2/19/2012

HCMIU - DEE
Subject: ERTS

RISC MCU Architecture

PIC16F877 Hardware

Outline

Micriprocessor vs Microcontroller
Introduction to PIC MCU
PIC16F877 Hardware:

Program Memory

Data memory organization: banks, Special Function Registers
(STATUS), General Function Registers, W register

Direct addressing and indirect addressing (FSR, INDF)
On-board Peripherals

PIC16F877 Instruction Set:
bit (bsf, bcf)
byte (e.g. movlw, movf, addwf, subwf)
conditional branch (e.g. btfsc, btfss incfsz, decfsz)
goto

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Microcontrollers vs. Microprocessors

A little History

m What is a computer?

[Merriam-Webster Dictionary] one that
computes; specifically : programmable
electronic device that can store, retrieve, and
process data.

[Wikipedia] A computer is a machine that
manipulates data according to a list of
instructions.

m Classification of Computers (power and price)
Personal computers
Mainframes
Supercomputers
Dedicated controllers — Embedded controllers

CuuDuongThanCong.com https://fb.com/tailieudientucntt 2

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Microcontrollers — Embedded Systems

m An embedded system is a special-purpose
computer system designed to perform one or a
few dedicated functions often with real-time

m An integrated device which consists of multiple
devices

Microprocessor (MPU)
Memory
I/0O (Input/Output) ports
m Often has its own dedicated software

A little about
Microprocessor-based
Systems

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Evolution

First came transistors

Integrated circuits
SSI (Small-Scale Integration) to ULSI
Very Large Scale Integration circuits (VLSI)

2- Microcontroller (MCU)
Microcomputers (with CPU being a microprocessor)
Many special function peripheral are integrated on a single circuit

Types: General Purpose or Embedded System (with special
functionalities)

1- Microprocessors (MPU)
Microcomputers (with CPU being a microprocessor)
Components: Memory, CPU, Peripherals (1/0)
Example: Personal computers

MPU

Microprocessor-Based Systems

Input Port Output Port

GP-

CLK1 1 cpu

Reg

CPU 4

Arithmetic
Logic
Unit

Register
Arrays

Control Unit

Unit

(MPU)

with
Switches

with

LEDs

Microprocessor <

System Bus >

R/W
’ ROM ‘ ‘ Memory

Microprocessor-based System

+ Central Processing Unit (CPU)
* Memory

* Input/Output (I/O) circuitry

* Buses

— Address bus
— Data bus
— Control bus

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Microprocessor-Based System
with Buses: Address, Data, and Control

Address Address Bus
Lines]
Microprocessor A r
o ROM RIW | INPUt |l vitched | OutPUtl) | 0
(MPU) Memory Port Port LEDs
3
el 3 l T |
Data '
lines Data|Bus
RD READ
WR » WRITE

Microprocessor-based Systems
Microprocessor

m The microprocessor (MPU) is a computing and
logic device that executes binary instructions in a
sequence stored in memory.

m Characteristics:

General purpose central processor unit (CPU)
Binary

Register-based

Clock-driven

Programmable

System software: A group of programs that monitors the functions of the entire system

10

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

So what are
microcontrollers?

11

First Microcontrollers

m |[BM started using Intel processors in its PC

Intel started its 8042 and 8048 (8-bit
microcontroller) — using in printers

m Apple Macintosh used Motorola
m 1980 Intel abandoned microcontroller business

m By 1989 Microchip was a major player in
designing microcontrollers

PIC: Peripheral Interface Controller

12

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Embedded controllers

m Used to control smart machines
m Examples: printers, auto braking systems

m Also called microcontrollers or microcontroller
units (MCU)

13

Embedded controllers
Software Characteristics

m No operating systems

m Execute a single program, tailored exactly to the
controller hardware

m Assembly language (vs. High-level language)
Not transportable, machine specific
Programmer need to know CPU architecture
Speed
Program size
Uniqueness

14

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m An integrated electronic computing
and logic device that includes three

Microcontroller Unit (MCU) - Block Diagram

- - Memaory

major components on a single chip
Microprocessor
Memory
I/O ports

m Includes support devices
Timers
A/D converter
Serial I/0
Parallel Slave Port
m All components connected by

common communication lines called
the system bus.

Microprocessor

Unit
(MPU) ._J o

‘ Ports

Timers fe—s

AD
Converter [
10

Serial
Other
Devices

Support Devices

15

m RISC (Harvard)

Simple operations
Simple addressing modes

Uses pipelining

m CISC (Von Neuman)

language support)

MCU Architecture

Reduced instruction set computer

Longer compiled program bust faster to execute

Complex instruction set computer
More complex instructions (closer to high-level

Bench marks: How to compare MCUs together
MIPS: Million Instructions / second (Useful when the compilers are the same)

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Microprocessors, Microcontrollers and DSPs

m Microprocessor is an “umbrella”
Microprocessors term for all types of processor.

m Microcontrollers and DSPs
evolved from the original
MiCroprocessors.

Microcontrollers
Processor specifically designed
for control applications.
DSPs
Processors specifically
designed for digital signal
Microcontrollers processing.
Microprocessors

Processors for general purpose
processing.

Microprocessors DSPs

17

Main 8-bit Controllers

Microchip
RISC architecture (reduced instruction set computer)
Has sold over 2 billion as of 2002
Cost effective and rich in peripherals
Motorola
CISC architecture
Has hundreds of instructions
Examples: 68HC05, 68HC08, 68HC11
Intel
CISC architecture
Has hundreds of instructions
Examples: 8051, 8052
Many difference manufacturers: Philips, Dallas/MAXIM Semiconductor, etc.
Atmel
RISC architecture (reduced instruction set computer) —
Cost effective and rich in peripherals
AVR

18

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

High-level Language

Assembly Language

Machine Language

Software:
From Machine to High-Level Languages (1 of 3)

m Machine Language: binary instructions

All programs are converted into the machine
language of a processor for execution

Difficult to decipher and write
Prone to cause many errors in writing

19

High-level Language

Assembly Language

Machine Language

Software:
From Machine to High-Level Languages (2 f3)

m Assembly Language: machine instructions
represented in mnemonics

Has one-to-one correspondence with machine
instructions

Efficient in execution and use of memory;
machine-specific and not easy to troubleshoot

20

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 O

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

High-level Language

Assembly Language

SOftware . Machine Language
From Machine to High-Level Languages @ of3)

m High-Level Languages (such as BASIC, C,
and C++)
Written in statements of spoken languages
(such as English)
= machine independent
m easy to write and troubleshoot
m requires large memory and less efficient in execution

21

Design Examples

Microcontrollers vs. Microprocessors

22

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

MPU-Based Time and Temperature System

Temperature
Sensor
- - A/D £
Cafierter Timer Fan eate
L2 l I [
Input Input Output
Port A Port B PortC
Microprocessor
Unit l I
{MPU) 1
System Bus
l]
] I ¥
Flash R/W Qutput
Memory Memory Port D
7 3
LCD

23
MCU-Based Time and Temperature System
Microcontroller
Microprocessor Unit
(MPU)
Peripherals
| Temperature
Sensor
Flash A
Memory Heater
L Fan
R/W
Memory B _r\ LCD
| 1
. A/D
Timer Converter C
L__| Control Signals
24

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

12

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Embedded System
General Block Diagram

&
g o
sensor g
. ° actuator
5
i >
sensor % Mlcroco(r;troller 5
S (uC) & | [indicator
a 2
sensor

25

Introduction to PIC MCU

26

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 3

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

History of PIC Microcontroller

m In late 1970s, General Instrument had a 16-bit processor
(CP1600) which was loosing its market-share due to
increased competition from Intel 8086 and Motorola 68000.

Main disadvantage of CP1600 was limited I/O capabilities

m As a solution General Instruments designed a support chip
A special purpose processor which was called the Peripheral
Interface Controller (PIC) of the CP1600

m By mid 80s the industry found that PIC itself can be used for

most control applications.

m General Instruments started a new subsidiary called
Microchip which began to develop the PIC as a full featured
microcontroller family.

