
2/19/2012

1

1

RISC MCU Architecture
PIC16F877 Hardware

HCMIU - DEE
Subject: ERTS

2

Outline

� Micriprocessor vs Microcontroller

� Introduction to PIC MCU

� PIC16F877 Hardware:

� Program Memory

� Data memory organization: banks, Special Function Registers

(STATUS), General Function Registers, W register

� Direct addressing and indirect addressing (FSR, INDF)

� On-board Peripherals

� PIC16F877 Instruction Set:

� bit (bsf, bcf)

� byte (e.g. movlw, movf, addwf, subwf)

� conditional branch (e.g. btfsc, btfss incfsz, decfsz)

� goto

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

2

3

Microcontrollers vs. Microprocessors

4

A little History

� What is a computer?

�[Merriam-Webster Dictionary] one that
computes; specifically : programmable
electronic device that can store, retrieve, and
process data.

� [Wikipedia] A computer is a machine that
manipulates data according to a list of
instructions.

� Classification of Computers (power and price)
� Personal computers

� Mainframes

� Supercomputers

� Dedicated controllers – Embedded controllers

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

3

5

Microcontrollers – Embedded Systems

� An embedded system is a special-purpose
computer system designed to perform one or a
few dedicated functions often with real-time

� An integrated device which consists of multiple
devices

� Microprocessor (MPU)

� Memory

� I/O (Input/Output) ports

� Often has its own dedicated software

6

A little about
Microprocessor-based
Systems ……

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

4

7

Evolution

� First came transistors

� Integrated circuits
� SSI (Small-Scale Integration) to ULSI

� Very Large Scale Integration circuits (VLSI)

� 1- Microprocessors (MPU)
� Microcomputers (with CPU being a microprocessor)

� Components: Memory, CPU, Peripherals (I/O)

� Example: Personal computers

� 2- Microcontroller (MCU)
� Microcomputers (with CPU being a microprocessor)

� Many special function peripheral are integrated on a single circuit

� Types: General Purpose or Embedded System (with special
functionalities)

8

Arithmetic
Logic
Unit

Register
Arrays

Control Unit

GP-

CPU
CLK Reg

MPU

CPU

Microprocessor-based System

Microprocessor-Based Systems

• Central Processing Unit (CPU)
• Memory
• Input/Output (I/O) circuitry
• Buses

– Address bus
– Data bus
– Control bus

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

5

9

Microprocessor-Based System

with Buses: Address, Data, and Control

10

Microprocessor-based Systems
Microprocessor

� The microprocessor (MPU) is a computing and
logic device that executes binary instructions in a
sequence stored in memory.

� Characteristics:

�General purpose central processor unit (CPU)

�Binary

�Register-based

�Clock-driven

�Programmable

System software: A group of programs that monitors the functions of the entire system

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

6

11

So what are
microcontrollers?

12

First Microcontrollers

� IBM started using Intel processors in its PC

� Intel started its 8042 and 8048 (8-bit
microcontroller) – using in printers

� Apple Macintosh used Motorola

� 1980 Intel abandoned microcontroller business

� By 1989 Microchip was a major player in
designing microcontrollers

�PIC: Peripheral Interface Controller

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

7

13

Embedded controllers

� Used to control smart machines

� Examples: printers, auto braking systems

� Also called microcontrollers or microcontroller
units (MCU)

14

Embedded controllers
Software Characteristics

� No operating systems

� Execute a single program, tailored exactly to the
controller hardware

� Assembly language (vs. High-level language)

�Not transportable, machine specific

�Programmer need to know CPU architecture

�Speed

�Program size

�Uniqueness

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

8

15

Microcontroller Unit (MCU) - Block Diagram

� An integrated electronic computing

and logic device that includes three

major components on a single chip

� Microprocessor

� Memory

� I/O ports

� Includes support devices

� Timers

� A/D converter

� Serial I/O

� Parallel Slave Port

� All components connected by

common communication lines called

the system bus.

