ECE 307 – Techniques for Engineering Decisions

Value of Information

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

© 2006 - 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

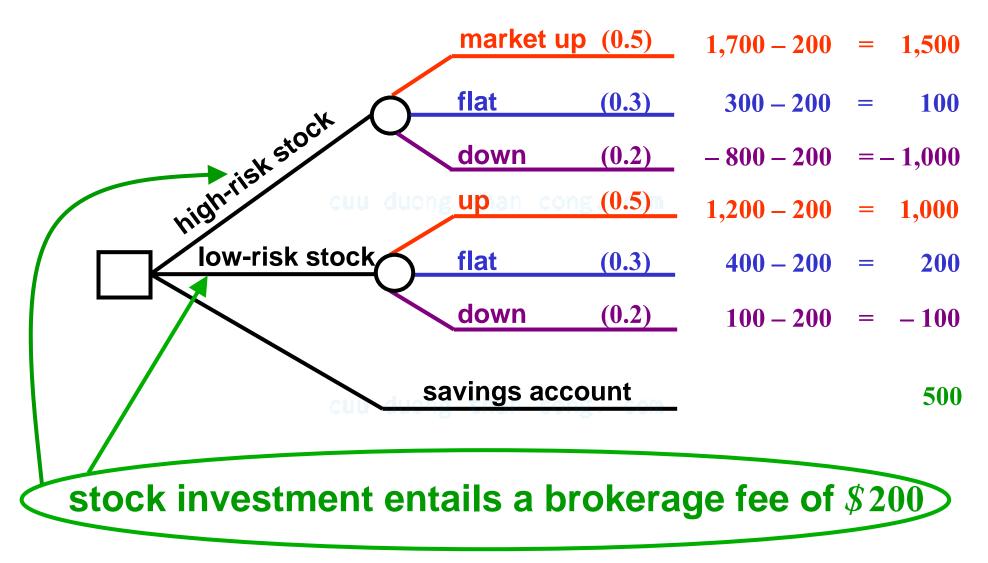
1

VALUE OF INFORMATION

- □ While we cannot do away with uncertainty, there
 - is always a desire to attempt to reduce the
- uncertainty about future outcomes
 - outcomes may give us choices that improve
 - chances for a good outcome
- □ We focus on the principles behind information

valuation

SIMPLE INVESTMENT EXAMPLE



□ We say that an expert's information is perfect if it

is always correct; we think of an expert as

essentially a *clairvoyant*

□ We can place a value on information in a decision

problem by measuring the expected value of info

(*EVI*)

- □ We consider the role of *perfect information* in the simple investment example
- In this decision problem, the optimal policy is to invest in high – risk stock since it has the highest returns
- Suppose an expert predicts that the market goes up: this implies the investor still chooses the high – risk stock investment and consequently the *perfect information* of the expert appears to have no value

- □ On the other hand, suppose the expert predicts a
 - market decrease or a flat market: under this
 - information, the investor's choice is the savings account and the *perfect information* has value
 - because it leads to a *changed* outcome with im-
 - proved results then would be the case otherwise
- □ In worst case conditions: regardless of the

information, we take the same decision as

without the information and consequently

EVI = 0; the interpretation is that we are equally

well off without an expert cong. com

- □ Cases in which we have information and in which
 - we change the optimal decision: these lead to EVI > 0 since we make a decision with an impro-

ved outcome using the available information

EVI ASSESSMENT

□ It follows that the value of information is always

nonnegative, $EVI \ge 0$

□ In fact, with *perfect information*, there is no

uncertainty and the expected value of perfect

information EVPI provides an upper bound for *EVI*

$EVPI \ge EVI$

INVESTMENT EXAMPLE: COMPUTATION OF *EVPI*

- □ Absent any expert information, a value
 - maximizing investor selects the high risk stock
 - investment