27

Why PIC?

m Why PIC is popular?

low cost ,wide availability with high clock speed
availability of low cost or free development tools
Only 37 instructions to remember

serial programming and re-programming with flash
memory capability

lts code is extremely efficient, allowing the PIC to

run with typically less program memory than its
larger competitors

PIC is very small and easy to implement for non-

complex problems and usually accompanies to the
microprocessors as an interface

28

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

14

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Two Different Architectures

m Harvard Architectures

Memory

Memory (2 CPU I

(Data) 8 12 |(Program
14

16

Harvard Architecture

m Used mostly in RISC CPUs
m Separate program bus and
data bus: can be of different
widths
m For example, PICs use:
Data memory (RAM): a small
number of 8bit registers

Program memory (ROM):
12bit, 14bit or 16bit wide (in
EPROM, FLASH, or ROM)

Von-Neumann Architecture

Memory
CPU :;8: (Program
& Data)

Von-Neumann Architecture

Used in: 80X86 (CISC PCs)

Only one bus between CPU
and memory

RAM and program memory
share the same bus and the
same memory, and so must
have the same bit width

Bottleneck: Getting

instructions interferes with
accessing RAM

29

RISC vs. CISC

m Reduced Instruction Set
Computer (RISC)

Used in: SPARC, ALPHA,
PIC, Atmel AVR, etc.

Few instructions

(usually < 50)
Only a few addressing
modes
Executes 1 instruction in 1
internal clock cycle (Tcyc)

m Complex Instruction Set

Computer (CISC)

Used in: 80X86, 8051,
68HC11, etc.

Many instructions
(usually > 100)
Several addressing modes

Usually takes more than 1
internal clock cycle (Tcyc)
to execute

30

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

15

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

The PIC Family of Microcontrollers

m PIC series of microcontrollers offer a wide range of
low cost devices, ranging from a tiny 8 pin device to
a feature rich 40 pin device

m E.g
PIC16C54 18 pin Base line family
PIC16F84 18 pin Base line family
PIC16C74 28 pin Mid range family
PIC17C44 40 pin High end family

31

Family Core Architectural Differences

Mid-Range Core Devices
(ex:12C50x, 16C5x)

14 bit wide code memory
*improved 8 level deep call stack.
35 instructions
sincreased opcode width allows
addressing of more memory
*PIC12 and PIC16 devices.

PIC17 High End Core Devices (Ex:17C4x,17C7xx)
*never became popular and superseded by the PIC18 architecture.
+16 bit wide opcodes (allowing many new instructions) : 58 instructions
*16 level deep call stack. Packages of 40 to 68 pins.
*a memory mapped accumulator
‘read access to code memory (table reads)
«direct register to register moves
*an external program memory interface to expand the code space
*an 8bit x 8bit hardware multiplier
*auto-increment/decrement addressing F

Baseline Core Devices
(ex:12C50x, 16C5x)
*12 hit wide code memory, .y
tiny two level deep call stack. =
+33 instructions
*PIC10, PIC12 & PIC16 devices
*6 pin to 40 pin packages.

o |

32

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 6

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Family Core Architectural Differences ..

PIC18 High End Core Devices (ex:18Cxxx)
*new high end pic architecture
*It inherits most of the features and instructions of the 17 series,
*77 instructions, much deeper call stack (31 levels deep)
*the call stack may be read and written
*offset addressing mode
*a new indexed addressing mode in some devices

PIC24 and dsPIC 16 bit Microcontrollers
sarchitectures differ significantly from prior models.
+dsPICs are Microchip's newest family (started in 2004)
« digital signal processing capabilities.

*Microchip's first inherent 16-bit (data) microcontrollers.
shardware MAC (multiply-accumulate)

+ barrel shifting

+ bit reversal

*(16x16)-bit multiplication

sother digital signal processing operations.

*Can be efficiently programmed in C

33

Clock and Instruction Cycles

m Instruction Clock

Clock from the oscillator enters a microcontroller via OSC1 pin where internal
circuit of a microcontroller divides the clock into four even clocks Q1, Q2, Q3,
and Q4 which do not overlap.

These four clocks make up one instruction cycle (also called machine cycle)
during which one instruction is executed.

Execution of instruction starts by calling an instruction that is next in string.
Instruction is called from program memory on every Q1 and is written in
instruction register on Q4.

Decoding and execution of instruction are done between the next Q1 and Q4
cycles. On the following diagram we can see the relationship between instruction
cycle and clock of the oscillator (OSC1) as well as that of internal clocks Q1-Q4.
Program counter (PC) holds information about the address of the next
instruction.

Q1T ;) Q2,Q3 ,Q4 Q1 ,Q2,Q3,Q4 Q1 ,Q2, Q3 ; Q4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

17

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Clock/Instruction Cycle

m Clock from the oscillator enters the microcontroller
via OSC1 pin.

m [nternal circuit divides the clock into four even
clocks Q1, Q2, Q3, and Q4 which do not overlap.

m These four clocks make up one instruction cycle
during which one instruction is executed.

m On the following diagram we can see the
relationship between instruction cycle and clock of
the oscillator (OSC1) as well as that of internal
clocks Q1-Q4.

35

Clock/Instruction Cycle

lar | |ao |aela|e|aes |ala [|ao| el
osc1 MMM UL
O W o W oo S
@ |/ | /| /|

@ L/ 1 [\ [
@ b A T
PC PC PC+1 PC+2

Fetch Instruction (PC) | Fetch Instruction (PC+1) | Fetch Instruction (PC+2)
Execute Inst (PC-1) Execute Inst (PC) Execute Inst (PC+1)

Pipeline

l Ty l Tvc l Twca l

[[I

Clock signals in PIC microcontrollers. OSC1 is the main oscillator from
which the internal signals Q1, Q2, Q3, and Q4 are derived. These signals
synchronize fetching, decode, and execute of instructions. Ty is the
duration of a machine cycle. It uses four OSC1 pulses. 36

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 8

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Clock/Instruction Cycle

m Execution of instruction starts by calling an instruction that
is next in string.

m Feich

Instruction is called from program memory on every Q1
and is written in instruction register on Q4.

m Execution

Decoding and execution of instruction are done
between the next Q1 and Q4 cycles.
Data memory is read during Q2 (operand read) and
written during Q4 (destination write)
m Program counter (PC) holds information about the
address of the next instruction.

37

Clock oscillator and instruction cycle

Table 2.3 PIC 16 Series instruction cycle dura-
tions for various clock frequencies

Clock frequency Instruction cycle
Frequency Period

20MHz SMHz 200 ns

4 MHz | MHz I s

| MHz 250 kHz 4us

32.768 kHz 8.192kHz | 122.07 ps

38

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

19

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Microcontroller oscillator generator circuits

(a) (b)
Supply voltage

Oscillator 'signal’

Optional power-
Oscillator ‘signal’ i | limiting resistor

I JE 0]
I \— ceramic

(a) Resistor—capacitor (RC). (b) Crystal or ceramic

39
PIC16F84
o1 i(EXTERNAL CLOCK
02 15 NC
Three ways to ey
provide the -
. PIC16F84 10K ((éblen::zz))
clock signal s 100K (100 ke
to a PIC ool ne T 100
PIC16F84
o1 16
oz |2 e
22 g)
pFI MHz "\pF
= = 40

CuuDuongThanCong.com https://fb.com/tailieudientucntt 2 O

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Pipelining in PIC

m Instruction Pipeline Flow

Tcy0 Tcy! Tev2 Tey3 Tcyd TeYS
1. MOVLW 55h ‘ Fetch 1 | Execute 1
2. MOVWF PORTB Fetch? | Execute?
3. CALL &TB 1 Fetth3 | Execute3
4, BSF PORTA, BIT3 (Porced NOP) Fetch 4 Flush
5. Instruction @ address SUB 1 Fetch SUB_1| Execute SUB_1

Fetch SUB_1+1

Al Instructions are single cycle, except for any program branches. These take two cycles since the fetch
instruction is “flushed” from the pipeline while the new instruction is being fatched and then exacuted.