16

MCU Architecture

� RISC (Harvard)
�Reduced instruction set computer
�Simple operations
�Simple addressing modes
�Longer compiled program bust faster to execute
�Uses pipelining

� CISC (Von Neuman)
�Complex instruction set computer
�More complex instructions (closer to high-level

language support)

Bench marks: How to compare MCUs together

MIPS: Million Instructions / second (Useful when the compilers are the same)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

9

17

Microprocessors, Microcontrollers and DSPsMicroprocessors, Microcontrollers and DSPs

Microprocessors

Microcontrollers

DSPsMicroprocessors

Microprocessors
� Microprocessor is an “umbrella”

term for all types of processor.

� Microcontrollers and DSPs

evolved from the original

microprocessors.

Microcontrollers

� Processor specifically designed

for control applications.

DSPs

� Processors specifically

designed for digital signal

processing.

Microprocessors

� Processors for general purpose

processing.

18

Main 8-bit Controllers

� Microchip
� RISC architecture (reduced instruction set computer)

� Has sold over 2 billion as of 2002

� Cost effective and rich in peripherals

� Motorola
� CISC architecture

� Has hundreds of instructions

� Examples: 68HC05, 68HC08, 68HC11

� Intel
� CISC architecture

� Has hundreds of instructions

� Examples: 8051, 8052

� Many difference manufacturers: Philips, Dallas/MAXIM Semiconductor, etc.

� Atmel
� RISC architecture (reduced instruction set computer) –

� Cost effective and rich in peripherals

� AVR

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

10

19

Software:

From Machine to High-Level Languages (1 of 3)

� Machine Language: binary instructions

�All programs are converted into the machine
language of a processor for execution

�Difficult to decipher and write

�Prone to cause many errors in writing

Machine Language

Assembly Language

High-level Language

20

Software:

From Machine to High-Level Languages (2 of 3)

� Assembly Language: machine instructions

represented in mnemonics

�Has one-to-one correspondence with machine
instructions

�Efficient in execution and use of memory;
machine-specific and not easy to troubleshoot

Machine Language

Assembly Language

High-level Language

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

11

21

Software:

From Machine to High-Level Languages (3 of 3)

� High-Level Languages (such as BASIC, C,

and C++)

�Written in statements of spoken languages
(such as English)

� machine independent

� easy to write and troubleshoot

� requires large memory and less efficient in execution

Machine Language

Assembly Language

High-level Language

22

Design Examples …..

Microcontrollers vs. Microprocessors

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

12

23

MPU-Based Time and Temperature System

24

MCU-Based Time and Temperature System

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

13

Embedded System

General Block Diagram

Microcontroller

(uC)

sensor

sensor

sensor

S
e

n
s
o

r c
o

n
d

itio
n

in
g

O
u

tp
u

t in
te

rfa
c
e

s

actuator

indicator

25

26

Introduction to PIC MCU

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

14

27

History of PIC Microcontroller

� In late 1970s, General Instrument had a 16-bit processor

(CP1600) which was loosing its market-share due to

increased competition from Intel 8086 and Motorola 68000.

� Main disadvantage of CP1600 was limited I/O capabilities

� As a solution General Instruments designed a support chip

� A special purpose processor which was called the Peripheral

Interface Controller (PIC) of the CP1600

� By mid 80s the industry found that PIC itself can be used for

most control applications.

� General Instruments started a new subsidiary called

Microchip which began to develop the PIC as a full featured

microcontroller family.

Why PIC?

� Why PIC is popular?

� low cost ,wide availability with high clock speed

� availability of low cost or free development tools

� Only 37 instructions to remember

� serial programming and re-programming with flash
memory capability

� Its code is extremely efficient, allowing the PIC to
run with typically less program memory than its
larger competitors

� PIC is very small and easy to implement for non-
complex problems and usually accompanies to the
microprocessors as an interface

28

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

15

Two Different Architectures

� Harvard Architectures

� Used mostly in RISC CPUs

� Separate program bus and
data bus: can be of different
widths

� For example, PICs use:
� Data memory (RAM): a small

number of 8bit registers

� Program memory (ROM):
12bit, 14bit or 16bit wide (in
EPROM, FLASH, or ROM)

� Von-Neumann Architecture

� Used in: 80X86 (CISC PCs)

� Only one bus between CPU
and memory

� RAM and program memory
share the same bus and the
same memory, and so must
have the same bit width

� Bottleneck: Getting
instructions interferes with
accessing RAM

29

RISC vs. CISC

� Reduced Instruction Set

Computer (RISC)

� Used in: SPARC, ALPHA,

PIC, Atmel AVR, etc.