cuu duong than cong. com

□ The introduction of an expert or clairvoyant

brings in *perfect information* since there is perfect

knowledge of what the market will do before the

investor makes his decision and the investor's

decision is based on this information

COMPUTATION OF EVPI

□ We use a decision tree approach to compute *EVPI*

by reversing the decision and uncertainty order:

we view the value of information in an *a priori*

sense and define

 $EVPI = E \{ decision with perfect information \} -$

E {*decision without information*}

COMPUTATION OF EVPI

□ For the investment problem,

$$EVPI = 1,000 - 580 = 420$$

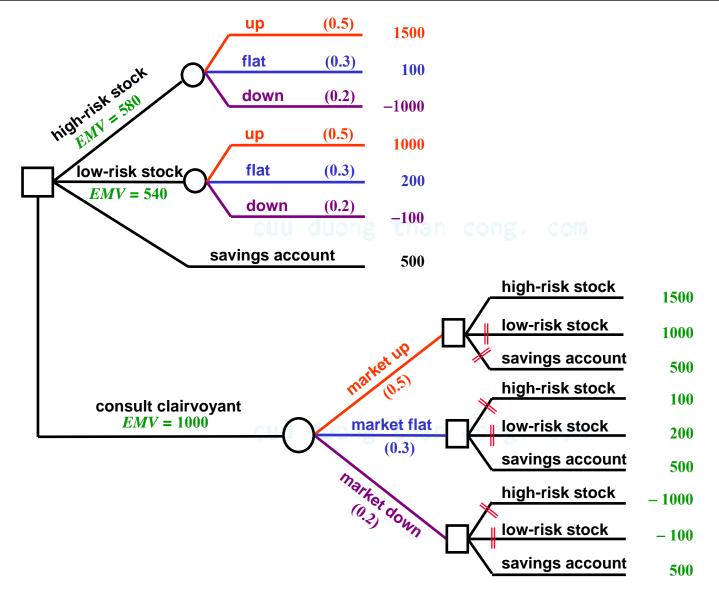
□ We may view *EVPI* to represent the maximum

amount that the investor should be willing to pay

the expert for the *perfect information* resulting in

the improved outcome

COMPUTATION OF EVPI



© 2006 - 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXPECTED VALUE OF IMPERFECT INFORMATION

- □ In practice, we cannot obtain *perfect information*;
 - rather, the information is *imperfect* since there are

no clairvoyants

uu duong than cong. com

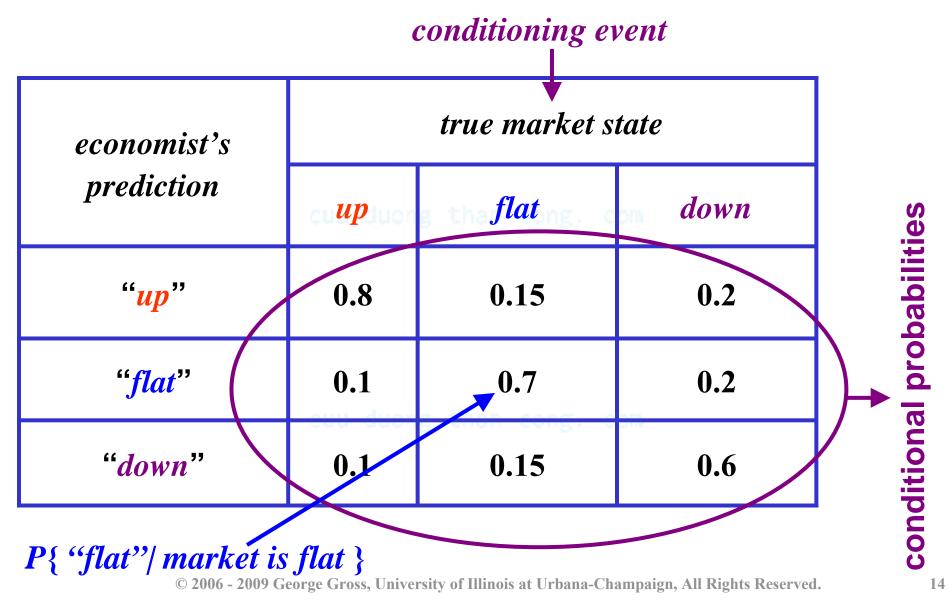
□ We evaluate the expected value of *imperfect*

