
2/19/2012

1

Martin Bates

Elsevier 2008

Programming
8-bit PIC
Microcontrollers
in C

This presentation contains illustrations from the book

‘Programming 8-bit PIC Microcontrollers in C’ by Martin Bates

Part 1 Microcontroller Systems
describes in detail the internal architecture and interfaces

available in the PIC 16F887A, a typical PIC chip, as well as

outlining the main features of the development system

Part 2 C Programming Essentials
provides simple example programs for the microcontroller

which show the basic principles of C programming,

and interfacing to basic I/O devices

Part 3 C Peripheral Interfaces
provides example programs for operating PIC chips with a

full range of peripherals, using timers and interrupts

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

2

C
PROGRAMMING

ESSENTIALS

Part 2

Outline

2.1 PIC16 C Getting Started

● Simple program and test circuit

● Variables, looping, and decisions

● SIREN program

2.2 PIC16 C Program Basics

● Variables

● Looping

● Decisions

2.3 PIC16 C Data Operations

● Variable types

● Floating point numbers

● Characters

● Assignment operators

2.4 PIC16 C Sequence Control

●While loops

● Break, continue, goto

● If, else, switch

2.5 PIC16 C Functions and Structure

● Program structure

● Functions, arguments

● Global and local variables

2.6 PIC16 C Input and Output

● RS232 serial data

● Serial LCD

● Calculator and keypad

2.7 PIC16 C More Data Types

●Arrays and strings

● Pointers and indirect addressing

● Enumeration

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

3

2.1 PIC16 C Getting Started

● Simple program and test circuit

● Variables, looping, and decisions

● SIREN program

Programming PIC microcontrollers in C is introduced here using the

simplest possible programs, assuming that the reader has no previous

experience of the language.

The CCS compiler uses ANSI standard syntax and structures.

However, a compiler for any given microcontroller uses its own

variations for processor-specific operations, particularly input and

output processes. These are fundamental to MCU programs and so will

be introduced from the start.

Simple Program

Microcontroller programs contain three main features:

● Sequences of instructions

● Conditional repetition of sequences

● Selection of alternative sequences

The following basic programs show how these processes

are implemented in CCS C. The program in Listing 2.1 is

a minimal program that simply sets the bits of an 8-bit port

in the 16F877 to any required combination.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

4

Listing 2.1 A program to output a binary code

/* Source code file: OUTNUM.C

Author, date, version: MPB 11-7-07 V1.0

Program function: Outputs an 8-bit code

Simulation circuit: OUTBYTE.DSN

***/

#include "16F877A.h" // MCU select

void main() // Main block

{

output_D(255); // Switch on outputs

}

Figure 2.1 MPLAB IDE Screenshot

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

5

Figure 2.2 ISIS dialogue to attach program

Figure 2.3 OUTBYTE.DSN test circuit with output LEDs

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

6

PIC16 C Program Basics

● Variables

● Looping

● Decisions

The purpose of an embedded program is to read in data or control

inputs, process them and operate the outputs as required. Input from

parallel, serial, and analog ports are held in the file registers for

temporary storage and processing; and the results are output later

on, as data or a signal.

The program for processing the data usually contains repetitive loops

and conditional branching, which depends on an input or calculated

value.

2.2 PIC16 C Program Basics

Variables

Most programs need to process data in some way, and named variables are

needed to hold their values. A variable name is a label attached to the memory

location where the variable value is stored.

In C, the variable label is automatically assigned to the next available location

or locations (many variable types need more than 1 byte of memory). The

variable name and type must be declared at the start of the program block, so

that the compiler can allocate a corresponding set of locations.

Variable values are assumed to be in decimal by default; so if a value is given

in hexadecimal in the source code, it must be written with the prefix 0x, so that

0xFF represents 255, for example.

A variable called x is used in the program in Listing 2.2 , VARI.C. Longer labels

are sometimes preferable, such as “ output_value, ” but spaces are not

allowed. Only alphanumeric characters (a–z, A–Z, 0–9) and underscore,

instead of space, can be used.

By default, the CCS compiler is not case sensitive, so ‘a’ is the same as ‘A’

(even though the ASCII code is different). A limited number of key words in C,

such as main and include , must not be used as variable names.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

7

Listing 2.2 Variables

/* Source code file: VARI.C

Author, date, version: MPB 11-7-07 V1.0

Program function: Outputs an 8-bit variable

Simulation circuit: OUTBYTE.DSN

***/

#include "16F877A.h"

void main()

{

int x; // Declare variable and type

x=99; // Assign variable value

output_D(x); // Display the value in binary

}

Looping

Most real-time applications need to execute continuously until the

processor is turned off or reset. Therefore, the program generally

jumps back at the end to repeat the main control loop. In C this can be

implemented as a “ while ” loop, as in Listing 2.3 .