� Few instructions

(usually < 50)

� Only a few addressing

modes

� Executes 1 instruction in 1

internal clock cycle (Tcyc)

� Complex Instruction Set

Computer (CISC)

� Used in: 80X86, 8051,

68HC11, etc.

� Many instructions

(usually > 100)

� Several addressing modes

� Usually takes more than 1

internal clock cycle (Tcyc)

to execute

30

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

16

31

The PIC Family of Microcontrollers

� PIC series of microcontrollers offer a wide range of
low cost devices, ranging from a tiny 8 pin device to
a feature rich 40 pin device

� E.g.

� PIC16C54 18 pin Base line family

� PIC16F84 18 pin Base line family

� PIC16C74 28 pin Mid range family

� PIC17C44 40 pin High end family

32

Family Core Architectural Differences

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

17

33

Family Core Architectural Differences ..

Clock and Instruction Cycles

�� Instruction ClockInstruction Clock
� Clock from the oscillator enters a microcontroller via OSC1 pin where internal

circuit of a microcontroller divides the clock into four even clocks Q1, Q2, Q3,
and Q4 which do not overlap.

� These four clocks make up one instruction cycle (also called machine cycle)
during which one instruction is executed.

� Execution of instruction starts by calling an instruction that is next in string.

� Instruction is called from program memory on every Q1 and is written in
instruction register on Q4.

� Decoding and execution of instruction are done between the next Q1 and Q4
cycles. On the following diagram we can see the relationship between instruction
cycle and clock of the oscillator (OSC1) as well as that of internal clocks Q1-Q4.

� Program counter (PC) holds information about the address of the next
instruction.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

18

35

Clock/Instruction Cycle

� Clock from the oscillator enters the microcontroller
via OSC1 pin.

� Internal circuit divides the clock into four even
clocks Q1, Q2, Q3, and Q4 which do not overlap.

� These four clocks make up one instruction cycle
during which one instruction is executed.

� On the following diagram we can see the
relationship between instruction cycle and clock of
the oscillator (OSC1) as well as that of internal
clocks Q1-Q4.

36

Clock/Instruction Cycle

Clock signals in PIC microcontrollers. OSC1 is the main oscillator from

which the internal signals Q1, Q2, Q3, and Q4 are derived. These signals

synchronize fetching, decode, and execute of instructions. TMC is the

duration of a machine cycle. It uses four OSC1 pulses.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

19

37

Clock/Instruction Cycle

� Execution of instruction starts by calling an instruction that

is next in string.

� Fetch

� Instruction is called from program memory on every Q1

and is written in instruction register on Q4.

� Execution

� Decoding and execution of instruction are done

between the next Q1 and Q4 cycles.

� Data memory is read during Q2 (operand read) and

written during Q4 (destination write)

� Program counter (PC) holds information about the

address of the next instruction.

38

Clock oscillator and instruction cycle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

20

39

Microcontroller oscillator generator circuits

40

Three ways to

provide the

clock signal

to a PIC

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

21

Pipelining in PIC

�� Instruction Pipeline FlowInstruction Pipeline Flow

41

42

Exercise

� For a system operating from a 4 MHZ crystal oscillator,

every instruction would execute in how much time?

Solution

� For a system operating from a 4 MHZ crystal oscillator,

every instruction would execute in

1/(4Mhz/4) = 1 micro-second

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

22

43

Reset

In the PIC16 there is a Reset input, MCLR (‘Master Clear’). As long

as this is held low, the microcontroller is held in Reset. When it is

taken high, program execution starts.

If the pin is taken low while the program is running, then program

execution stops immediately and the microcontroller is forced back

into Reset mode.

R = 10–100 k

The PIC Family: Program Memory

� Technology: EPROM, FLASH, or ROM

� It varies in size from one chip to another.