information, EVII

For example we engage an economist to forecast the future stock market trends; his forecasts

constitute *imperfect information*

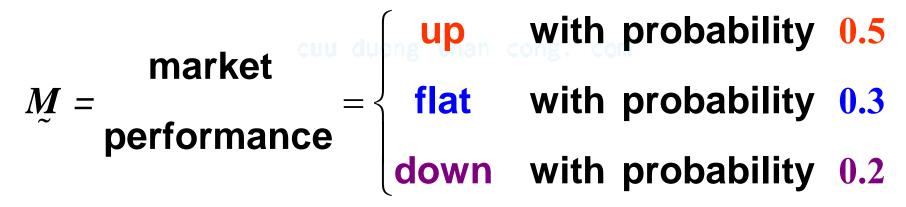
EXPECTED VALUE OF IMPERFECT INFORMATION



https://fb.com/tailieudientucntt

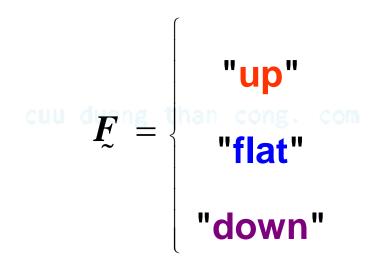
EVII ASSESSMENT

- We use the decision tree approach to compute EVII
- □ For the decision tree, we evaluate probabilities using Bayes' theorem
- □ For the imperfect information, we define