41

Exercise

m For a system operating from a 4 MHZ crystal oscillator,
every instruction would execute in how much time?

Solution

m For a system operating from a 4 MHZ crystal oscillator,
every instruction would execute in

1/(4Mhz/4) = 1 micro-second

42

CuuDuongThanCong.com https://fb.com/tailieudientucntt 2 1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Vbp

-
=10-100k
l@

Reset

Vop

Reset

(@) (b) (©)

Figure 2.9 External Reset circuits — generic microcontroller with Reset input. (a) Power-on Reset, simplest possible.
(b) Power-on Reset, with discharge diode and protective resistor. (c) User Reset button.

In the PIC16 there is a Reset input, MCLR (‘Master Clear’). As long
as this is held low, the microcontroller is held in Reset. When it is
taken high, program execution starts.

If the pin is taken low while the program is running, then program
execution stops immediately and the microcontroller is forced back
into Reset mode.

43

The PIC Family: Program Memory

m Technology: EPROM, FLASH, or ROM
m [t varies in size from one chip to another.

- examples:

12C508 512 12bit
instructions

16C711 1024 (1k) 14bit
instructions

16F877 8192 (8k) 14bit
instructions

17C766 16384 (16k) 16bit
instructions

CuuDuongThanCong.com https://fb.com/tailieudientucntt 22

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

p
1

The PIC Family: Program Memory

ICs have two different types of program storage:
- EPROM (Erasable Programmable Read Only Memory)

Needs high voltage from a programmer to program
(~13V)

Needs windowed chips and UV light to erase

Note: One Time Programmable (OTP) chips are EPROM
chips, but with no window!

PIC Examples: Any 'C’ part: 12C50x, 17C7xx, etc.

2- FLASH

Re-writable
Much faster to develop on!
Finite number of writes (~100k Writes)

PIC Examples: Any 'F’ part: 16F84, 16F87x, 18Fxxx
(future)

45

The PIC Family: Data Memory

m PICs use general purpose “File registers” for RAM

(each register is 8bits for all PICs)

- examples:
12C508 25B RAM
16C71C 36B RAM
16F877 368B RAM + 2568 of
nonvolatile EEPROM
17C766 902B RAM

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

23

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

PIC Programming Procedure

m For example: in programming an embedded PIC
featuring electronically erasable programmable read-only
memory (EEPROM). The essential steps are:

Step 1: On a PC, type the program, successfully compile it and
then generate the HEX file.

Step 2: Using a PIC device programmer, upload the HEX file into
the PIC. This step is often called "burning”.

Step 3: Insert your PIC into your circuit, power up and verify the
program works as expected. This step is often called
"dropping" the chip. If it isn't, you must go to Step 1 and debug
your program and repeat burning and dropping.

Comparison of PIC families

PIC family Stack size (words) Instruction Number of instructions Interrupt vectors
word size

12CXXX/12FXXX 2 12- or 14-bit 33 None

16C5XX/16F5 XX 2 12-bit 33 None

16CXXX/16FXXX 8 14-bit 35 |

17CXXX 16 16-bit 58, including hardware 4
multiply

I8CXXX/18FXXX 32 16-bit 75, including hardware 2 (prioritised)
multiply

48

CuuDuongThanCong.com https://fb.com/tailieudientucntt 24

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Some members of the PIC 16 Series family

Device No. of pins* Clock speed Memory Peripherals/special features
number (K =Kbytes, i.e. 1024 bytes)
16F84A 18 DC to 20MHz 1K program memory, 1 8-bit timer

68 byles RAM, 1 5-bit parallel port

64 bytes EEPROM 1 8-bit parallel port
16LF84A As above As above As above As above, with extended

supply voltage range

16F84A-04

As above

DC to 4 MHz

As above

As above

16F873A

28

DC 1o 20MHz

4K program memory
192 bytes RAM,
128 bytes EEPROM

3 parallel ports,

3 counter/timers,

2 capture/compare/PWM
modules,

2 serial communication
modules,

5 10-bit ADC channels,
2 analog comparators

16F874A

40

DC to 20MHz

4K program memory
192 bytes RAM,
128 bytes EEPROM

5 parallel ports,

3 counter/timers,

2 capture/compare/PWM
modules,

2 serial communication
modules,

8 10-bit ADC channels,

2 analog comparators

49
Some members of the PIC 16 Series family ..
16F876A 28 DC to 20MHz | 8K program memory 3 parallel ports,

368 bytes RAM, 3 counter/timers,

256 byles EEPROM 2 caplure/compare/PWM
modules,
2 serial communication
modules,
5 10-bit ADC channels,
2 analog comparalors

16F8TTA 40 DC to 20MHz | 8K program memory 5 parallel ports,

368 bytes RAM, 3 counter/timers,

256 bytes EEPROM 2 capture/compare/PWM
modules,
2 serial communication
modules,
8 10-bit ADC channels,
2 analog comparators

*For DIP package only.
ADC, analog-to-digital converter; PWM, pulse width modulation.
50

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

25

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e Number of inputs and outputs.
e Program memory size.

e Data RAM size.

e Nonvolatile data memory.

e Maximum clock speed.

e Range of interfaces.

e Development system support.
e Cost and availability.

features.

MCU Features

m The range of microcontrollers now available developed
because the features of the MCU used in any particular circuit
must be as closely matched as possible to the actual needs of
the application. Some of the main features to consider are:

Note: The general approach
to microcontroller application
design followed here is to
develop a design using a chip
that has spare capacity, then
later select a related device
that has the set of features
most closely matching the
application requirements.

m The PIC16F877A is useful as a reference device because it
has a minimal instruction set but a full range of peripheral

51

PIC16F877 Hardware

52

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

26

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PIC16F877A Features

High Performance RISC CPU:
m Only 35 single word instructions to learn

m All single cycle instructions except for program branches,
which are two-cycle

m Operating speed: DC - 20 MHz clock input DC - 200 ns
instruction cycle

53
PIC16F877A Pin Layout
. WCIRNer — =01 -’ 40| == RB7/PGD
ADECHRPLAS RAQMAND o [] 2 39 [] =—= RBEIPGC PORTB
RAIANT =—=[]3 380 == RBS
RAZIANZIVRES-ICVRES = w [] 4 37[J =—= RB4
Counter RAZANINAEF+ =[] 5 36 [] ~—= RB3/PGM
0 A4TOCKICIOUT =[] 35 [] ~—= RB2
SIANAISSIC20UT -—=[7 < 34[J-—= RB1
%ﬁﬁ‘@ REQRD/MANS =—=[]8 [330 =—= RBOUINT
H RE1/WRFANE =—=[5 9 32 [J «=— Voo
input RE2/CSFANT =—=[]10 P 31[] «—— vss
Vo — [1 E 30 [T =—= RDTPSPT PORTD
Vss w12 @ 28] RDAPSPE ;
OSCYCLKIN —w[]43 & 28] =——= RDSPSEE
OSCCLKOUT «— [14 §) 27[] =—= RD4/PSP4
PORTC RCUTIOSOTICKI «—=[]15 & 25 +—= RCTRXIDT PORTC
~ RCAMAOSICCP? w18 257 «—= RCETHICK ;
RCUCCPT =[] 47 24 [T = RC5/SDO
RCWSCKASCL =—=[] 18 23 [] == RC4/SDIISDA
ROWPSPD =—[] 19 22 [J == RD3PSP3
RD1/PSP1 =—=[] 20 21[] == RD2PSP2
PORTD
54

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

27

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

16F877 MCU Block diagram

I
Pt

: M H its,)

| A 4 y EEPROM

1 Instruction ——» MCU 256 bytes

: Decode & control

I

Ports, Timers

|
i) i
! ADG, Serial /O |
\ |
\
Timing control | |
I
A - A__ Tt - - -7 § -

1 l

I Clock | Reset |
v Pt A B C D E

Shows the main parts of the chip in simplified form

55

PIC Memory

m The PIC16F877A has an 8192 (8k) 14bit instruction
program memory

m 368 Bytes Registers as Data Memory :

Special Function Registers: used to control
peripherals and PIC behaviors

General Purpose Registers: used to a normal
temporary storage space (RAM)

m 256 Bytes of nonvolatile EEPROM

56

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

28

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CALL, RETURN

PIC Program Memory
m The PIC16F877 8192 (8k) 14bit instructions

Takes a max of 8 addresses, the
ninth address will write over the first.

