ECE 307 – Techniques for Engineering Decisions

Forward Contracts

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

RISK

- □ There are many definitions of risk; we use the
 - conceptual definition from Webster's dictionary

that risk is the possibility of suffering loss

□ Different people measure risk using various

specific metrics

□ All rational market players aim to minimize the

risks they are facing

RISK

□ In actual markets, players use various financial

tools to keep their risks below a certain level

□ Such actions constitute *risk management* and are

carried out using financial instruments called risk

management tools

□ Financial derivatives are among the most widely

used risk management tools in financial markets

FINANCIAL DERIVATIVES

- Basic definition: a derivative is a financial tool whose value depends on the value of other, more basic underlying variables
- The basic derivatives we examine are
 - **O** forward contracts
 - **O** future contracts
 - O options cuu duong than cong. com
 - puts
 - calls

- A farmer in Illinois and a restaurant in Wisconsin enter into a contract on January 1, 2008, under which the farmer agrees to sell 1 *ton* of flour for \$ 400 to the restaurant on September 1, 2008
- □ The contract involves two parties
 - the farmer is the *issuer* of the contract and holds a *short position* and compared as the second second
 - O the restaurant is the *holder* of the contract and

has a long position

- □ The contract is signed on January 1 with the actual sale occurring on September 1
 - we call January 1 the *initial time* of the contract and denote it by t = 0, the origin of the time line
 - we call September 1 the *maturity* of the contract and denote it by t = T

ECE 307 © 2005 - 2009, George Gross, University of Illinois at Urbana-Champaign; All Rights Reserved.

6

- □ This contract is on the trading of a single
 - specified commodity the flour; we call the 1 ton
 - of flour the underlying asset
- □ The contract provides the holder with
 - O the delivery of the underlying asset at T
 - O the fixed price for the asset at the so-called

delivery price and denote it by K

- In the absence of a forward contract, the restaurant needs to buy the flour from the spot market at an uncertain price to meet its needs; this price can be high so that the restaurant bears price risks
- With the forward contract, the price is fixed and known and therefore the holder is protected from price risks
- This forward contract is a *physical contract* since the delivery of the asset is involved

- \Box We assume the existence of a spot market price s_{τ}
 - for flour at time T so that one can buy or sell the

flour at that spot price

uu duong than cong. com

□ The flour forward contract may be signed as a

purely financial contract with the flour as the

underlying asset, the maturity time T of

September 1, 2003 and the specification of the

following payments:

 \bigcirc if $s_T > K$, the issuer reimburses the holder the

difference $s_T - K$

- **O** if $s_T < K$, the holder must make payment to the issuer at the amount of $K s_T$
- □ These payments constitute the *payoff* of the

financial contract

□ Thus, the net price to the holder is the *delivery*

price K independent of the market outcome

□ Since the issuer can sell the flour in the spot

market, its net price also equals *K*

□ Therefore, this purely financial contract provides

the same function as the *physical contract* to both

- the issuer and the holder
- □ Typically, the forwards are purely financial

contracts and not involve physical deliverability

FORWARD CONTRACTS

□ A forward contract is a binding agreement to buy

or sell an asset at a designated future time at a specified price

- □ An asset is a general term for any good,
 - commodity or service
- □ The buyer is said to hold a *long position* and the seller holds a *short position*
- □ The specified price is called the *delivery price*

FORWARD CONTRACTS

□ A forward contract is settled at *maturity* – the designated future time at which the purchase/ sale is made □ The holder of the *short position* delivers the asset to the holder of the *long position* in return for the cash payment of the *delivery price* The value of the forward contract is a function of

the *market price* of the asset and its *maturity*

FORWARD VALUE AND PRICE

\Box The value of a forward contract is θ for both the

short and the long positions at the time the

contract is signed; thereafter, its value may be

cuu duong than cong. com

positive, 0 or negative

FORWARD VALUE AND PRICE

- □ The *forward price* of a forward contract is the
 - delivery price that makes the forward contract have
 - θ value

cuu duong than cong. com

□ By definition, the *forward price* equals the *delivery*

price at the time of contract signing; thereafter,

the delivery price remains fixed but the forward price

may change as a function of the *market price* and

maturity of the contract

FORWARD CONTRACT PAYOFF : LONG POSITION

FORWARD CONTRACT PAYOFF : SHORT POSITION

EXAMPLE : FOREIGN EXCHANGE

May 8, 1995 spot and forward foreign

exchange for British £ and U.S. \$

spot ^{ouu duong}	than cone 1.6080
30 – day forward	1.6076
90 – day forward	1.6056
180 – day forward	1.6018

EXAMPLE : FOREIGN EXCHANGE

- Investor signs a 90-day contract on May 8, 1995 for £ 1,000,000
- □ Investor pays \$ 1,605,600 in 90 days and receives £ 1,000,000
- Consider two cases: than cong. com

case	s ₉₀	investor <i>payoff</i> ($s_{90} - K$) in \$
1	1.6500	1,650,000 - 1,605,600 = 44,400
2	1.5500	1,550,000 - 1,605,600 = -55,600

□ The investor *payoff* represents the investor's total gains $(s_T - K > 0)$ or total losses $(s_T - K < 0)$

FUTURES CONTRACTS

- □ A futures contract is a standardized forward contract
 - that is, typically, traded on an exchange; the
 - exchange provides a mechanism that guarantees the honoring of the contract by the two parties
- □ A key aspect in which a futures contract differs

from a forward contract is that an exact delivery

date is not specified; typically, the futures

contract specifies the delivery month

EXAMPLE : WHEAT FUTURES CONTRACT

- □ Traded on the Chicago Board of Trade (CBT)
- □ Size: 5000 bushels
- Delivery months: March, May, July, September,

and December

Maturity: up to 18 months in the future due to the congression Quality: grades of wheat specified by CBT

□ Delivery locations: specified by CBT

FORWARD vs. FUTURES CONTRACTS

forward contract	futures contract
customized	standardized
private bilateral agreements	publicly traded on an exchange
one specified delivery period	range of delivery dates
settled at maturity (end of contract)	settled daily
<i>long position</i> takes delivery; <i>short position</i> gets cash settlement	typically contracts are closed out prior to maturity and do not involve delivery

FINANCIAL DERIVATIVES : FORMAL DEFINITION

□ A *financial derivative D* is a financial instrument

that derives its values from a *related* or *underlying*

asset

cuu duong than cong. com

□ Financial derivative attributes are

O the underlying asset S

O the maturity time T

• the payoff function $f^{\mathcal{D}}(g)$

POSITIONS AND MATURITY TIME

- Two parties are involved in a financial derivative
 the issuer: *short position* the holder: *long position*
- \Box The *maturity* is the derivative expiration time *T*
- □ The derivative may be exercised at
 - O anytime *t* ∈ $\lceil \theta, T \rceil$ for *American* derivatives
 - **O** only t = T for *European* type derivatives
- We focus on the use of *European* derivatives (in electricity *T* is chosen to be the time of energy need)

THE UNDERLYING ASSETS AND ASSET MARKETS

□ The derivative is written on the price movement of

a traded underlying asset S

□ The *underlying asset* may be any good, service or

variable whose value is well-defined, such as a

stock, a bond, a commodity, currency, or a

financial contract

THE UNDERLYING ASSETS AND ASSET MARKETS

- □ We assume the existence of spot markets for the
 - underlying asset at all times during the contract
 - life; at any time *t*, a single spot price s_t exists for the particular asset *S*
- Short selling is allowed in the asset markets, i.e.,
 the investor may borrow an asset from a bank
 and sell it, with the *obligation* to buy the asset at a

later time to return it to the bank

PAYOFF FUNCTION OF THE DERIVATIVES

□ Each derivative specifies a payment of the *payoff*

from the issuer to the holder; the value of the

payoff is computed using $f^{\mathcal{D}}(g)$

□ The *payoff* is a function of the *underlying* asset

price; for European derivatives, it is simply a

PAYOFF EXAMPLE : THE FLOUR CONTRACT

RIGHTS AND OBLIGATIONS

- □ In the forward flour contract example, the
 - contract must be exercised at time *T*: the holder
 - of the contract must buy the flour from the issuer who must deliver it at time T
- □ The *payoff* of the forward is either nonnegative or

negative, so that two-sided payments may exist

□ Forward contracts impose *obligations* on both the

issuer and the holder

RIGHTS AND OBLIGATIONS

- □ There exist other types of derivatives, for which,
 - the holder has the option to choose whether or
 - not to exercise the contract
 - The holder has the *right* but not the *obligation* to
 - exercise the contract
 - the issuer has the *obligation* to perform as the contract dictates
- □ Such derivatives are called *options*