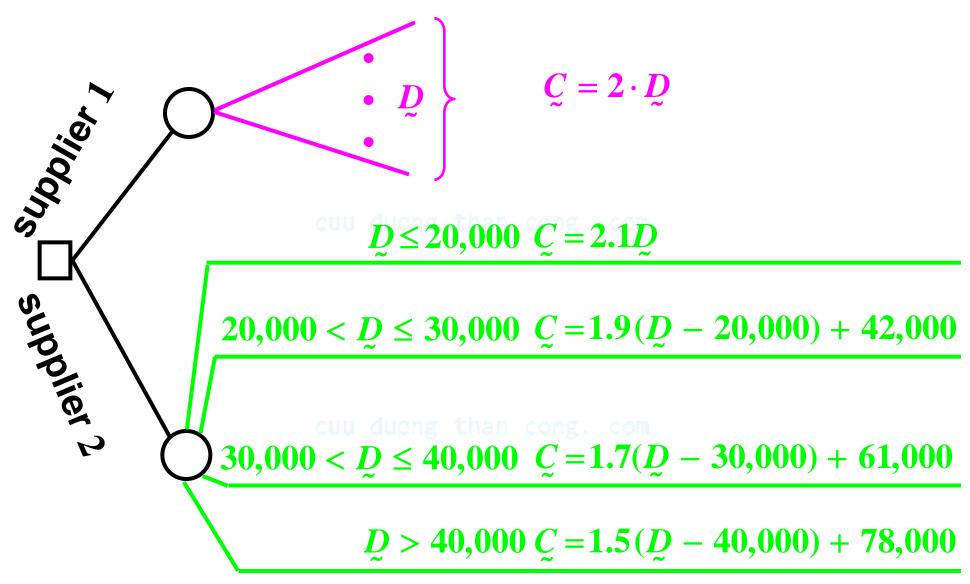
but determines an appropriate model is:

cuu duong than cong. com

 $D \sim \mathcal{N}(25,000 \ yd,5,000 \ yd)$

☐ The decision may be represented in form of the

following decision branches:



- lacksquare Supplier 1 has a simple linear cost function \cline{C}
- ☐ Supplier 2 has a far more complicated scheme to

cuu duong than cong. com

evaluate costs: in effect, the range of the

demand and the corresponding probability for D

to be in a part of the range must be known, as

well as the expected value of D for each range

- □ We simulate the situation in the decision tree by "drawing multiple samples from the appropriate population"
- □ We systematically tabulate the results and
 - evaluate the required statistics
- ☐ The simple algorithm for the simulation consists of just a few steps which are repeated until an appropriate sized sample is obtained

BASIC ALGORITHM

- Step θ : store the distribution $\mathscr{N}\left(25,000,\,5,000\right)$; determine \overline{k} , the maximum number of draws; set $k=\theta$
- Step 1: if $k > \overline{k}$, stop; else set k = k + 1
- Step 2: draw a random sample from the normal distribution $\mathcal{N}\left(25,000,\,5,000\right)$
- Step 3: evaluate the outcomes on both branches; enter each outcome into the database and return to Step 1

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

- □ Application of the algorithm allows the determination of the histogram of the cost figures and then the evaluation of the expected costs
- ☐ For the assumed demand, for supplier 1, we have the straight forward case of

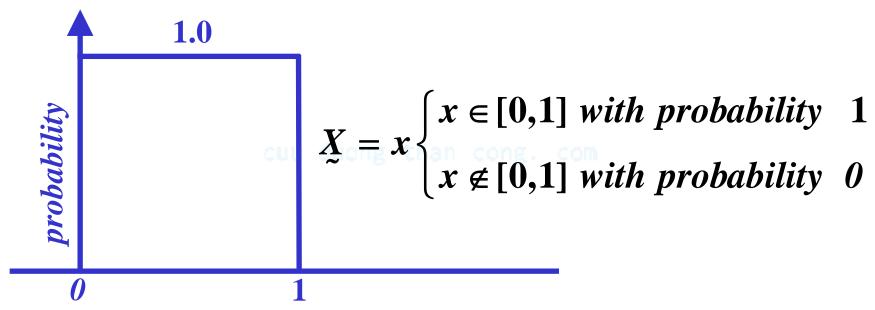
$$E\{C\} = 2 \cdot E\{D\} = 50,000$$
 and $\sigma_{C} = 10,000$

and the use of the algorithm may be bypassed

lacksquare For the supplier 2, the algorithm is applied for the random \overline{k} draws