EVII ASSESSMENT

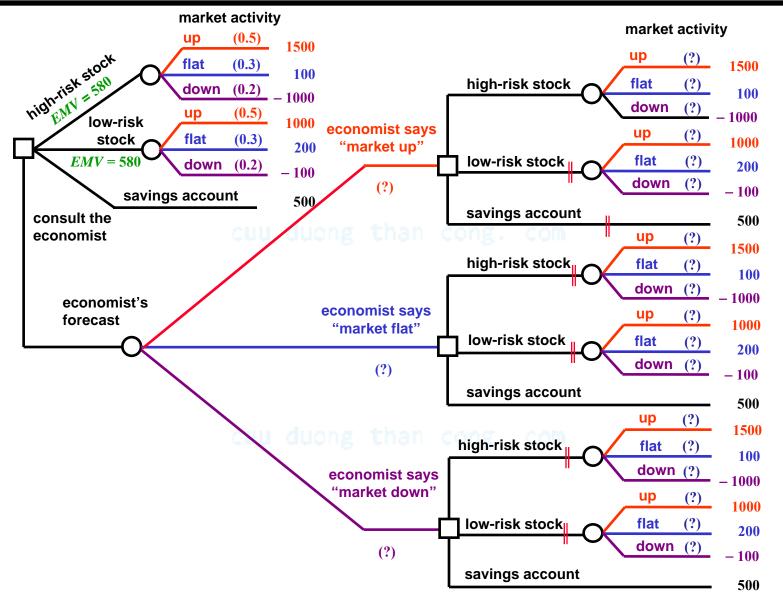
and the forecast *r.v.*



without the knowledge of the corresponding

probabilities of the two r.v.s

EVII COMPUTATION: INCOMPLETE DECISION TREE



© 2006 - 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COMPUTATION OF REVERSE CONDITIONAL PROBABILITIES

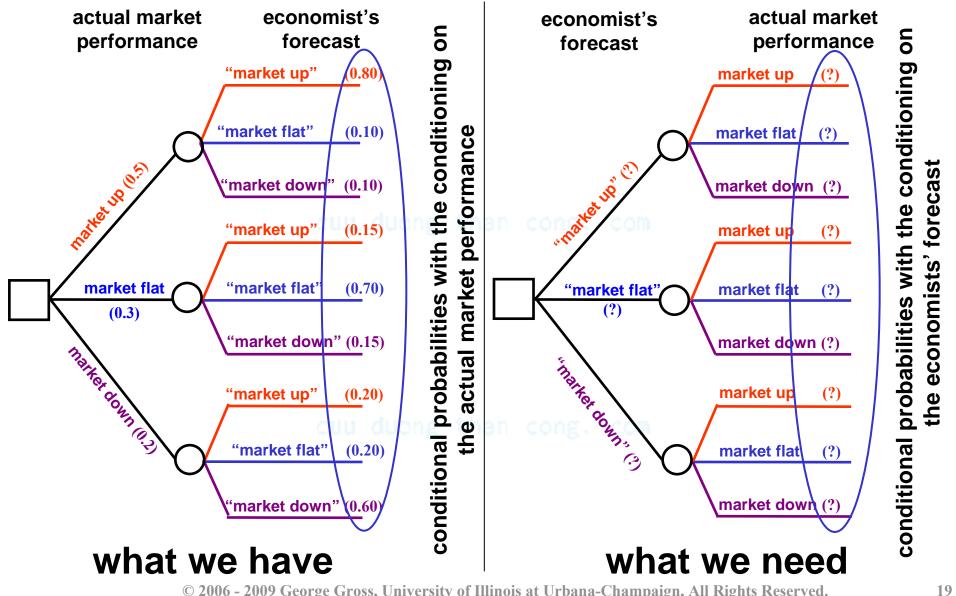
$$P\left\{ M = \mathsf{down} | F = \mathsf{"up"} \right\} =$$

 $P\left\{F_{z} = "up" \middle| M = down\right\} P\left\{M = down\right\}$

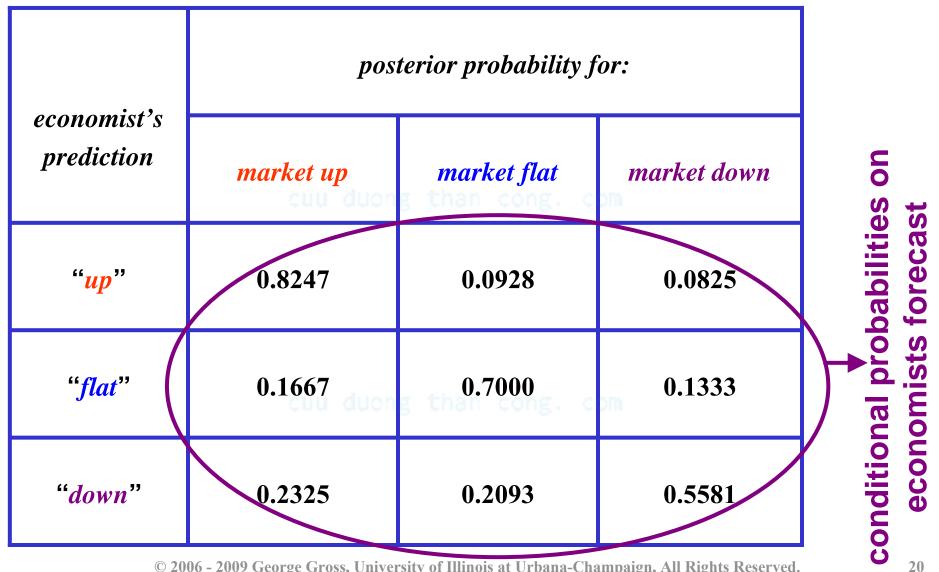
$$\begin{bmatrix} P\left\{\tilde{F}_{c} = "up" \middle| \tilde{M}_{c} = down\right\} P\left\{\tilde{M}_{c} = down\right\} + \\ P\left\{\tilde{F}_{c} = "up" \middle| \tilde{M}_{c} = down\right\} P\left\{\tilde{M}_{c} = up\right\} + \\ P\left\{\tilde{F}_{c} = "up" \middle| \tilde{M}_{c} = flat\right\} P\left\{\tilde{M}_{c} = flat\right\} \end{bmatrix} \\ P\left\{\tilde{F}_{c} = "up"\right\} = \frac{0.2(0.2)}{0.2(0.2) + 0.5(0.3) + 0.8(0.5)}$$