The condition for continuing to repeat the block between the while

braces is contained in the parentheses following the while keyword.

The block is executed if the value, or result of the expression, in the

parentheses is not zero. In this case, it is 1, which means the

condition is always true; and the loop repeats endlessly.

This program represents in simple form the general structure of

embedded applications, where an initialization phase is followed by

an endless control loop. Within the loop, the value of x is incremented

(x ++) . The output therefore appears to count up in binary when

executing. When it reaches the maximum for an 8-bit count (11111111

255), it rolls over to 0 and starts again.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

8

Listing 2.3 Endless loop

/* Source code file: ENDLESS.C

Author, date, version: MPB 11-7-07 V1.0

Program function: Outputs variable count

Simulation circuit: OUTBYTE.DSN

***/

#include "16F877A.h"

void main()

{

int x; // Declare variable

while(1) // Loop endlessly

{ output_D(x); // Display value

x++; // Increment value

}

}

Decision Making

The simplest way to illustrate basic decision making is to change an output

depending on the state of an input. A circuit for this is shown in Figure 2.4 ,

INBIT.DSN. The switch generates an input at RC0 and RD0 provides the

test output.

The common keyword for selection in many high level languages is IF.

Program IFIN.C (Listing 2.4) has the usual endless “ while ” loop but

contains a statement to switch off Port D initially.

The input state is read within the loop using the bit read function

input(PIN_C0). This assigns the input value 1 or 0 to the variable x. The

value is then tested in the if statement and the output set accordingly.

Note that the test uses a double equals to differentiate it from the

assignment operator used in the previous statement.

The effect of the program is to switch on the output if the input is

high. The switch needs to be closed before running to see this effect.

The LED cannot be switched off again until the program is restarted.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

9

Figure 2.4 INBIT.DSN test circuit with input switch

Listing 2.4 IF statement

/* Source code file: IFIN.C

Author, date, version: MPB 11-7-07 V1.0

Program function: Tests an input

Simulation circuit: INBIT.DSN

/

#include "16F877A.h"

void main()

{

int x; // Declare test var.

output_D(0); // Clear all outputs

while(1) // Loop always

{

x = input(PIN_C0); // Get input

if(x==1)output_high(PIN_D0); // Change out

}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

10

Loop Control

The program can be simplified by combining the input function with the

condition statement as follows:

if (input(PIN_C0)) output_high(PIN_D0);

The conditional sequence can also be selected by a while condition. In

Program WHILOOP.C (Listing 2.5), the input is tested in the loop

condition statement and the output flashed on and off while the switch is

open (input high). If the switch is closed, the flash loop is not executed

and the LED is switched off.

The program also demonstrates the delay function. If this were absent,

the loop would execute in just a few microseconds, since each machine

code instruction takes 4 µ s at a clock rate of 1 MHz.The flashing of the

output would be invisible. The delay required (in milliseconds) is given as

the function parameter, and a reference to the function library is provided

at the start of the program with the # use directive. This allows the

compiler to find the library routine delay_ms() . The clock speed of the

target processor must be given in the use directive, so that the correct

delay is calculated within the function.

Listing 2.5 Conditional loop

/* Source code file: WHILOOP.C

Author, date, version: MPB 11-7-07 V1.0

Program function: Input controls output loop

Simulation circuit: INBIT.DSN

***/

#include "16F877A.h"

#use delay (clock=1000000) // MCU clock = 1MHz

void main()

{

while(1)

{

while(input(PIN_C0)); // Repeat while switch open

{ output_high(PIN_D0);

delay_ms(300); // Delay 0.3s

output_low(PIN_D0);

delay_ms(500); // Delay 0.5s

}

output_low(PIN_D0); // Switch off LED

}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

11

FOR Loop

The WHILE loop repeats until some external event or internally modified

value satisfies the test condition. In other cases, we need a loop to

repeat a fixed number of times. The FOR loop uses a loop control

variable, which is set to an initial value and modified for each

iteration while a defined condition is true. In the demo program

FORLOOP.C (Listing 2.6), the loop control parameters are given within

the parentheses that follow the for keyword.