_hen the

RETFIE, RETLW L
N .
v controller is reset,
Stack Level 1 .
Stock Level 2 e program execution
: starts from here oL
:
Stack Level 6 12 1110 8 7 0
I I - I 0, CALL
e If interrupted, program
. execution continues from Opcode <10:0=
: K
:
/ here
Interrupt Vector 0004h
0005h
Page 0
07FFh
0E0Ch
Page 1
On-Chip
Program < OFFFh
Memory | 1000h
Page 2
17FFh
1£00h
Page 3
1FFFh
57
Flie Flie Fli= Cile
A P P =1 AdiEee
Indirect acar™? [con Incirect addr.*? [son Indirect adar.? | 100n Indirect addr.¢? 180N
TMRO o1h CPTION REG 81h TMRD 107h OFPTION RES 181h
The most PoL ozn e o Ser 1o2n e 1amn
. STATIUIS 03 STATUS a3h ETATUS 103h STAT IS 183N
FSR oan [=1 84h SR 104h FSR 181N
important Sorra—| oon Toiea oan assn
: torts | aen Thioo aon ro=Ts YT ‘oen
registers Fonte—| om o2 oo Teen
PORTDM aoh aah 100h 1&88h
oon on 1oon
have L o pd EeiaT 1oan Sppe
oBn 8Bh TN CON 10BN 1868h
addresses > ocn 2o Ecoera | 1ocn 18en
H och aDn EEADR 10Dh 180h
n a” the OEn BEN EEDATH 10ER Reserved™! 18ENR
oFn 8Fh EEADRH 10Fh Resenved!2! 18FN
f 10N S0h 110h 190h
our S=scons | ain 11 Aan
12h ERz @2h 112h 19z2h
banks 13h sSsPADD san 11350 192n
14h SCSTAT S4h 1140 104ah
ion San 115n Smely
- o= General 11 Gencral =
18n S 1A wBn E“g”,';sﬁ 1iah RoGister 19N
19N SPBRG S99h 16 Bytes 1Tien 16 B 'S 199h
140 AN 11AN 19480
1Bh 9B 11Bh 198N
1Ch CrCOMN 9Cn 11Ch 19Ch
1Ch CWVRCON 9DnN 11Dh 19Ch
ADRESH 1ENh ACRESL 9EN 11Eh 19EN
ADCOND 1Fh Ao aFh 11Fh 19FN
20n ACh 120hn 140N
Senesral General Sens=ral General
RuTSss Ruposs Duposs Rupcss
By = . i | ool | ieen
accesses Fon accesses 17on :ccessii 1FOh
7FNn Top TPn FFh 7o " 1TFn _ 1FFh
Bank O Sdn< 1 Barjk = Bhnk 2
= 4 The data memory is devided into 4 memory banks
Mote i SrETErT ST ——
B e e e T o e
58

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

29

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

PIC16F877 simplified file register map

Bank 0 (000 - 07F) Bank 1 (080 — OFF) Bank 2 (100-180) Bank 3(180-1FF)

Address Register Address Register Address Register Address Register

000h Indirect 080h Indirect 100h Indirect 180h Indirect
001h Timer0 081h Option 101h Timer0 181h Option
002h PC Low 082h PC Low 102h PC Low 182h PC Low

003h Status Reg 083h Status Reg 103h Status Reg 183h Status Reg

004h File Select 084h File Select 104h File Select 184h File Select

005h Port A data 085h | PortA direction | 105h - 185h -

006h Port B data 086h | PortB direction | 106h Port B data 186h | PortB direction
007h Port C data 087h | PortC direction | 107h - 187h -

008h Port D data 088h | PortD direction | 108h - 188h -

009h Port E data 089%h | PortE direction | 109h - 189%h -

00Ah PC High 08Ah PC High 10Ah PC High 18Ah PC High

00Bh |nterrupt Control 08Bh |Interrupt Control 10Bh |nterrupt Control 18Bh |Interrupt Control

00Ch 20 Peripheral | 08Ch 20 Peripheral 10Ch 4 Peripheral 18Ch 4 Peripheral

to Control to Control to Control to Control
01Fh Registers 09Fh Registers 10Fh Registers 18Fh Registers
020h 80 General 0AOh 80 General 110h 96 General 190h 96 General

to Purpose to Purpose to Purpose to Purpose
06Fh Reaisters OEFh Reaisters 16Fh Registers 1EFh Registers
070h 16 Common OFOh Accesses 170h Accesses 1FOh Accesses

to Access GPRs to 70h —7Fh to 70h-7Fh to 70h-7Fh
07Fh OFFh 17Fh 1FFh

Register Addressing Modes

Direct Addressing Immediate Addressing: Indirect Addressing
RP1:RPO & From Opcode s} ; y IRP 7 FSR register o
5 L e e
[N . J “ A J
Bank Select Location Seleul| Bank Select Location Select
- 00 o1 10 1 -
L 00h 80h 100h 180h
— -—

ata
Memoryi®)

7Fh FFh 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3

DidéstcA Adidesinigng :
teel 3 bitsegistebaddseseipwibtaiethdsaecgibiendiondegisie8iSahd 9th
biNjdMissisech A R@Hhe BoMtditsobtisTATIdS segisteted by FSR
r.EXp : A Zagopl®f@ogram tq cles@ RAM locations H'20' — H'2F:
MBS AT 2o *"test if the 3rd bit of the STATUS register is set

NEXT CLRF INDF ;clear INDF register
INCF FSR,F ;inc pointer
BTFSS FSR,4 ;all done?
GOTO NEXT ;no clear next
CONTINUE
: ;yes continue 60

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3 O

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PIC Family Control Registers

Uses a series of “Special Function Registers” for
controlling peripherals and PIC behaviors.

STATUS = Bank select bits, ALU bits (zero, borrow,
carry)

INTCON => Interrupt control: interrupt enables, flags,
etc.

OPTION_REG = contains various control bits to
configure the TMRO prescaler/WDT postscaler ,the

External INT Interrupt, TMRO and the weak pull-ups
on PORTB

bit 7

bit 6-5

bit =

bit 3

bit 2

it 1

bit O

61
Special Function Register
“STATUS Register”
iéi‘.;" [e [rmeo | to | e5 | = [be mé’bo

IRP: Register Bank Select bit {used for indirect addressing)

1 =Bank 2, 3 (100h - 1TFFN)

o = Bank 0, 1 (00h - FFh)

RP1:RPO: Register Bank Select bits (used for direct addressing)

11 = Bank 3 (180h - 1FFh)

10 =Bank 2 (100h - 17Fh})

o1 = Bank 1 {(80h - FFh}

oo = Bank 0 (00h - 7Fh)

Each bank is 128 bytes

TO: Time-out bit

1 = After power-up, CLEWDT instruction, or sLEEP instruction

o = A WDT time-out occurred

PD: Power-down kit

1 = After power-up or by the cLrRwWDT instruction

o = By execution of the sLEEP instruction

Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

o = The result of an arithmetic or logic operation is mot zero

DcC: Digit carmy/bomow bit (ADDWE. ADDLW, SUBLW , SUBWE instructions)

(for borrow. the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

o = No carry-out from the 4th low order bit of the result

C: Camy/bormow bit (ADDWE. ADDLW, SUBLW, SUBWE instructions)

A carry-out from the Most Significant it of the result cccurred

Mo carry-out from the PMost Significant bit of the result occurred

ote: For borrow, the polarity is reversed. A subtraction is executed by adding the two's
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is
Ioaded with either the high, or low order bit of the source register.