we *flip* the probabilities in this way

EVII COMPUTATION: FLIPPING THE **PROBABILITY TREE**



POSTERIOR PROBABILITIES



EVII COMPUTATION

□ We use conditional probabilities in the table to

build the posterior probabilities

□ For example

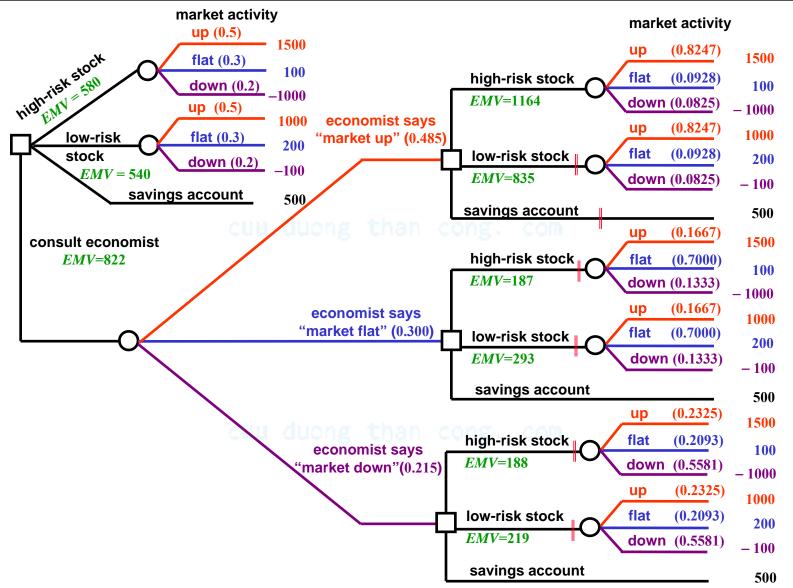
 $P\left\{ \frac{\text{market up}}{\text{economist predicts "up"}} \right\} = 0.8247$

We then compute

$$P\left\{F_{\sim} = "up"\right\} = 0.485$$

 $P\left\{F_{\sim} = "flat"\right\} = 0.300$
 $P\left\{F_{\sim} = "down"\right\} = 0.215$