The loop control variable x is initially set to 0, and the loop continues

while it is less than 6. Value x is incremented each time round the loop.

The effect is to flash the output five times.

The FORLOOP program also includes the use of the while loop to wait

for the switch to close before the flash sequence begins. In addition, an

unconditional while loop terminates the program, preventing the

program execution from running into undefined locations after the end of

the sequence. This is advisable whenever the program does not run in a

continuous loop. Note that the use of the empty braces, which contain

no code, is optional.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

12

SIREN Program

A program combining some of these basic features is shown in

SIREN.C (Listing 2.7). This program outputs to a sounder rather than

an LED, operating at a higher frequency.

The delay is therefore in microseconds. The output is generated when

the switch is closed (input C0 low). The delay picks up the incrementing

value of “ step, ” giving a longer pulse each time the for loop is

executed. This causes a burst of 255 pulses of increasing length

(reducing frequency), repeating while the input is on.

Note that 255 is the maximum value allowed for “ step, ” as it is an 8-bit

variable. When run in VSM, the output can be heard via the simulation

host PC sound card. Note the inversion of the input test condition using

! not true.

The header information is now more extensive, as would be the case in

a real application. Generally, the more complex a program, the more

information is needed in the header. Information about the author and

program version and/or date, the compiler version, and the intended

target system are all useful. The program description is important, as

this summarizes the specification for the program.

Listing 2.7 Siren Program

/* Source code file: SIREN.C

Author, date, version: MPB 11-7-07 V1.0

Program function: Outputs a siren sound

Simulation circuit: INBIT.DSN

***/

#include "16F877A.h"

#use delay (clock=1000000)

void main()

{

int step;

while(1)

{

while(!input(PIN_C0)) // loop while switch ON

{

for(step=0;step<255;step++) // Loop control

{

output_high(PIN_D0); // Sound sequence

delay_us(step);

output_low(PIN_D0);

delay_us(step);

}

}

}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

13

Listing 2.8 Program Blank

/* Source Code Filename:

Author/Date/Version:

Program Description:

Hardware/simulation:

***/

#include "16F877A.h" // Specify PIC MCU

#use // Include library routines

void main() // Start main block

{

int // Declare global variables

while(1) // Start control loop

{

// Program statements

}

} // End main block

Blank Program

A blank program is shown in Listing 2.8 , which could be used as a

general template.

We should try to be consistent in the header comment information, so a

standard comment block is suggested. Compiler directives are

preceded by hash marks and placed before the main block. Other

initialization statements should precede the start of the main control

loop. Inclusion of the unconditional loop option while(1) assumes that

the system will run continuously until reset.

We now have enough vocabulary to write simple C programs for the

PIC microcontroller.

A basic set of CCS C language components is shown in Table 2.1 .

Don’t forget the semicolon at the end of each statement.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

14

Table 2.1 A basic set of CCS C components

Compiler Directives
#include source files Include another source code or header file

#use functions(parameters) Include library functions

C Blocks

main(condition) {statements } Main program block

while(condition) {statements } Conditional loop

if(condition) {statements } Conditional sequence

for(condition) {statements } Preset loop

C Functions

delay_ms(nnn) Delay in milliseconds

delay_us(nnn) Delay in microseconds

output_x(n) Output 8-bit code at Port X

output_high(PIN_nn) Set output bit high

output_low(PIN_nn) Set output bit low

input(PIN_nn) Get input

2.3 PIC16 C Data Operations

● Variable types

● Floating point numbers

● Characters

● Assignment operators

A main function of any computer program is to carry out calculations

and other forms of data processing. Data structures are made up of

different types of numerical and character variables, and a range of

arithmetical and logical operations are needed.

Microcontroller programs do not generally need to process large

volumes of data, but processing speed is often important.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