-- examples:examples:

12bit

instructions

51212C508

14bit

instructions

1024 (1k)16C711

14bit

instructions

8192 (8k)16F877

16bit

instructions

16384 (16k)17C766

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

23

45

The PIC Family: Program Memory

The PIC Family: Data Memory

�� PICs use general purpose “File registers” for RAM PICs use general purpose “File registers” for RAM

(each register is 8bits for all PICs)(each register is 8bits for all PICs)

-- examples:examples:

25B RAM12C508

36B RAM16C71C

368B RAM + 256B of

nonvolatile EEPROM
16F877

902B RAM17C766

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

24

PIC Programming Procedure

� For example: in programming an embedded PIC

featuring electronically erasable programmable read-only

memory (EEPROM). The essential steps are:

� Step 1: On a PC, type the program, successfully compile it and

then generate the HEX file.

� Step 2: Using a PIC device programmer, upload the HEX file into

the PIC. This step is often called "burning".

� Step 3: Insert your PIC into your circuit, power up and verify the

program works as expected. This step is often called

"dropping" the chip. If it isn't, you must go to Step 1 and debug

your program and repeat burning and dropping.

48

Comparison of PIC families

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

25

49

Some members of the PIC 16 Series family

50

Some members of the PIC 16 Series family ..

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

26

MCU Features

� The range of microcontrollers now available developed
because the features of the MCU used in any particular circuit
must be as closely matched as possible to the actual needs of
the application. Some of the main features to consider are:

● Number of inputs and outputs.

● Program memory size.

● Data RAM size.

● Nonvolatile data memory.

● Maximum clock speed.

● Range of interfaces.

● Development system support.

● Cost and availability.

� The PIC16F877A is useful as a reference device because it
has a minimal instruction set but a full range of peripheral
features.

51

Note: The general approach

to microcontroller application

design followed here is to

develop a design using a chip

that has spare capacity, then

later select a related device

that has the set of features

most closely matching the

application requirements.

PIC16F877 Hardware

52

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

27

PIC16F877A Features

High Performance RISC CPU:
� Only 35 single word instructions to learn

� All single cycle instructions except for program branches,
which are two-cycle

� Operating speed: DC - 20 MHz clock input DC - 200 ns
instruction cycle

53

PIC16F877A Pin Layout

PORTA PORTB

PORTE

PORTC PORTC

PORTD

PORTD

ADC inputs

Counter

0

external

input

54

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

28

16F877 MCU Block diagram

Shows the main parts of the chip in simplified form

Flash

ROM

Program

Memory

8192

x 14 bits

0000 – 1FFF

Instruction Register

MCU

control

lines

Program Counter

(13 bits)

Stack

13 bits

x 8

levels

RAM

File

Registers

368

X 8 bits

000-1FF

Data Bus

(8 bits)

File Select

Register

Working (W)

Register

File Address

Literal

Op-

code

Instructions

Address

Arithmetic & Logic

Unit

Ports, Timers

ADC, Serial I/O

Status bits

Timing control

EEPROM

256 bytes

Clock Reset

Port A B C D E

Program address

Instruction

Decode &

CPU control

Status (Flag)

Register

55

PIC Memory

� The PIC16F877A has an 8192 (8k) 14bit instruction

program memory

� 368 Bytes Registers as Data Memory :

�Special Function Registers: used to control

peripherals and PIC behaviors

�General Purpose Registers: used to a normal

temporary storage space (RAM)

� 256 Bytes of nonvolatile EEPROM

56

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

29

PIC Program Memory
� The PIC16F877 8192 (8k) 14bit instructions

If interrupted, program

execution continues from

here

When the

controller is reset,

program execution

starts from here

Takes a max of 8 addresses, the

ninth address will write over the first.

57

PIC Data Memory

The data memory is devided into 4 memory banks

The most

important

registers

have

addresses

in all the

four

banks

58

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

30

PIC16F877 simplified file register map

Bank 0 (000 – 07F) Bank 1 (080 – 0FF) Bank 2 (100-180) Bank 3(180-1FF)