EXPECTED VALUE OF IMPERFECT INFORMATION



© 2006 - 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EVII COMPUTATION

The expected mean value for the decision made with the economist information is

 $EMV|_{economist} = 1,164(0.485) + 500(0.515) = 822$

- The expected mean value without information is
 580
- □ Consequently,

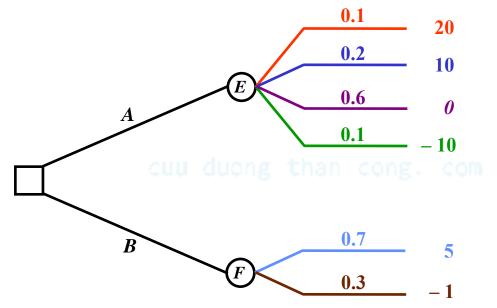
EVII = 822 - 580 = 242

□ This value represents the upper limit on the worth

of the economist's forecast

EXAMPLE OF VALUE OF INFORMATION

□ We consider the following decision tree

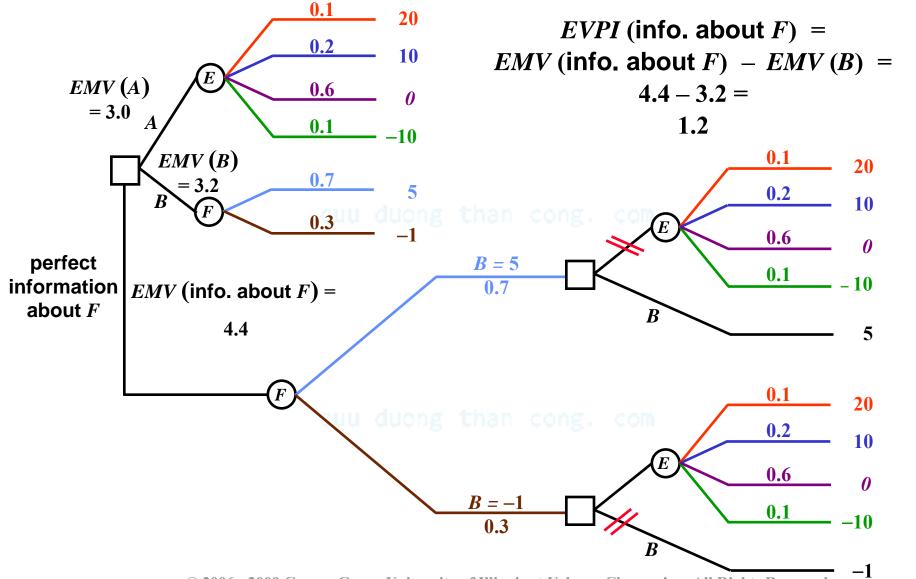


with the events at E and F as independent

□ We perform a number of valuations of *EVPI* for

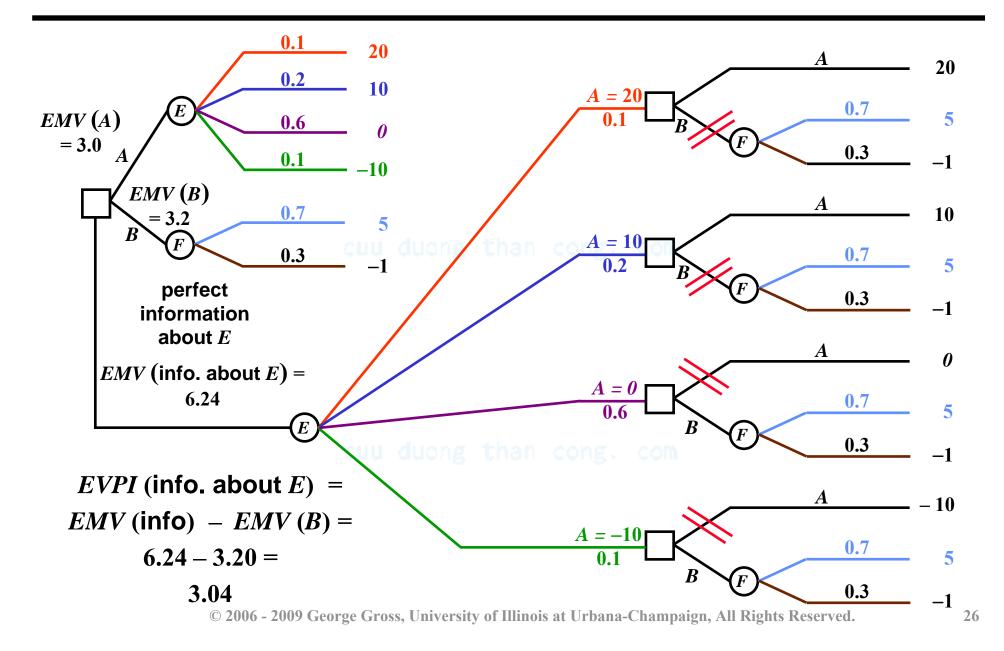
this simple decision problem

EVPI FOR F ONLY



© 2006 - 2009 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EVPI FOR E ONLY



EVPI FOR E AND F ONLY