15

Table 2.1 Integer Variables

Name Type Min Max

int1 1 bit 0 1

unsigned int8 8 bits 0 255

signed int8 8 bits -127 +127

unsigned int16 16 bits 0 65525

signed int16 16 bits -32767 +32767

unsigned int32 32 bits 0 4294967295

signed int32 32 bits -2147483647 +2147483647

Table 2.2 Microchip/CCS Floating Point Number Format

Exponent Sign Mantissa

xxxx xxxx x xxx xxxx xxxx xxxx xxxx xxxx

8 bits 1 23 bits

Table 2.4 Example of 32-bit floating point number conversion

Mantissa: 101 0010 0000 0000 0000 0000

Exponent: 1000 0011

Sign: 1 = negative number

FP number: 1000 0011 1101 0010 0000 0000 0000 0000

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

16

Figure 2.5 Variable Types

Table 2.5 ASCII Codes

Low
Bits

High Bits

0010 0011 0100 0101 0110 0111

0000 Spac
e

0 @ P ` p

0001 ! 1 A Q a q

0010 " 2 B R b r

0011 # 3 C S c s

0100 $ 4 D T d t

0101 % 5 E U e u

0110 & 6 F V f v

0111 ' 7 G W g w

1000 (8 H X h x

1001) 9 I Y i y

1010 * : J Z j z

1011 + ; K [k {

1100 , < L \ l |

1101 - = M] m }

1110 . > N ^ n ~

1111 / ? O _ o Del

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

17

Table 2.6 Arithmetic and Logical Operations

OPERATION OPERATOR DESCRIPTION SOURCE CODE EXAMPLE RESULT

Single operand
Increment ++ Add one

to integer

result = num1++; 0000 0000 0000

0001

Decrement -- Subtract one
from integer

result = num1--; 1111 1111 1111

1110

Complement ~ Invert all bits
of integer

result = ~num1; 0000 0000 1111

1111

Arithmetic Operation

Add + Integer or
Float

result =

num1 + num2;

0000 1010

+ 0000 0011

0000

1101

Subtract - Integer or
Float

result =

num1 - num2;

0000 1010

- 0000 0011

0000

0111

Multiply * Integer or
Float

result =

num1 * num2;

0000 1010

* 0000 0011

0001

1110

Divide / Integer or
Float

result =

num1 / num2;

0000 1100

/ 0000 0011

0000

0100

Logical Operation

Logical AND & Integer
Bitwise

result =

num1 & num2;

1001 0011

& 0111 0001

0001

0001

Logical OR | Integer
Bitwise

result =

num1 | num2;

1001 0011

| 0111 0001

1111

0011

Exclusive OR ^ Integer
Bitwise

result =

num1 ^ num2;

1001 0011

^ 0111 0001

1110

0010

Figure 2.6 Variable Operations

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

18

Table 2.7 Conditional Operators

Operation Symbol EXAMPLE

Equal to == if(a == 0) b=b+5;

Not equal to != if(a != 1) b=b+4;

Greater than > if(a > 2) b=b+3;

Less than < if(a < 3) b=b+2;

Greater than or equal to >= if(a >= 4) b=b+1;

Less than or equal to <= if(a <= 5) b=b+0;

2.4 PIC16 C Sequence Control
●While loops

● Break, continue, goto

● If, else, switch

Conditional branching operations are a basic feature of

any program. These must be properly organized so that

the program structure is maintained and confusion

avoided. The program then is easy to understand and

more readily modified and upgraded.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

19

While Loops

The basic while(condition) provides a logical test at the start

of a loop, and the statement block is executed only if the

condition is true. It may, however, be desirable that the loop

block be executed at least once, particularly if the test

condition is affected within the loop. This option is provided by

the do..while(condition) syntax. The difference between

these alternatives is illustrated in Figure 2.7 . The WHILE test

occurs before the block and the DO WHILE after.

The program DOWHILE shown in Listing 2.9 includes the

same block of statements contained within both types of loop.

The WHILE block is not executed because the loop control

variable has been set to 0 and is never modified. By contrast, ‘

count ’ is incremented within the DO WHILE loop before being

tested, and the loop therefore is executed.

Condition
True?

Statement

Block
Condition

True?

Statement

Block

(a) While loop (b) Do..While loop

Figure 2.3.1 Comparison of While and Do..While Loop

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

20

Listing 2.9 DOWHILE.C contains both types of ‘while’ loop

// DOWHILE.C

// Comparison of WHILE and DO WHILE loops

#include "16F877A.H"

main()

{

int outbyte1=0;

int outbyte2=0;

int count;

count=0; // This loop is not

while (count!=0) // executed

{ output_C(outbyte1);

outbyte1++;

count--;

}

count=0; // This loop is

do // executed

{ output_C(outbyte2);

outbyte2++;

count--;

} while (count!=0);

while(1){};

}

Break, Continue, and Goto

It may sometimes be necessary to break the execution of a loop or
block in the middle of its sequence (Figure 2.8). The block must be
exited in an orderly way, and it is useful to have the option of restarting
the block (continue) or proceeding to the next one (break).

Occasionally, an unconditional jump may be needed, but this should
be regarded as a last resort, as it tends to threaten the program
stability. It is achieved by assigning a label to the jump destination and
executing a goto..label.