Address Register Address Register Address Register Address Register

000h Indirect 080h Indirect 100h Indirect 180h Indirect

001h Timer0 081h Option 101h Timer0 181h Option

002h PC Low 082h PC Low 102h PC Low 182h PC Low

003h Status Reg 083h Status Reg 103h Status Reg 183h Status Reg

004h File Select 084h File Select 104h File Select 184h File Select

005h Port A data 085h PortA direction 105h - 185h -

006h Port B data 086h PortB direction 106h Port B data 186h PortB direction

007h Port C data 087h PortC direction 107h - 187h -

008h Port D data 088h PortD direction 108h - 188h -

009h Port E data 089h PortE direction 109h - 189h -

00Ah PC High 08Ah PC High 10Ah PC High 18Ah PC High

00Bh Interrupt Control 08Bh Interrupt Control 10Bh Interrupt Control 18Bh Interrupt Control

00Ch
to

01Fh

20 Peripheral
Control

Registers

08Ch
to

09Fh

20 Peripheral
Control

Registers

10Ch
to

10Fh

4 Peripheral
Control

Registers

18Ch
to

18Fh

4 Peripheral
Control

Registers

110h
to

16Fh

96 General
Purpose
Registers

190h
to

1EFh

96 General
Purpose
Registers

020h
to

06Fh

80 General
Purpose
Registers

0A0h
to

0EFh

80 General
Purpose
Registers

070h
to

07Fh

16 Common
Access GPRs

0F0h
to

0FFh

Accesses
70h – 7Fh

170h
to

17Fh

Accesses
70h – 7Fh

1F0h
to

1FFh

Accesses
70h – 7Fh

Register Addressing Modes

Indirect Addressing:
• Full 8 bit register address is written the special function register FSR

• INDF is used to get the content of the address pointed by FSR

• Exp : A sample program to clear RAM locations H’20’ – H’2F:
MOVLW 0x20 ;initialize pointer

MOVWF FSR ;to RAM

NEXT CLRF INDF ;clear INDF register

INCF FSR,F ;inc pointer

BTFSS FSR,4 ;all done?

GOTO NEXT ;no clear next

CONTINUE
: ;yes continue

Immediate Addressing:
Movlw H’0F’

Direct Addressing:
Uses 7 bits of 14 bit instruction to identify a register file address 8th and 9th

bit comes from RP0 and RP1 bits of STATUS register.

i.e. Z equ D’2’ ; Z=2

btfss STATUS, Z ; test if the 3rd bit of the STATUS register is set

60

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

31

PIC Family Control Registers

� Uses a series of “Special Function Registers” for
controlling peripherals and PIC behaviors.

� STATUS ���� Bank select bits, ALU bits (zero, borrow,

carry)

� INTCON � Interrupt control: interrupt enables, flags,

etc.

� OPTION_REG � contains various control bits to

configure the TMR0 prescaler/WDT postscaler ,the

External INT Interrupt, TMR0 and the weak pull-ups

on PORTB

61

Special Function Register

“STATUS Register”

62

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

32

Special Function Register

“INTCON Register”

63

PIC Peripherals

� Each peripheral has a set of SFRs to control its
operation.

� Different PICs have different on-board peripherals

� Some common peripherals are:
�Tri-state (“floatable”) digital I/O pins
�Analog to Digital Converters (ADC) (8, 10 and 12bit, 50ksps)
�Serial communications: UART (RS-232C), SPI, I2C, CAN
�Pulse Width Modulation (PWM) (10bit)
�Timers and counters (8 and 16bit)
�Watchdog timers, Brown out detect, LCD drivers

64

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

33

Peripheral Features

� 5 Digital I/O Ports

� Three timer/counter modules

� Timer0: 8-bit timer/counter with 8-bit pre-scaler

� Timer1: 16-bit timer/counter with pre-scaler, can be incremented during SLEEP
via external crystal/clock

� Timer2: 8-bit timer/counter with 8-bit period register, pre-scaler and post-scaler

� A 10-bit ADC with 8 inputs

� Two Capture, Compare, PWM modules

� Capture is 16-bit, max. resolution is 12.5 ns

� Compare is 16-bit, max. resolution is 200 ns

� PWM max. resolution is 10-bit

� Synchronous Serial Port (SSP) with SPI™ (Master mode) and I2C™

(Master/Slave)

� Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)

with 9-bit address detection

� Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS

controls

65

PIC Peripherals: Ports (Digital I/O)

� Ports are basically digital I/O pins which exist in all PICs

� The PIC16F877A have the following ports:

� PORT A has 6 bit wide, Bidirectional

� PORT B,C,D have 8 bit wide, Bidirectional

� PORT E has 3 bit wide, Bidirectional

� Ports have 2 control registers

� TRISx sets whether each pin is an input (1) or output (0)

� PORTx sets their output bit levels or contain their input bit levels

� Pin functionality “overloaded” with other features

� Most pins have 25mA source/sink thus it can drive LEDs directly

� WARNING: Other peripherals SHARE pins!