RANDOM DRAWS

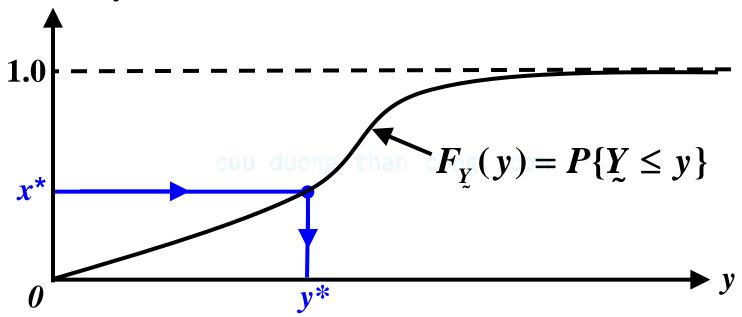
- □ A key issue is the generation of random draws for which we need a random number generator
- ☐ One possibility is to use a uniformly distributed r.v. between θ and θ than some some



© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

□ We draw a random value of x, say x^* , and work through the c.d.f. $F_{\underline{y}}(y)$ to get the value y^* of the $r.v. \underline{Y}$ with $F_{\underline{y}}(y^*) = x^*$

probability could duong than cong. com



SOFT PRETZEL EXAMPLE

☐ The market size is unknown but we assume that the market size is a normal with

$$S \sim \mathcal{N}(100,000,10,000)$$

- \square We are interested in determining the fraction F of
 - the new market the new company can capture
- \square We model the distribution of F with a discrete

distribution

SOFT PRETZEL EXAMPLE

F = x %	$P\{F = x\}$
16 cuu duong tha	0.15
19	0.35
25	0.35
28	0.15

SOFT PRETZEL EXAMPLE

- \square Sales price of a pretzel is \$ 0.50
- lacksquare Variable costs V are represented by a uniformly
 - distributed r.v. in the range [0.08, 0.12] \$/pretzel
- \square Fixed costs C are also random
- ☐ The contributions to profits are given by

cuu duong than cong. com

$$\pi = (S \cdot F) \cdot (0.5 - V) - C$$

and may be evaluated via simulation

MANUFACTURING CASE STUDY

☐ The selection of one of two manufacturing

processes based on net present value (NPV) using

a 3 – year horizon (current year plus next two

years) and a 10% discount rate

☐ The *process* is used to manufacture a product sold

at 8 \$/unit

PROCESS 1 DESCRIPTION

- ☐ This *process* uses the current machinery for
 - manufacturing
- ☐ The annual fixed costs are \$12,000
- ☐ The yearly variable costs are represented by the

r.v.

$$V_i \sim \mathcal{N}(4,0.4) \qquad i = 0,1,2$$

PROCESS 1 DESCRIPTION

☐ The failure of a machine in the *process* is random

and the number failures Z_i in year i = 0,1,2 is a

r.v. with

$$Z_i \sim Poisson(m=4)$$

$$i = 0,1,2$$

- \Box Each failure incurs costs of \$8,000
- lacksquare Total costs are the sum of $lacksymbol{V}_i$ and $lacksymbol{8,000}$ $lacksymbol{Z}_i$

PROCESS 1: UNCERTAINTY IN THE SALES FORECAST

	rent year = 0	next year $i = 1$		year after $i = 2$	
d_{o}	$P\left\{ \mathcal{D}_{0}=d_{0} ight\}$	$d_{_{1}}$ lu duong :	$P\left\{ D_{1} = d_{1} \right\}$	$d_{_2}$	$P\left\{ D_2 = d_2 \right\}$
11,000	0.2	8,000	0.2	4,000	0.1
16,000	0.6	19,000	than cong. con	21,000	0.5
21,000	0.2	27,000	0.4	37,000	0.4

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROCESS 2: DESCRIPTION

- □ *Process* 2 involves an investment of \$60,000 paid in cash to buy new equipment and doing away with the worthless current machinery; the fixed costs of \$12,000 per year remain unchanged
- \square The yearly variable costs $V_{\tilde{x}_i}$

$$V_{i} \sim \mathcal{N}(\$3.50, \$1.0)$$

$$i = 0, 1, 2$$

 \square The number of machine failures Z_i for year

$$Z_i \sim \text{Poisson} (m=3)$$

$$i = 0, 1, 2$$

and the costs per failure are \$6,000

PROCESS 2: SALES FORECAST

	rent year = 0	next year i = 1		year after i = 2	
$d_{_0}$	$P\left\{ \mathcal{D}_{o} = d_{o} \right\}$	$d_{_{1}}$ uu duong	$P\left\{ D_1 = d_1 \right\}$	$d_{_2}$	$P\left\{ \mathcal{D}_{2}=d_{2} ight\}$
14,000	0.3	12,000	0.36	9,000	0.4
19,000	0.4	23,000	0.36	26,000	0.1
24,000	0.3	31,000	0.28	42,000	0.5

© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

NET PROFITS

 \square The net profits π_i each year are a function

$$\underline{\pi}_{i} = f\left(\underline{D}_{i}, \underline{V}_{i}, \underline{Z}_{i}\right) \qquad i = 0, 1, 2$$

 $lacksymbol{\square}$ While for each process the determination of $F_{\pi_i}\left(\cdot
ight)$

requires the evaluation of all the possible out-

comes; both $E\left\{ oldsymbol{\pi}_{i}
ight\}$ and $var\left\{ oldsymbol{\pi}_{i}
ight\}$ may be estimated

by simulation by drawing an appropriate number

of samples from the underlying distribution

NPV

- \Box The NPV of these profits needs to be assessed
 - and expressed in terms of year θ dollars
- ☐ The profits are collected at the end of each year
 - or equivalently the beginning of the following year
- \Box We use the i = 10% discount factor to express
 - the $var\left\{ \mathbf{\pi}_{i}\right\}$ in year θ (current) dollars

NPV

□ We can evaluate for *processes* 1 and 2 the profits for each year; we use superscript to denote the *process*

process 1:
$$\pi_{i}^{1} = 8D_{i} - D_{i}V_{i} - 8,000Z_{i} - 12,000$$

$$i = 0,1,2$$

process 2:
$$\pi_{i}^{2} = 8D_{i} - D_{i}V_{i} - 6,000Z_{i} - 12,000$$

and we also need to account for the \$ 60,000

investment in year 0 for process 2

NPV

 \square The *NPV* evaluation then is stated as the *r.v.*

$$\prod_{i=0}^{1} = \sum_{i=0}^{2} \prod_{i=0}^{1} (1.1)^{-(i+1)}$$

and

cuu duong than cong. com

$$\Pi^{2} = -60,000 + \sum_{i=0}^{2} \pi_{i}^{2} (1.1)^{-(i+1)}$$

□ Simulation is used to evaluate

$$NPV^{1} = E\left\{ \mathcal{I}^{1}_{z} \right\} \qquad NPV^{2} = E\left\{ \mathcal{I}^{2}_{z} \right\}$$

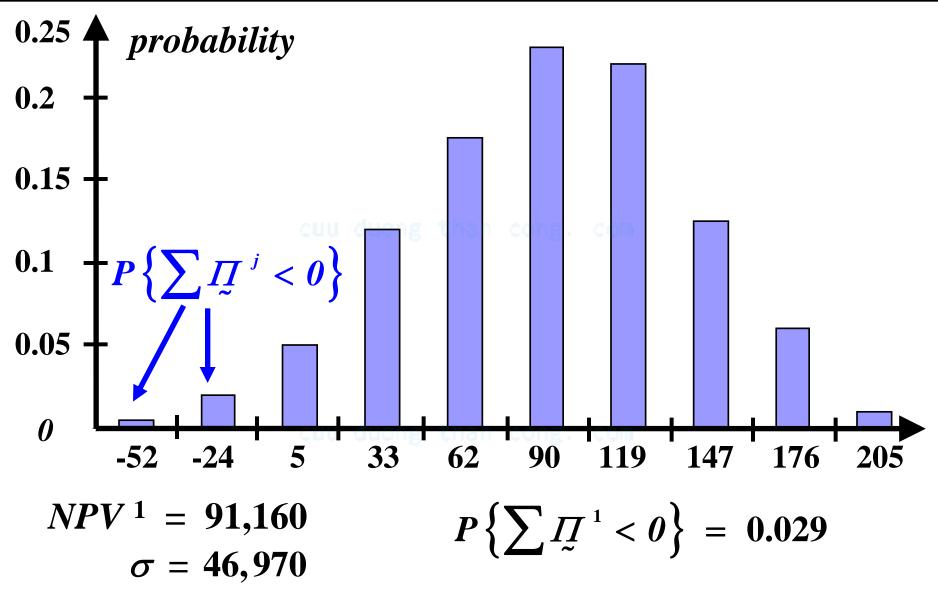
SIMULATION RESULTS

☐ For a 1,000 replications we obtain

process j	mean (\$)	standard deviation (\$)	$P\left\{ \sum_{i} I_{i}^{j} < 0 ight\}$
1	91,160	46,970	0.029
2	110,150	72,300	0.046