The use of these control statements is illustrated in Listing 2.10 . The
events that trigger break and continue are asynchronous (independent
of the program timing) inputs from external switches, which allows the
counting loop to be quit or restarted at any time.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

21

label

Statement

Block

Continue
Goto

Break

Figure 2.8 Break, continue and goto

Listing 2.10 Continue, Break & Goto

// CONTINUE.C

// Continue, break and goto jumps

#include "16F877A.H"

#use delay(clock=4000000)

main()

{

int outbyte;

again: outbyte=0; // Goto destination

while(1)

{

output_C(outbyte); // Loop operation

delay_ms(10);

outbyte++;

if (!input(PIN_D0)) continue; // Restart loop

if (!input(PIN_D1)) break; // Terminate loop

delay_ms(100);

if (outbyte==100) goto again; // Unconditional jump

}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

22

If..Else and Switch..Case

We have seen the basic if control option, which allows a block to be

executed or skipped conditionally. The else option allows an alternate

sequence to be executed, when the if block is skipped. We also need a

multichoice selection, which is provided by the switch..case syntax. This

tests a variable value and provides a set of alternative sequences, one of

which is selected depending on the test result.

These options are illustrated in flowchart form in Figures 2.9 and 2.10 , and

the if.. else and switch..case syntax is shown in Listing 2.11 . The control

statement switch(variable) tests the value of the variable used to select the

option block.

The keyword case n: is used to specify the value for each option. Note that

each option block must be terminated with break, which causes the

remaining blocks to be skipped.

A default block is executed if none of the options is taken. The same effect

can be achieved using if..else, but switch..case provides a more

elegant solution for implementing multichoice operations, such as menus.

If the case options comprise more than one statement, they are best

implemented using a function block call, as explained in the next section.

Figure 2.9 Comparison of If and If..Else

If
block

Condition
True?

YES

NO

Condition
True?

If
block

Else
block

YES NO

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

23

Test Variable

Value = 3? Procedure 3YES

NO

Value = n? Procedure nYES

NO

Default
Procedure

Value = 2? Procedure 2YES

NO

Value = 1? Procedure 1YES

NO

Figure 2.10 Switch..case branching structure

Listing 2.11 Comparison of Switch and If..Else control

// SWITCH.C

// Switch and if..else sequence control

// Same result from both sequences

#include "16F877A.h"

void main()

{

int8 inbits;

while(1)

{

inbits = input_D(); // Read input byte

// Switch..case option..

switch(inbits) // Test input byte

{

case 1: output_C(1); // Input = 0x01, output = 0x01

break; // Quit block

case 2: output_C(3); // Input = 0x02, output = 0x03

break; // Quit block

case 3: output_C(7); // Input = 0x03, output = 0x07

break; // Quit block

default:output_C(0); // If none of these, output = 0x00

}

// If..else option..

if (input(PIN_D0)) output_C(1); // Input RD0 high

if (input(PIN_D1)) output_C(2); // Input RD1 high

if (input(PIN_D0) && input(PIN_D1)) output_C(7); // Both high

else output_C(0); // If none of these, output = 0x00

}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

24

2.5 PIC16 C Functions and Structure
● Program structure

● Functions, arguments

● Global and local variables

The structure of a C program is created using functions (Figure 2.11). This

is a block of code written and executed as a self-contained process,

receiving the required parameters (data to be processed) from the calling

function and returning results to it. Main() is the primary function in all C

programs, within which the rest of the program is constructed.

When running on a PC, main() is called by the operating system, and control

is returned to the OS when the C program is terminated. In the

microcontroller, main() is simply used to indicate the start of the main control

sequence, and more care needs to be taken in terminating the program.

Normally, the program runs in a continuous loop, but if not, the final

statement should be while(1);, which causes the program to wait and

prevents the program running into undefined locations following the

application code.

Figure 2.11 Hierarchical C program structure

Main()

{

statements

fun1()
statements

statements

....

....

....

....

statements

fun2(arg)
statements

}

void fun1()
{

statements

...

...

}

void fun2(arg)
{

statements

...

fun3
...

return(val)
}

void fun3
{

statements

...

...

}

LEVEL 0 LEVEL 1 LEVEL 2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

25

Basic Functions

A simple program using a function is shown in FUNC1.C, Listing 2.12 .