66

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

34

I/O pin operation

The pin can be set for input or output data transfer

CPU Data Bus
Output

Current

Driver

Output

Data

Latch

Data

Direction

Latch
Tri-state

Output

Enable

Input

Data

Latch

Write data bit

Read data

bit

Write TRIS bit

Analogue input

multiplexer

67

Connecting switches to logic inputs

(a) SPDT connection. (b) SPST with pull-up resistor. (c) SPST with pull-down resistor

For PIC microcontrollers, pull-up values in the range 10–100 kΩ are usually

appropriate. The circuit of Figure (b) is very useful and widely applied, as

many simple switches (e.g. PCB-mounting slide switches and push-buttons)

are only available as SPST.

68

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

35

Driving LEDs from logic gates

(a) Gate output sourcing current to LED. (b) Gate output sinking current from LED

69

PIC Peripherals: Analogue to Digital Converter

�Only available in 14bit and 16bit cores

�Fs (sample rate) < 54KHz

� the result is a 10 bit digital number

�Can generate an interrupt when ADC
conversion is done

70

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

36

PIC Peripherals: Analogue to Digital Converter

� The A/D module has four registers. These registers are:
� A/D Result High Register (ADRESH)

� A/D Result Low Register (ADRESL)

� A/D Control Register0 (ADCON0)

� A/D Control Register1 (ADCON1)

� Multiplexed 8 channel inputs
� Must wait Tacq to charge up sampling capacitor

� Can take a reference voltage different from that of the controller

71

ADC operation

The ADC converts an analog input into a binary code

ANx

Analogue

to Digital

Converter

Vref+

Input volts 0-Vf

Reference volts, Vf
8-bit or 16-bit

integer result

Setup ADC

Read ADC

72

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

37

PIC Peripherals: USART: UART

� Serial Communications Peripheral:

Universal Synch./Asynch. Receiver/Transmitter

� Interrupt on TX buffer empty and RX buffer full

� Asynchronous communication: UART (RS-232C serial)

� Can do 300bps - 115kbps

� 8 or 9 bits, parity, start and stop bits, etc.

� Outputs 5V so you need a RS232 level converter (e.g.,

MAX232)

73

PIC MCU

TX1 Transmit

RX1 Receive

Ground

HOST PC

RX2

TX2
COM PORT

Ground

Line
Driver

Interface

USART RS232

Line drivers convert the signal to a bipolar, higher voltage

+/- 12V

Bit

2

Bit

3

Idle Start

Bit

Bit

0

Bit

1

Bit

4

Bit

5

Bit

6

Bit

7

Stop

Bit

Time

1

0

Bit period

The data bits are timed from the falling edge of the start bit 74

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

38

PIC Peripherals: USART: UART

Synchronous communication: i.e., with clock signal

� SPI = Serial Peripheral Interface

� 3 wire: Data in, Data out, Clock

� Master/Slave (can have multiple masters)

� Very high speed (1.6Mbps)

� Full speed simultaneous send and receive (Full duplex)

� I2C = Inter IC

� 2 wire: Data and Clock

� Master/Slave (Single master only; multiple masters clumsy)

� Lots of cheap I2C chips available; typically < 100kbps

75

PIC Peripherals: Timers

� Available in all PICs.

� generate interrupts on timer overflow.

� Some 8bits, some 16bits, some have prescalers

and/or postscalers

� Can use external pins as clock in/clock out

(ie, for counting events or using a different Fosc)

76

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

39

Timer 0 Block Diagram

77

Special Function Register

OPTION_REG Register

78

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

40

PIC Peripherals: CCP Modules

� Capture/Compare/PWM (CCP)

� 10bit PWM width within 8bit PWM period (frequency)

� Enhanced 16bit cores have better bit widths

� Frequency/Duty cycle resolution tradeoff

� 19.5KHz has 10bit resolution

� 40KHz has 8bit resolution

� 1MHz has 1bit resolution (makes a 1MHz clock!)