ZOor

Legend
R = Readable bit W= VWritable bit U = Unimplemented bit, read as "0’
- n =‘“alue at POR 17 = Bit is set 0 = Bit is cleared * = Bit is unknown

b

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

31

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Function Register
“INTCON Register”

RAN-0 RAN-0 R/AN-0 R/AW-0 RAN-0 RAN-0 RAN-0 RAN-x
GIEE | PEIE [TMROIE | INTE | RBIE | TMROIF INTF RBIF
bit 7 bit O
bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts
o = Disables all interrupts
bit & PEIE: Peripheral Interrupt Enable bit
1 = Enables all unmasked peripheral interrupts
o = Disables all peripheral interrupts
bit 5 TMROIE: TMRO Owverflow Interrupt Enable bit
1 = Enables the TMRO interrupt
o = Disables the TMRO interrupt
bit 4 INTE: REBO/INT External Interrupt Enable bit
1 = Enables the RBO/INT external interrupt
o = Disables the RBO/INT external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit
1 = Enables the REB port change interrupt
o = Disables the RB port change interrupt
bit 2 TMROIF: TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowed (must be cleared in software)
o = TMRO register did not overflow
bit 1 INTF: RBO/INT External Interrupt Flag bit
1 = The RBO/INT external interrupt occurred (must be cleared in software)
o = The RBO/INT external interrupt did not occur
bit O RBIF: RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set
the bit. Reading PORTEB will end the mismatch condition and allow the bit to be cleared
{must be cleared in software).
o = None of the RB7:RB4 pins have changed state

Legend
R = Readable bit W= wWritable bit U = Unimplemented bit, read as ‘0’
- n = value at POR 1" = Bit is set 0 = Bit is cleared x = Bit is unknown

63

PIC Peripherals

m Each peripheral has a set of SFRs to control its
operation.

m Different PICs have different on-board peripherals

m Some common peripherals are:
> Tri-state (“floatable”) digital I/O pins
»Analog to Digital Converters (ADC) (8, 10 and 12bit, 50ksps)
»Serial communications: UART (RS-232C), SPI, 12C, CAN
»Pulse Width Modulation (PWM) (10bit)
»Timers and counters (8 and 16bit)
»Watchdog timers, Brown out detect, LCD drivers

64

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

32

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Peripheral Features

5 Digital I/0 Ports
Three timer/counter modules
= TimerO: 8-bit timer/counter with 8-bit pre-scaler

= Timer1: 16-bit timer/counter with pre-scaler, can be incremented during SLEEP
via external crystal/clock

= Timer2: 8-bit timer/counter with 8-bit period register, pre-scaler and post-scaler
A 10-bit ADC with 8 inputs
Two Capture, Compare, PWM modules

» Capture is 16-bit, max. resolution is 12.5 ns

s Compare is 16-bit, max. resolution is 200 ns

s PWM max. resolution is 10-bit

Synchronous Serial Port (SSP) with SPI™ (Master mode) and 12C™
(Master/Slave)

Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
with 9-bit address detection

Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS
controls

65

PIC Peripherals: Ports (Digital I/O)

Ports are basically digital I/O pins which exist in all PICs

The PIC16F877A have the following ports:
PORT A has 6 bit wide, Bidirectional
PORT B,C,D have 8 bit wide, Bidirectional
PORT E has 3 bit wide, Bidirectional

Ports have 2 control registers
TRISx sets whether each pin is an input (1) or output (0)
PORTX sets their output bit levels or contain their input bit levels

Pin functionality “overloaded” with other features
Most pins have 25mA source/sink thus it can drive LEDs directly
WARNING: Other peripherals SHARE pins!

66

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

33

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

1/0 pin operation

Write TRIS bit _ R _Data_l
Direction Tri-state
Latch Output
Enable
Output Output
CPU Data Bus : Data Cortort
Write data bit Latch Driver
L | Input
Data
Readdata — | Latch
bit

Analogue input
multiplexer

The pin can be set for input or output data transfer

67

Connecting switches to logic inputs

Vs

(b) (c)
VS
| R
v, Y
l > 1 R

For PIC microcontrollers, pull-up values in the range 10—-100 kQ are usually
appropriate. The circuit of Figure (b) is very useful and widely applied, as
many simple switches (e.g. PCB-mounting slide switches and push-buttons)
are only available as SPST.

a) SPDT connection. (b) SPST with pull-up resistor. (c) SPST with pull-down resistor

68

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

34

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Driving LEDs from logic gates

For current source: Vog = RIp + Vp For current sink: Vg = VoL 4+ RIp + Vb

7 — W
g— You— "o R Ys—Vb—VoL
In = n

(a) (b)

‘ Ve for Iy

Vs

Current flows out of the gate

‘ and lights LED when output
I is at Logic 1 A

Vo for Ip

Vo Logic gate output high voltage Vo Logic gate output low voltage

(a) Gate output sourcing current to LED.

R [} Current flows into gate P
and lights LED when Vo| ~~ 77
output is at Logic 0 -1

(b) Gate output sinking current from LED

69

PIC Peripherals: Analogue to Digital Converter

Only available in 14bit and 16bit cores

Fs (sample rate) < 54KHz

the result is a 10 bit digital number

Can generate an interrupt when ADC
conversion is done

70

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

35

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

PIC Peripherals: Analogue to Digital Converter

m The A/D module has four registers. These registers are:
A/D Result High Register (ADRESH)
A/D Result Low Register (ADRESL)
A/D Control Register0 (ADCONO)
A/D Control Register1 (ADCONT1)
m Multiplexed 8 channel inputs
Must wait T, to charge up sampling capacitor
m Can take a reference voltage different from that of the controller

RE2/ANTN

(SIS TENNTEI]

RCO/ANSIY

Vaara

(nput voltags)

Ar
Converter

; , : »
; E\\ cee | 5] mraorano

cor L o5
71
ADC operation
Input volts 0-Vf | ANx P— Setup ADC
Analogue P— Read ADC
to Digital
Converter
8-bit or 16-bit
Reference volts, Vf—_______,| Vref+ integer result
The ADC converts an analog input into a binary code
72

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3 6

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PIC Peripherals: USART: UART

m Serial Communications Peripheral:
Universal Synch./Asynch. Receiver/Transmitter

m Interrupt on TX buffer empty and RX buffer full

m Asynchronous communication: UART (RS-232C serial)
Can do 300bps - 115kbps
8 or 9 bits, parity, start and stop bits, etc.
Outputs 5V so you need a RS232 level converter (e.g.,

MAX232)
73
USART RS232

HOST PC

PIC MCU

TX1 Transmit Line

Driver +- 12V RX2

RX1 Receive Interface . X2

COM PORT
Ground J_ Ground

Line drivers convert the signal to a bipolar, higher voltage

Bit period

ininsssssaun

ide 'sStat | Bit | Bit | Bit | Bit | Bt | Bt | Bt ' Bit | Stop
Bt 0 1 2 3 4 5 6 7 Bt

The data bits are timed from the falling edge of the start bit 74

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

37

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

PIC Peripherals: USART: UART

Synchronous communication: i.e., with clock signal

a SPI = Serial Peripheral Interface
3 wire: Data in, Data out, Clock
Master/Slave (can have multiple masters)
Very high speed (1.6Mbps)
Full speed simultaneous send and receive (Full duplex)

o 12C =Inter IC
2 wire: Data and Clock
Master/Slave (Single master only; multiple masters clumsy)
Lots of cheap 12C chips available; typically < 100kbps

75

PIC Peripherals: Timers

m Available in all PICs.
m generate interrupts on timer overflow.

m Some 8bits, some 16bits, some have prescalers
and/or postscalers

m Can use external pins as clock in/clock out
(ie, for counting events or using a different Fosc)