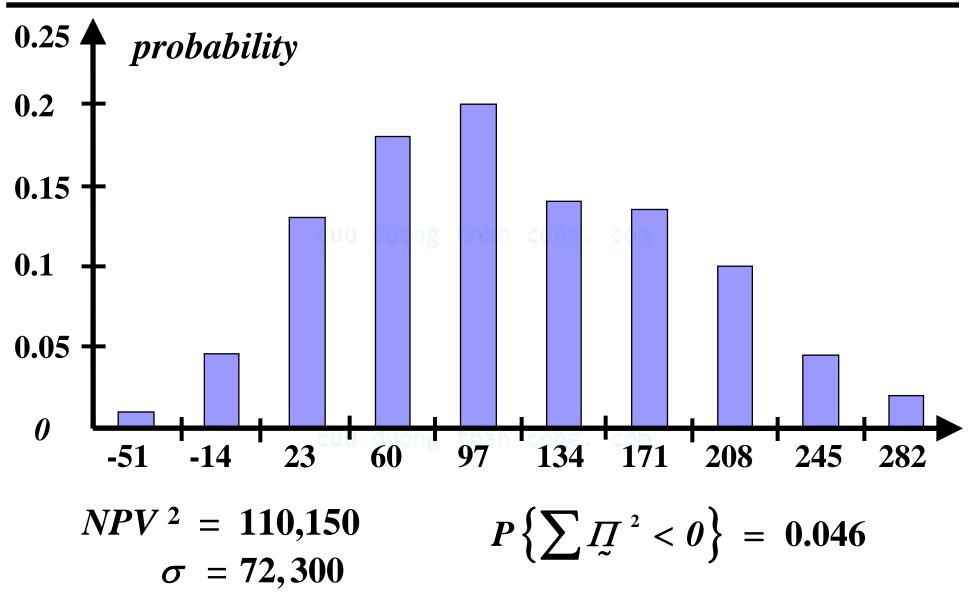
© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SIMULATION RESULTS



© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

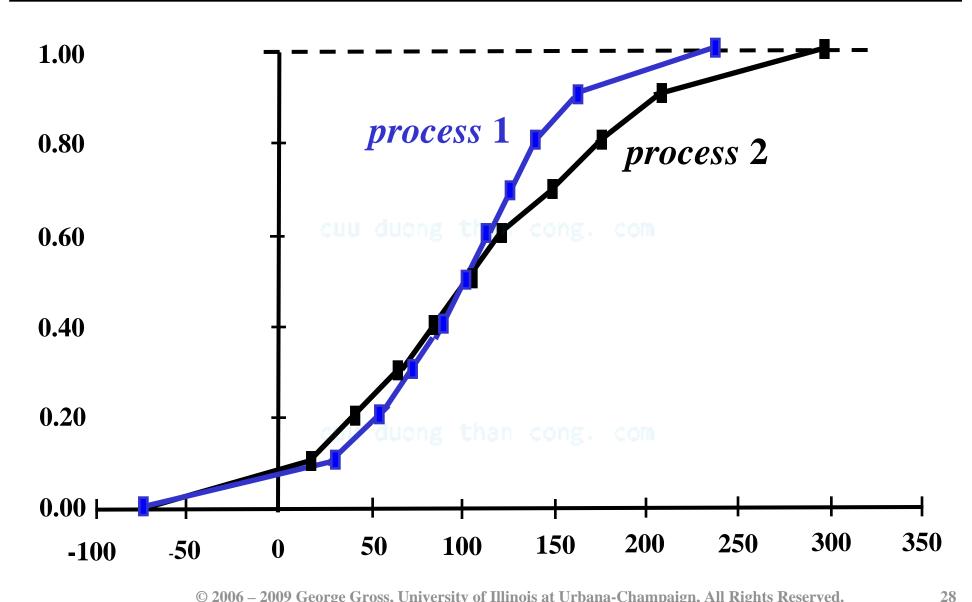
SIMULATION RESULTS



© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

c.d.f.s OF THE TWO PROCESSES



© 2006 – 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt