ECE 307 – Techniques for Engineering Decisions

Value-at-Risk or VaR

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Commodity traders trade important commodities

such as foodstuff, livestock, metals, fuel, and

electricity using financial instruments known as

forward contracts

□ Standardized forward contracts are known as

futures

- □ Futures have finite lives and are primarily used
 - for hedging commodity price-fluctuation risks or
 - for taking advantage of price movements, rather
 - than for the buying or the selling of the actual
 - cash commodity

□ The buyer of the futures contract agrees on a

fixed purchase price to buy the underlying

- commodity from the seller at the expiration of the
- contract; the seller of the futures contract agrees
- to sell the underlying commodity to the buyer at cur ducing than cong. com expiration at the fixed sales price
- □ As time passes, the contract's price changes
 - relative to the fixed price at which the trade was initiated
- □ This creates profits or losses for the trader

- The word "contract" is used because a futures contract requires delivery of the commodity in a stated month in the future unless the contract is liquidated before it expires
- However, in most cases, delivery never takes place
- Instead, both the buyer and the seller, usually liquidate their positions before the contract expires; the buyer sells futures and the seller buys futures

COMMODITY PORTFOLIOS

- Traders usually hold portfolios of commodities; a collection of different commodities, each bought at a certain price, with different terms and conditions cur dues that const com
- This is done in order to diversify the portfolio and mitigate the overall risk
- The value of a portfolio, at any given point in time,
 is determined by the summation of the individual
 values of each of the commodities in the 'basket'

MARKET UNCERTAINTIES

 \Box We consider the purchase of a portfolio P at a

certain time $t = \theta$ for the overall price p_{θ}

- \Box The value of the portfolio at any time t is p_t
- □ This portfolio is exposed to the various sources

of uncertainty to which the market for each

commodity is subjected and consequently its

value will fluctuate

PERFORMANCE PREDICTION

On any given trading day t = T, the fixed portfolio

may either incur a loss or a gain or remain

unchanged with respect to its value at t = T - 1

- □ We wish to study what the worst *performance* of
 - the portfolio may be from the day t = T 1 to the during that cong. com day t = T and how to systematically measure the

performance

PERFORMANCE PREDICTION

\Box At t = T, we cannot lose more than the overall

value p_T of the portfolio and this statement is

true with a probability of 1

□ In other words, with a probability of 1, the loss

must be less than or equal to p_T

PORTFOLIO VALUE AND RETURNS

 \Box We evaluate the change δ_t in the portfolio close

value p_t from t = T - 1 to t = T as:

$$\delta_T = p_T - p_{T-1}$$

 \Box We define the rate of return r_t of the portfolio from

t = T - 1 to t = T in terms of δ_T to be

$$r_T = \frac{\delta_T}{p_{T-1}}$$

PORTFOLIO VALUE AND RETURNS

 \Box The value of r_t for each observation is the change

in the portfolio value from day t = T - 1 to day t = T

□ The value of r_t must lie in the interval [-1, ∞)

 \Box A non-positive value of r_t means there is a loss

in the portfolio value from t = T - 1 to t = T

 \Box Suppose that we have the set of data for r_T

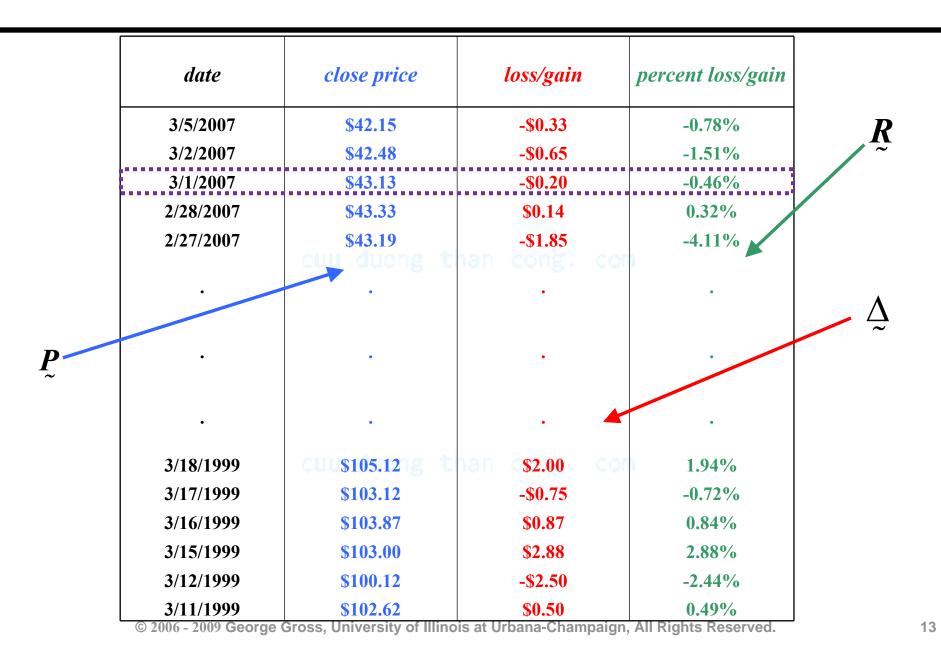
□ We are sampling from a population, the

realizations of the random variable $P_{\tilde{z}}$ with values

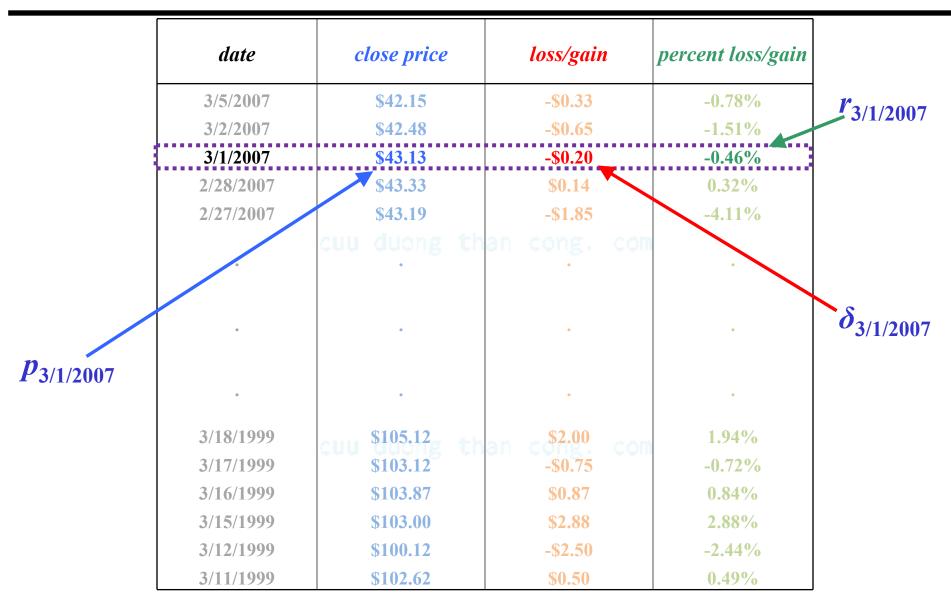
$$\{p_{0}, p_{1}, \dots, p_{T-1}, p_{T}, \dots\}$$

 \Box We use \underline{P} to define Δ and \underline{R}

 \Box The sample values of R are $\{r_1, r_2, \dots, r_{T-1}, r_T, \dots\}$



CuuDuongThanCong.com

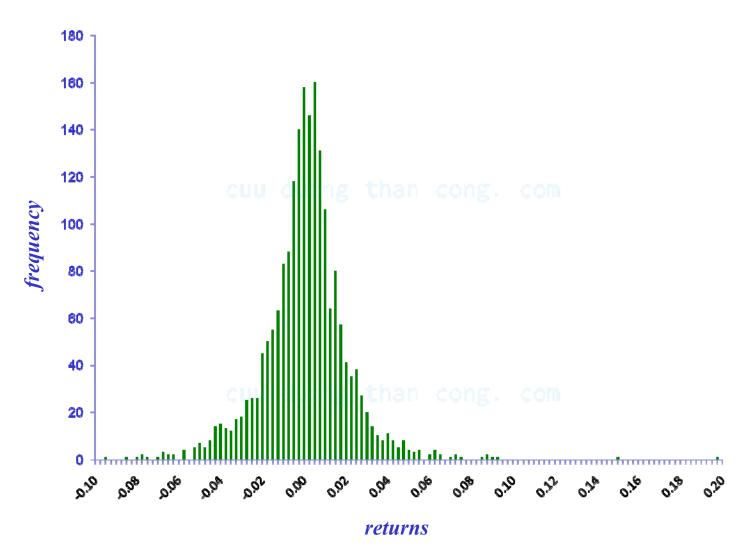


- □ We can use the historical values of R to construct a probability distribution function
- □ The first step is to determine the frequency of *R* taking on values in certain intervals; for this purpose, we discretize *R* and define 'buckets' in which we drop the realized values of *R*
- □ The number of values in each bucket represents the frequency of R taking on a value in that bucket

BUCKETS AND FREQUENCY

buckets	frequency
-10.00 %	0
-9.75 %	0
-9.50 %	1
-9.25 %	0
cuu duong	than cong. com
	enon congri com
-0.50 %	118
-0.25 %	140
0.00 %	158
0.25 %	146
0.50 %	160
cuu duong	than cong. com
•	•
19.25 %	0
19.50 %	0
19.75 %	1
20.00 %	0

FREQUENCY VS. RETURNS DISTRIBUTION



NORMALIZATION

□ We normalize these frequencies using the total

number of observations and interpret the

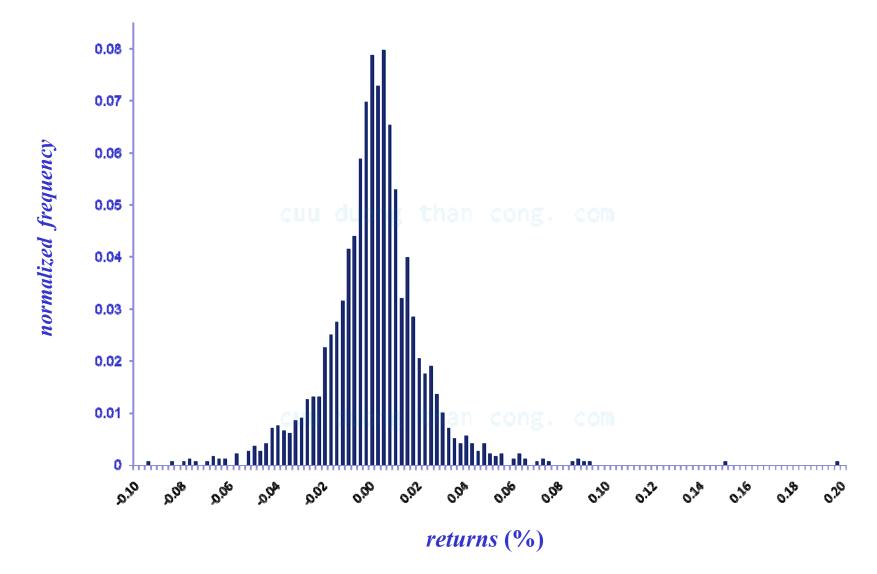
normalized quantities as the values of a discrete

probability mass distribution function

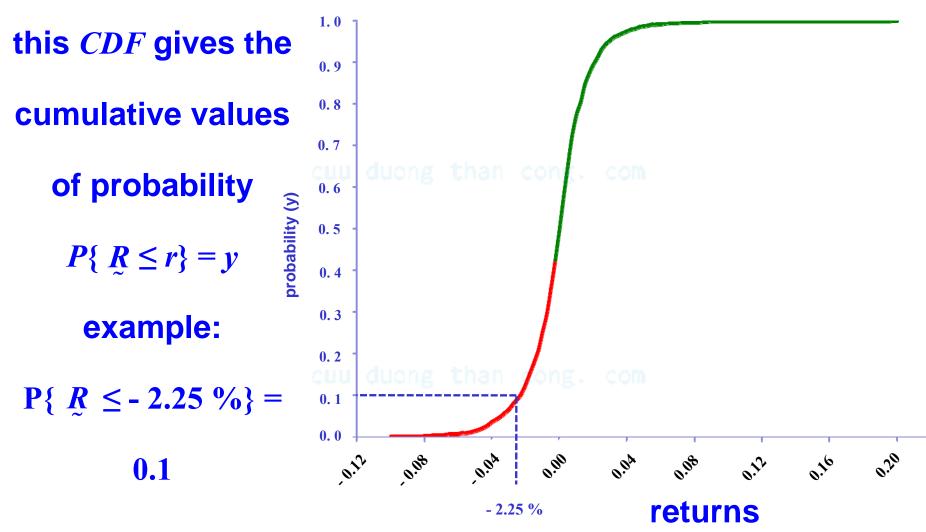
We then construct the cumulative distribution cuu dueng than cong. con function from this data, and interpret the results

with respect to the returns

NORMALIZED FREQUENCY DISTRIBUTION



CUMULATIVE DISTRIBUTION FUNCTION (CDF)



INTERPRETING THE CDF

- □ We consider the data set to be a representative of
 - the distribution of the population of trading days
- □ In the previous example, "the probability that Ris less than or equal to - 2.25 % is 0.1"
- By treating the complement of the probability
 value (0.1) as a "confidence level" (0.9), the above
 may be restated as "with a confidence level of 0.9,

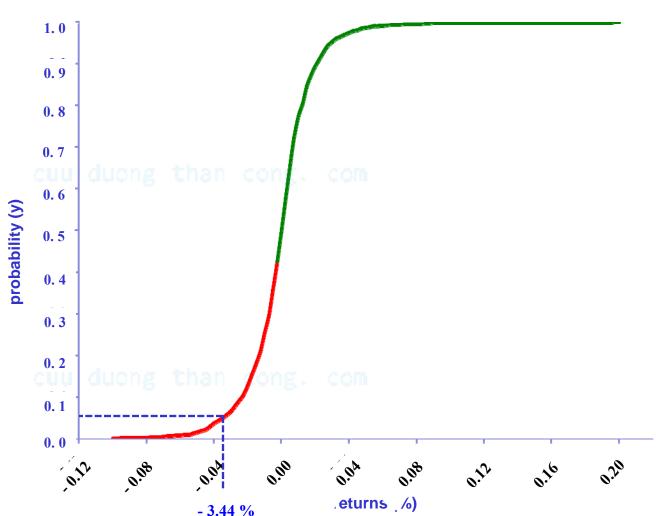
 $\underset{\sim}{R}$ will exceed - 2.25 %"

UNDERSTANDING THE CDF

- In general, for any confidence level (1-y), the information provided by the *CDF* allows us to determine the value *r* that *R* exceeds based on the observations in the collected data
- □ For example, with a 0.95 confidence level, it follows from the *CDF* that $\frac{R}{2}$ exceeds 3.44 %
- We can interpret this to mean that with a confidence level of 0.95 we don't expect to lose more than 3.44 % in the worst case

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

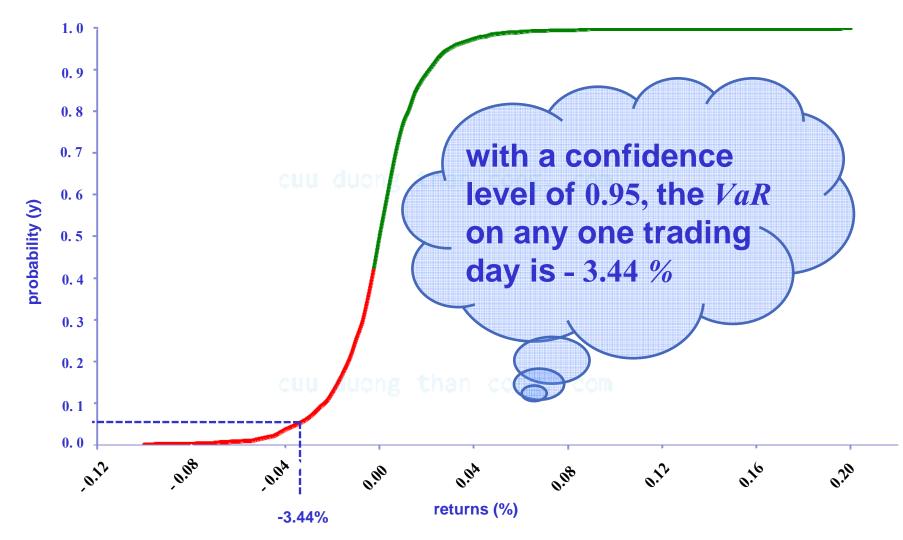
with a confidence level of 95 % we don't expect to lose more than 3.44 % in the worst case



VALUE-AT-RISK (VaR)

- Terminology: "With a confidence level of 0.95, the VaR on any one trading day is - 3.44 %" means that with a 0.95 percent confidence level, the return over two days cannot be below - 3.44 %
- □ A negative VaR, say v < 0, means that the *losses* on any one day cannot be greater than v %
- VaR is a measure, of the return which would be exceeded based on the observations available for the given time period, with the specified confidence level

CUMULATIVE DISTRIBUTION FUNCTION (CDF)



VALUE-AT-RISK (VaR)

- *VaR* is usually expressed as a percentage value of the portfolio
- VaR answers the fundamental question facing a risk manager – on any given day, how much can we lose at the specified confidence level?
- The entire procedure can be extended to determine returns over any time period (e.g., two days, a week, or a month, etc.) and *VaR* can therefore be calculated for any such period

VALUE-AT-RISK (VaR)

□ *VaR* is commonly used by banks, security firms

and companies that are involved in trading

energy and other commodities

□ *VaR* is able to measure risk as it happens and is

an important consideration when firms make

trading or hedging decisions

ASSIGNMENT

- □ Pick any 5 stocks. Compose a 100-stock portfolio
 - equally weighted (20 shares each) from each of the
 - 5 stocks

uu duong than cong. com

Obtain historic stock price data starting 1st

January, 2002 (http://finance.yahoo.com)

Calculate Δ and R for each P observation: assume that all dividends are reinvested to purchase more

stock (fractional amounts, if necessary)

ASSIGNMENT

□ Plot the Normalized Frequency Distribution and

Cumulative Distribution Function for the data

□ Compute the *VaR* for the confidence levels 95 %

and 99 %

□ Interpret what these values mean specific to your