76

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3 8

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer O Block Diagram

CLKOUT (= Fosc/d) Data Bus

RA4TOCKI g N T M SYNC
pin | ol Y 2 TMRO Reg

X Cycles

Tocs

PSA Set Flag Bit TMROIF
on Dverflow

PRESCALER

xe= =

Watchdeg 1
Timer

PSA

WDT Enable bit

WDT
Time-out

77

Special Function Register
OPTION_REG Register

RAN-1 RAN-1 RAN-1 RANV-1 RANV-1 RANV-1 RAN-1 RAN-1
RBPU [INTEDG | TOCS | TOSE | PSA [Psz | Ppsa PSO
bit 7 bit O

bit 7 RBPU: FORTE Full-up Enable bit
1 = PORTEB pull-ups are disabled
o = PORTE pull-ups are enabled by individual port latch values
bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of RBO/INT pin
o = Interrupt on falling edge of REBO/INT pin
bit 5 ToCsS: TMRO Clock Source Select bit
1 = Transition on RA4/TOCKI pin
o = Internal instruction cycle clock (CLKOUT)
bit 4 TOSE: TMRO Source Edge Select bit
1 = Increment on high-to-low transition on RA4/TOCKI pin
o = Increment on low-to-high transition on RA4/TOCKI pin
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is assigned to the WDT
o = Prescaler is assigned to the Timero module
bit 2-0 PsS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate
ooo
ool
o1o0
o11
100
101
110
111

2
t4
:8
t18
132
t 64
S128
256

OhN=

16
T 32

128

Legend
R = Readable bit W= Writable bit U = Unimplemented bit, read as ‘0"
- n =“alue at POR ‘1" = Bitis set ‘0" = Bit is cleared » = Bit is unknown

78

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

39

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PIC Peripherals: CCP Modules

Capture/Compare/PWM (CCP)
10bit PWM width within 8bit PWM period (frequency)
Enhanced 16bit cores have better bit widths

Frequency/Duty cycle resolution tradeoff

O 19.5KHz has 10bit resolution

O 40KHz has 8bit resolution

O 1MHz has 1bit resolution (makes a 1MHz clock!)

m Can use PWM to do DAC - See AN655
m Capture counts external pin changes

m Compare will interrupt on when the timer equals the value in
a compare register

PIC Peripherals: Misc.

Sleep Mode: PIC shuts down until external interrupt (or
internal timer) wakes it up.

Interrupt on pin change: Generate an interrupt when a digital
input pin changes state (for example, interrupt on keypress).

Watchdog timer: Resets chip if not cleared before overflow
Brown out detect: Resets chip at a known voltage level
LCD drivers: Drives simple LCD displays

Future: CAN bus, 12bit ADC, better analog functions

VIRTUAL PERIPHERALS:

Peripherals programmed in software. UARTS, timers, and more can
be done in software (but it takes most of the resources of the
machine)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

40

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

PIC16F877 Block Diagram

2oRTA

Data
Memory

Instruction | . e Sy o] R
Memory oot [T | S
e e re
gz s ot a
Instructionreg | PN
R Il Direct scdr T | s fmgree |
Instruction |— —

Bus

must be

= [STa70s rea e

|]

RCOIT1OSOT1CHI
RCUT10S/CoP2

——_1involved in 8 H=K seenr
Decoce & Py e (4 RCA/SDISOA
Control AL +—] RCS/SD
(=] all 1 = [l
DO<==> cenaraticn th t =
SsEEEn, arithmetic TH RevEsEy
operations L H=] roieses
: :
: noiose
Most L1 A RSsEsee
; cone
w2 2. |important [FTT et mesversms
. . L f~[F] RE1sAM
register in I =
the PIC
J— | | [— | | Tenerz s
[I 1L 11 L
[A0 AT il
o] [eem | [mmmmr [o |
T Device T Frogram FLASH T Data Memory Data SEFROM
[PlcisrsTan i SR words i 152 Byies e
I FlcisrarTa I S words I 555 Bytes 256 Byies
Moo 11 e orer sta are from the STATUS regisior

81

PIC16F877 Block Diagram

L2 Dam Bus. POo=TA
mana — B
Fie 3=
Registers :
Procra:
Bus RAM agart) s @ Eo2TE
N 52 =soanT
7 A MU N, | =B
3 4 e
| Y v - 4 EBIPGM
- e
= £Bs
J— seercc
,—‘\,—‘STATI)Sre; o Ll | [7—K sewrco
posTC

Keep the
Keep the
cantrolloar in
Resets the
controller after
detecting
Brown-Out

Brown-out: when the supplying voltage

falls below a trip point (BVpp).

This ensures that the device does not
continue program execution outside the

valid operation range of the device

Serial Por

condition | —= | — |
lJ. 1C AT
—

| | Synenhrencus

Typically used in AC line or large battery
application where large loads maybe
switched in and cause the device voltage
to temporarily fall below the specified

operating minimum

T Device T Frogrem FLASH T Gata Memory I Data EEPROM
[Ficiereras I Sworas i e= Byees I 28 Byes 1
I FiciereT A [S weords 1 Se Byies [=6 Byies 1

Mots 1: Higher order bils are from the STATUS register

82

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

41

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PIC16 MCU Configuration

PIC16 MCU Configuration:
e Clock oscillator types
e Watchdog, power-up, brown-out timers
e Low-voltage programming
e Code protection
e In-circuit debug mode

modes must be set prior to the main program download.

register separated from the main memory block.

When programming the PIC microcontroller, certain operational

These are controlled by individual bits in a special configuration

83

PIC16F877 Instruction Set

84

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

42

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PIC16F877 Instruction Set
Bit-oriented file register operations
Literal and control operations 76 0
General CaLL and @oTo insfructions only
13 a 7 0 13 11 10 0
OPCODE k (literal} | | QPCODE ks (literal)
k = B-hit immediate valie = 11-hif immeadiate valna
ADDWF f.d |AddWandf 1 00 0111 acfe fffe| CDCZ | 12
ANDWF f.d |AND Wwithf 1 00 0101 afff ffff z 12
CLRF f Clearf 1 00 0001 1fff ffff z 2
ADDLW k Acd Itera and W 1 L1l 1lix xkkk kkkk| CDCZ
ANDLW k AND literal with W 1 LL 1001 zizkk kizkk z
CALL k Call subroutine 2 10 Jkkk kkkk kikk
CLRWDT Clear Watchdog Timer 1 50 2000 0110 o0loo| TOFD
GOTO k Go tc acdress 2 10 lkkk &kkk kizkk
IORLW k Inclusive OR lteral with W 1 11 1000 xkkk kikkk z
MOV k Move lteral to W 1 Ll Jixx kikkk kkkk
RETFIE - Retum frem interrupt 2 00 008 3300 1001
RETLW k Retum with lteral in W 2 Ll Jlzx kikkk kkkk
RETURM Retum frem Subroutine 2 00 0000 0000 1000
SLEEP - Go into Standby mode 1 o9 o000 Jlle ooll| TOFD
SuUBLW k Subtract W from litzral 1 11 1llox kkkk kixkk| COCZ
XORIW k Excusva OR lite-zl with W 1 LL 1010 xikkk kkkk z
SWAPF f.d |Swapnibblesinf 1 00 1110 Afff ffff 12
XORWF fd Exclusive OR W with 1 00 0110 Afff ffff z 1,2
85
Literal and Control Instructions
Mnemonic Description Function
Addlv K Add literal to W K+ W =W
andhw k AND literal and W KCAND. W =W
call k Call subroutine PC+1—=>T0O5 k =PC
clrwdt Clear watchdog timer 0 —='WDT (and prescaler if assigned)
goto k Goto address (kis nine hits) k= PC (9 hits)
10rlw k Incl. OR literal and ¥ k OR. W — W
moylw [Move Literal to W K= W
option Load OPTIOM register W — OPTION Register
retfie Return from Interrupt T0S = PC, 1 = GIE
retlw k Return with literal in W k =W, TOS — PC
return Return from subroutine T0S = PC
sleep Go into Standby Mode 0 — WDT, stop oscillator
subbw k Subtract \W from literal KO- W — WY
tris T Canfigure port f (downward compat. instr.) Wy — 10 control reg T
xorlw k Exclusive OR literal and ¥ k XOR. W = W
Key:
Field
[}g h Bit address within an 8-bit file register
d Destination select; d=0 Stare resultin v
d=1 Store resultin file register £
Defaultis d=1
T Regster filz address (0x00to OxFF)
k Literal field, constant data or label
Wi Working register taccurmulator)
86

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

43

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Byte-Oriented Instructions
Mnemonic Description Function
addwl fd AddWand Wef = d
andwf fd AND W and 1 W AND. T > d
clrf f Clearf 0-=f
clrw Clearwy 0—-w
comf fd Complement f NOT. f = d
decf fd Decrement f f-=d
decfsz fd Decrementf, skip if zero f-1 =d skipif0
inet fd Increment ¥ f+r1 =4
inefsz fd Increment T, skip ifzero f+1 = dskipifo
iorwf Td Inclusive OR W and f W OR f—=d
vt Td Move 1 f—=d
movat f Move Wt f W —f
nap No operation
register
ff fd Rotate left f b | c] - | 7 0 } -
- -
register f
mf f.d Rotate right f - | c] - I 7 0 ‘ 1
-
subwf fd Subtract'W from { f-¥W—d
swrapf fd Swap halves f 03 & (47 - d
HOrwf fd Exclusive OR'W and W XOR. f—>d
87
Byte-Oriented Instructions
Mnemonic Description Function
addwl fd AddWand Wef = d
andwf fd AND W and 1 W AND. T > d
clrf f Clearf 0-=f
clrw Clearwy 0—-w
comf fd Complement f NOT. f = d
decf fd Decrement f f-=d
decfsz fd Decrementf, skip if zero f-1 =d skipif0
inet fd Increment ¥ f+r1 =4
inefsz fd Increment T, skip ifzero f+1 = dskipifo
iorwf Td Inclusive OR W and f W OR f—=d
vt Td Move 1 f—=d
movat f Move Wt f W —f
nap No operation
register
ff fd Rotate left f b | c] - | 7 0 } -
Ed e
register f
mf f.d Rotate right f - | c] - I 7 0 ‘ 1
-
subwf fd Subtract'W from { f-¥W—d
swrapf fd Swap halves f 03 & (47 - d
HOrwf fd Exclusive OR'W and W XOR. f—>d
88

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

44

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit-Oriented Instructions

M i Description Function
hef T Bit clear f 0 — f(b)
bsf b Bit setf 1 = f(b)
bifsc fh Bit test, skip next instruction if clear skipif fib)y=10
hifss fh Bit test, skip next instruction if set skip if fih)=1
Field Description
b Bit address within an 8-bitfile register
d Destination select; d=0 Store result in W
d=1 Store result in file register .
Defaultis d=1.

f Register file address (0x00 to 0xFF)

k Literal field, constant data or label

W Working register (accumulator)

89
How i1s the instruction register loaded?
16 RAM File
| Program Counter | Tt es Registers
A 21 [> address
A 4 /13 Data
address y - r
4 8
Program Memory, / g
non-volatile, up to
2M bytes (1M x 16)
D|O
Program counter contains the address
of'the current instruction being
executed. After reset, first instruction
fetched from location 0x0000 in
program memory.
90

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

45

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Block diagram of the PIC 16 Series ALU

8-bit literal

(from instruction word)

8-bit register value

Register
File

Special

d=oor | |_d='

(from direct or indirect
address of instruction)

Function
Registers

(SFR’s)
and
General
Purpose
RAM
(GPR)

A 4

Literal Instructions

91
Programmer’s Model
Hardware Stack
A Stores addresses for subroutines
<= 12/14/16 bits ->
Program Memory
«<—| (PCH =
“Burned” in by | () Program Counter-PCL |
programmer (can’t < 8 bits s
change during
execution). Stored | Status |
instructions, addresses
and “literals” Special Purpose
(numbers) . Registers
I/0 pin states,
peripheral
1 registers, etc.
W “Register” |
General Purpose
Registers
RAM or “data
memory”. Variables
are stored here.
92

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

46

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Instruction Example: movlw OxFF

<- 12/14/16 ->

Hardware Stack

Program Memory

i (PCH)

Program Counter-PCL |

\ OxFF

| W “Register” |

<- 8 bits

->

Status

Registers

Special Purpose

movlw OxFF

256 in decimal- into the working register (“w”).
In other words, load W with the value OxFF.

Move (“mov”) the number (“I” for “literal”) OxFF - that’s

Registers

General Purpose

93

Instruction Example: movwf PORTA

<- 12/14/16 ->

Hardware Stack

Program Memory

<—| (PCH)

Value in W

| W “Register” |

<- 8 bits

->

Status

Special Purpose
Registers

——> PORTA

movwf PORTA
Move (“mov”) the working register (“w”) into the file
register (“f’) named PORTA.

In other words, load the register called PORTA with
whatever number is in the W register.

General Purpose
Registers

Program Counter-PCL |

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

94

2/19/2012

47

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<- 12/14/16 ->

Program Memory

Instruction Example: movf PORTA, W

Hardware Stack

I(PCH) Program Counter-PCL |

<= 8 bits ->

Status

Special Purpose
Registers

Value in PORTA PORTA

| W “Register”

| General Purpose

movf PORTA, W

PORTA into the working register (“w”) .

Move (“mov”) the the value of the file register (“f’) named

Registers

In other words, load W with the whatever number is in PORTA.

95
m First column: Labels
m Second column: opcodes and assembler directives
m Third Columns & more: operands
; This is a comments since it starts with a “;”
; This program puts out a square wave on PORTA Pin 0
clrf PORTA ; Clear PORTA register
clrf TRISA ; Make PORTA all outputs
Loop bsf PORTA, 0 ; Turn on PORTA Pin O
nop ; Match ‘goto’ delay
nop ,, 4 a“ g
bcf PORTA, 0 ; Turn off PORTA Pin O
goto Loop ; If not zero, loop back
96

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

48

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Branches

m All branches are “Bit Tests”
m All branches only skip one instruction

; Set EqualFlag if PORTA = PORTB

bcf

movf

EqualFlag, 7 ; First, clear the flag
PORTA, W ; Move PORTA -> W

subwf PORTB, W ; W - PORTB —> W
btfsc STATUS, Z ; Check 7z bit (see STATUS)

bsft

EqualFlag, 7 ; Ports equal; set flag

97

RAW-0

AAW-0 R/W-0 B-1 R-1 BAW-x R B

PAZ

PA1 PAD TO | PD Z Dc Cc A = Readable bit

bit?

bit 7:

bit 6-5:

bit 4:

bit 3

bit 2:

STATUS Register

bit 1:

bit 0

bito | W = Writable bit

[] 5 4 3 2 1
- n=Valug at POR reset

PA2: This bit unused at this time.
Use of the PAZ bit as a general purpose read/write bit is not recommended, since this may affect upward
compatibility with future products.

PA1:PAD: Program page preselect bits (PIC18C56s/CREGS)(PIC1BCE7s/CRETsS)(PIC16CEBs/CREEs)
00 = Page 0 (000h - 1FFh) - PIC16C56s/CRE6s, PIC16CE7s/CRETs, PIC16C585/CR58s

01 =Page 1 (200h - 3FFh) - PIC16C56s/CRE6s, PIC16CE7s/CRETs, PIC16C585/CR58s

10 = Page 2 (400h - 6FFh) - PIC16C57s/CRE7s, PIC16C585/CRE8s

11 = Page 3 (600h - 7FFh) - PIC16C57s/CRETs, PIC16C585/CRE8s

Each page is 512 words,

Using the PA1:PAD bits as general purpose readiwrite bits in devices which do not use them for program
page preselect is not recommended since this may affect upward compatibility with future products.
TO: Time-out bit

1 = After power-up, CLEWDT instruction, or SLEEE instruction

0=AWDT time-out occurred

PD: Power-down bit
1 = After power-up or by the CLAWDT instruction
0= By execution of the SLEEF instruction

Z: Zero bit
1 =The result of an arithmetic or logic operation is zero
0 =The result of an arithmetic or logic operation is not zero

DC: Digit carry'borrow bit (for ADDWE and SUBWF instructions)
ADDWF

1 = A carry from the 4th low order bit of the result occurred

0= A carry from the 4th low order bit of the result did not occur
SUBWF

1 = A borrow from the 4th low order bit of the result did not occur
0= A borrow from the 4th low order bit of the result cocurred

C: Carry/borrow bit {for aDDwWF, sUBWF and BRF, ELF instructions)
ADDWF SUBWF

1 = A carry occurred 1 = A borrow did not occur
0= A carry did not occur 0 = A borrow occurred

RRF or RLF
Load bit with LSh or MSb, respectively

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

49

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m For example,

movlw
movwf

loads W with

addresses:

GPIO

m All file registers (RAM) are accessed by an
address. This is called direct addressing.

m Thankfully, we can use labels instead of

Direct Addressing

OxXFF
0x06

FF, and then loads W into GPIO

(address 0x06).

equ 0x06
movwf GPIO

File Address

0ah
oth
2h
03h
O4h
0sh
0sh
oTh

1Fh

INDF

TMRD

PCL

STATUS

FER

OSCCAL

GPIC

General
Purpose
Hegisters

Mete 1! Notaphysical register. See Secton 4.8

99
Relative Addressing
m PCL = Low byte of the Program Counter
m Can be read and written.
m Writing to it sets the address of the next instruction to be executed.
FCH PCL
12 1110 87 0
o 1] NS
9 E PCLATH-=4:3= i
RERANNEE e
PCLATH
14bit core
100

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

50

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Software: Relative Addressing

uExample of Relative Addressing (using a table):

Here’s a simple lookup table which is called as a
subroutine. Expects the table offset to be loaded in W.
An example call looks like this:

Ne Ne Ne Ne Ne N

movlw 0x04 ; Load W with 4

call Table ; Call the table subroutine

movwf Result ; Store the result from the table
Table addwf PCL, W ; Jump to (current PCL) + W

retlw 0x00
retlw 0x23
retlw 0x33
retlw 0x88

Return with 0x00 in W
Return with 0x23 in W
etc.

Ne Ne Ne N

101

Indirect Addressing

00h INDF m Load indirect address into FSR
m Reading/Writing to INDF acts on
0ah FSR ~ address stored in FSR

m Example code to clear 0x20 - 7F:

movliw 0x20
movwf FSR

‘\\/\\— » loop clrf INDF

incf FSR,F
7Fh btfss FSR, 7
Register File goto loop

102

CuuDuongThanCong.com https://fb.com/tailieudientucntt 5 1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Banking
RAM in the PICs is banked, especially special e o P
function registers. Use the bank select commands o[PGLATH | FGAT|arh
to choose the bank. con e Y
Eiher P ==t
bsf STATUS, RPO i SOV [S57TT on
bef STATUS, RPO “ CECCPEDLN h
Or use the assembler directive: EE 5;555 S EEE
Banksel <registername> ‘EE CE{PEEN Beon :Eh
Bank 0 Bank 1 103
Real Code!
m Note: Each PIC has a predefined “.h” file which
contains labels for each special file register
(so you don’t have to!)
m A working program requires initialization code
and option codes set in the program. See .ASM
examples for initialization code
m Please see Example.asm
104

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

52

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Constants and Syntax Used in Assembler Language

Constant Syntax Example Value

Decimal D’ decimal_number’ D'167" 0x000000A7
Jdecimal _number’ L1167

Hexadecimal — H’ fiexadecimal’ H'A7’ 0x000000A7
Oxhexadecimal 0xA7
hexadecimalH 0ATH

Octal O octal’ 0’247 0x000000A7
octalO 2470

Binary B’binm’y’ B’10100111" 0x000000A7

ASCII A’ ASCII_char” A7 YD 0x0000005A
YASCHI'

Note: The letters D, H, O, and B are used to indicate the type of constant. They can be written
in lowercase or uppercase.

105

The program development process

Write source code

4

Assemble/compile

!

(Simulate)

Download

4

Test in hardware

106

CuuDuongThanCong.com https://fb.com/tailieudientucntt 53

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Components of MPLAB development system
Software tool | Tool function Files produced or used | File description
Text editor Used to create and modify | PROGNAME.ASM Source code text file
source code text file
Assembler Generates machine code | PROGNAME.HEX Executable machine code
from source code, reports | PROGNAME.ERR Error messages
syntax errors, generates | PROGNAME.LST List file with source
list and symbol files and machine code
PROGNAME.COD Symbol and debug
information
Simulator Allows program to be | PROGNAME.HEX
tested in software before | PROGNAME.COD
downloading
Programmer | Downloads machine code | PROGNAME.HEX
to chip
107
| label | ‘ mnemonic | ‘ operand‘
start bsf status, 5 ;select memory bank 1
movlw B'00011000';config pattern for port A
movwf trisa
movlw 53
Column 1 Column 2 Column 3 Column 4
Label COMMAND Operand/s ; Comment
Label Mnemonic The data or Explanatory text
EQUated to form of the register to the right of a
avalue, or instruction for | contents to semicolon on any
to indicate the processor be used in the line of code helps
a program to carry out instruction. the programmer
destination | a specific Registers and user to
address for operation. are usually understand the
jumps . Only mnemonics represented by program. It has
specified in a label. Some no effect on the
the instruction | instructions operation of the
set may be do not need an program. Full
used. operand. line comments
may also be used
between program
blocks.
108

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

54

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table 4.1 Some common MPASM Assembler directives

Assembler directive | Summary of action

list Implement a listing option*

#include Include additional source file

org Set program origin

equ Define an assembly constant; this allows us to assign a value to a label
end End program block

*Listing options include setting of radix and of processor type.

Table 4.2 Number representation in MPASM

Assembler
Radix Example representation
Decimal D'255"
Hexadecimal H'8d’ or 0x8d
Octal 0574’
Binary B'01011100°
ASCII ‘G’ or A'‘G’

All these instructions store the decimal value 167 in the W register:
movlw .167
moviw 0a7h
moviw 2470
moviw b’10100111°
Note how the hexadecimal constants must start with a digit in order to not
be misunderstood as labels. 109

Example of Assembler code

Label Mnemonic Operand Comments
Instruction Space
Directive
Title "Our first program” (directive)
list p=16f887 ; processor type (directive)
j mmmmmmm————- (comment)
; PROGRAM START (comment)
j mmmmmmm————- (comment)
org Oh ; startup address = 0000 (directive)
start moviw 0x00 ; simple code (instruction)
movwf 0x05 (instruction)
goto start ; do this loop forever (instruction)
end (directive)

110

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

55

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

PIC Applications

m LED Flasher ?l

10k 11

-1

Loop: o g8 e
bsf PORTB, 0 i e
call Delay_500ms R [

— =] PASAHIAMER. [Ty)

bef PORTB, 0 Ea T
call Delay_500ms PN o ek

goto Loop Ry R

Plssred wid

ReTRNOT L

ADOFERD —E

=

ROMPARE :_

gy s

111
PIC Applications
&
m Button Read
Moviw 0 T iy i
movwf TRISD, f nr8E SR
bsf TRISD, 2 o N
Loop: o meilE
btfsc ~ PORTD, 2 e I =
goto light g w% i e
goto No_light s =
Light: s
bsf PORTB,0 meet e |
goto Loop e : WAL
No_light: s i
bef PORTB,0 Loy
goto Loop ' 3
112

CuuDuongThanCong.com https://fb.com/tailieudientucntt 5 6

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