� Can use PWM to do DAC - See AN655

� Capture counts external pin changes

� Compare will interrupt on when the timer equals the value in

a compare register

PIC Peripherals: Misc.

� Sleep Mode: PIC shuts down until external interrupt (or

internal timer) wakes it up.

� Interrupt on pin change: Generate an interrupt when a digital

input pin changes state (for example, interrupt on keypress).

� Watchdog timer: Resets chip if not cleared before overflow

� Brown out detect: Resets chip at a known voltage level

� LCD drivers: Drives simple LCD displays

� Future: CAN bus, 12bit ADC, better analog functions

� VIRTUAL PERIPHERALS:

� Peripherals programmed in software. UARTS, timers, and more can

be done in software (but it takes most of the resources of the

machine)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

41

PIC16F877 Block Diagram

Instruction

Bus

Most

important

register in

the PIC

must be

involved in

all

arithmetic

operations

Data Bus

Data

Memory

Instruction

Memory

81

PIC16F877 Block Diagram

Resets the

controller after

a specified

time

Keep the

controller in

reset state

until power

reaches an

acceptable

level & steady

Keep the

controller in

reset state until

the oscillator is

started &

stable

Resets the

controller after

detecting

Brown-Out

condition

Brown-out: when the supplying voltage

falls below a trip point (BVDD).

This ensures that the device does not

continue program execution outside the

valid operation range of the device

Typically used in AC line or large battery

application where large loads maybe

switched in and cause the device voltage

to temporarily fall below the specified

operating minimum

82

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

42

83

PIC16 MCU Configuration:

● Clock oscillator types

● Watchdog, power-up, brown-out timers

● Low-voltage programming

● Code protection

● In-circuit debug mode

When programming the PIC microcontroller, certain operational

modes must be set prior to the main program download.

These are controlled by individual bits in a special configuration

register separated from the main memory block.

PIC16 MCU Configuration

84

PIC16F877 Instruction Set

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

43

PIC16F877 Instruction Set

85

Literal and Control Instructions

86

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

44

Byte-Oriented Instructions

87

Byte-Oriented Instructions

88

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

45

Bit-Oriented Instructions

89

90

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

46

Block diagram of the PIC 16 Series ALU

91

Programmer’s Model

Program Memory

“Burned” in by

programmer (can’t

change during

execution). Stored

instructions, addresses

and “literals”

(numbers).

<- 12/14/16 bits ->

Hardware Stack
Stores addresses for subroutines

Program Counter-PCL(PCH)

Status

Special Purpose

Registers

I/O pin states,

peripheral

registers, etc.

General Purpose

Registers

RAM or “data

memory”. Variables

are stored here.

W “Register”

<- 8 bits ->

92

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

47

Instruction Example: movlw 0xFF

Program Memory

<- 12/14/16 ->

Hardware Stack

Program Counter-PCL(PCH)

Status

Special Purpose

Registers

General Purpose

Registers

W “Register”

<- 8 bits ->

0xFF

movlw 0xFF
Move (“mov”) the number (“l” for “literal”) 0xFF - that’s

256 in decimal- into the working register (“w”).

In other words, load W with the value 0xFF.

93

Instruction Example: movwf PORTA

Program Memory

<- 12/14/16 ->

Hardware Stack

Program Counter-PCL(PCH)

Status

Special Purpose

Registers

PORTA

General Purpose

Registers

W “Register”

<- 8 bits ->

Value in W

movwf PORTA
Move (“mov”) the working register (“w”) into the file

register (“f”) named PORTA.

In other words, load the register called PORTA with

whatever number is in the W register.
94

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

48

Program Memory

<- 12/14/16 ->

Hardware Stack

Program Counter-PCL(PCH)

Status

Special Purpose

Registers

PORTA

General Purpose

Registers

W “Register”

<- 8 bits ->

Value in PORTA

Instruction Example: movf PORTA,W

movf PORTA,W
Move (“mov”) the the value of the file register (“f”) named

PORTA into the working register (“w”) .

In other words, load W with the whatever number is in PORTA.

95

Assembly Format

� First column: Labels

� Second column: opcodes and assembler directives

� Third Columns & more: operands

; This is a comments since it starts with a “;”

; This program puts out a square wave on PORTA Pin 0

clrf PORTA ; Clear PORTA register

clrf TRISA ; Make PORTA all outputs

Loop bsf PORTA,0 ; Turn on PORTA Pin 0

nop ; Match ‘goto’ delay

nop ; “ “ “

bcf PORTA,0 ; Turn off PORTA Pin 0

goto Loop ; If not zero, loop back

96

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

49

Branches

� All branches are “Bit Tests”

� All branches only skip one instruction

; Set EqualFlag if PORTA = PORTB

bcf EqualFlag, 7 ; First, clear the flag

movf PORTA, W ; Move PORTA -> W

subwf PORTB, W ; W - PORTB -> W

btfsc STATUS, Z ; Check Z bit (see STATUS)

bsf EqualFlag, 7 ; Ports equal; set flag

97

S
T
A

T
U

S
 R

e
g

is
te

r

98

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

50

Direct Addressing

� All file registers (RAM) are accessed by an

address. This is called direct addressing.

� For example,

movlw 0xFF

movwf 0x06

loads W with FF, and then loads W into GPIO

(address 0x06).

� Thankfully, we can use labels instead of

addresses:

GPIO equ 0x06

movwf GPIO

99

Relative Addressing

� PCL = Low byte of the Program Counter

� Can be read and written.

� Writing to it sets the address of the next instruction to be executed.

14bit core

100

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

51

Software: Relative AddressinguExample of Relative Addressing (using a table):

; Here’s a simple lookup table which is called as a

; subroutine. Expects the table offset to be loaded in W.

; An example call looks like this:

; movlw 0x04 ; Load W with 4

; call Table ; Call the table subroutine

; movwf Result ; Store the result from the table

Table addwf PCL, W ; Jump to (current PCL) + W

retlw 0x00 ; Return with 0x00 in W

retlw 0x23 ; Return with 0x23 in W

retlw 0x33 ; etc.

retlw 0x88

101

Indirect Addressing

� Load indirect address into FSR

� Reading/Writing to INDF acts on

address stored in FSR

� Example code to clear 0x20 - 7F:

movlw 0x20

movwf FSR

loop clrf INDF

incf FSR,F

btfss FSR,7

goto loop

INDF00h

04h

7Fh
Register File

FSR

102

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

52

Banking

RAM in the PICs is banked, especially special

function registers. Use the bank select commands

to choose the bank.

Either:

bsf STATUS, RP0

bcf STATUS, RPO

Or use the assembler directive:

Banksel <registername>

103

Real Code!

� Note: Each PIC has a predefined “.h” file which
contains labels for each special file register
(so you don’t have to!)

� A working program requires initialization code
and option codes set in the program. See .ASM
examples for initialization code

� Please see Example.asm

104

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

53

Constants and Syntax Used in Assembler Language

105

The program development process

106

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

54

Components of MPLAB development system

107

Assembler format

108

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

55

109

All these instructions store the decimal value 167 in the W register:

movlw .167

movlw 0a7h

movlw 247O

movlw b’10100111’

Note how the hexadecimal constants must start with a digit in order to not

be misunderstood as labels.

Example of Assembler code

Label Mnemonic Operand Comments

Instruction Space

Directive

Title "Our first program" (directive)

list p=16f887 ; processor type (directive)

;

; ------------- (comment)

; PROGRAM START (comment)

; ------------- (comment)

;

org 0h ; startup address = 0000 (directive)

start movlw 0x00 ; simple code (instruction)

movwf 0x05 (instruction)

goto start ; do this loop forever (instruction)

end (directive)

110

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

56

PIC Applications

� LED Flasher

Loop:

bsf PORTB, 0

call Delay_500ms

bcf PORTB, 0

call Delay_500ms

goto Loop

111

PIC Applications

� Button Read
Movlw 0

movwf TRISD, f

bsf TRISD, 2

Loop:

btfsc PORTD, 2

goto light

goto No_light

Light:

bsf PORTB,0

goto Loop

No_light:

bcf PORTB,0

goto Loop

112

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