The main block is very short, consisting of the function call out() and a

while statement, which provides the wait state at the end of main(). In

this case, the variables are declared before the main block. This

makes them global in scope; that is, they are recognized throughout

the whole program and within all function blocks. The function out() is

also defined before main() , so that, when it is called, the function

name is recognized. The function starts with the keyword void , which

indicates that no value is returned by the function. The significance of

this is explained shortly.

The function itself simply increments Port C from 0 to 255. It contains a

for loop to provide a delay, so that the output count is visible. This is a

simple alternative to the built-in delay functions seen in previous

examples and is used here to avoid the inclusion of such functions

while we study user-defined functions. It simply counts up to a preset

value to waste time. The delay time is controlled by this set value.

Listing 2.12 Basic function call

// FUNC1.C

// Function call structure

#include "16F877A.H"

int8 outbyte=1;

int16 n;

void out() // Start of function block

{

while (outbyte!=0) // Start loop, quit when output =0

{

output_C(outbyte); // Output code 1 – 0xFF

outbyte++; // Increment output

for(n=1;n<500;n++); // Delay so output is visible

}

}

main()

{

out(); // Function call

while(1); // Wait until reset

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

26

Global and Local Variables

Now, assume that we wish to pass a value to the function for local use

(that is, within the function). The simplest way is to define it as a global

variable, which makes it available throughout the program. In program

FUNC2.C, Listing 2.13 , the variable count, holding the delay count,

hence the delay time, is global.

If there is no significant restriction on program memory, global variables

may be used. However, microcontrollers, by definition, have limited

memory, so it is desirable to use local variables whenever possible within

the user functions. This is because local variables exist only during

function execution, and the locations used for them are freed up on

completion of function call. This can be confirmed by watching the values

of C program variables when the program is executed in simulation mode

— the local ones become undefined once the relevant function block is

terminated.

If only global variables are used and the functions do not return results to

the calling block, they become procedures. Program FUNC3.C, Listing

2.14 , shows how local variables are used.

Listing 2.13 Passing a parameter to the function

// FUNC2.C

#include "16F877A.H"

int8 outbyte=1; // Declare global variables

int16 n,count;

void out() // Function block

{

while (outbyte!=0)

{ output_C(outbyte);

outbyte++;

for(n=1;n<count;n++);

}

}

main()

{

count=2000;

out(); // Call function

while(1);

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

27

Listing 2.14 Local variables

// FUNC3.C

// Use of local variables

#include "16F877A.H"

int8 outbyte=1; // Declare global variables

int16 count;

int out(int16 t) // Declare argument types

{

int16 n; // Declare local variable

while (input(PIN_D0)) // Run output at speed t

{ outbyte++;

for(n=1;n<t;n++);

}

return outbyte; // Return output when loop stops

}

main()

{

count=50000;

out(count); // Pass count value to function

output_C(outbyte); // Display returned value

while(1);

}

2.6 PIC16 C Input and Output

● RS232 serial data

● Serial LCD

● Calculator and keypad

If an electronic gadget has a small alphanumeric LCD, the chances

are that it is a microcontroller application. Smart card terminals,

mobile phones, audio systems, coffee machines, and many other

small systems use this display. The LCD we use here has a standard

serial interface, and only one signal connection is needed. The signal

format is RS232, a simple low-speed protocol that allows 1 byte or

character code to be sent at a time. The data sequence also includes

start and stop bits, and simple error checking can be applied if

required. The PIC 16F877, in common with many microcontrollers,

has a hardware RS232 port built in.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

28

Serial LCD

CCS C provides an RS232 driver routine that works with any I/O pin (that is, the

hardware port need not be used). This is possible because the process for

generating the RS232 data frame is not too complex and can be completed fast

enough to generate the signal in real time. At the standard rate of 9600 baud,

each bit is about 100 µ s long, giving an overall frame time of about 1 ms. The

data can be an 8-bit integer or, more often, a 7-bit ASCII character code. This

method of transferring character codes via a serial line was originally used in

mainframe computer terminals to send keystrokes to the computer and return the

output — that is how long it’s been around. In this example, the LCD receives

character codes for a 2-row 16-character display.

The program uses library routines to generate the RS232 output, which are called

up by the directive # use RS232. The baud rate must be specified and the send

(TX) and receive (RX) pins specified as arguments of this directive. The directive

must be preceded by a # use delay, which specifies the clock rate in the target

system. The LCD has its own controller, which is compatible with the Hitachi

44780 MCU, the standard for this interface.

When the system is started, the LCD takes some time to initialize itself; its own

MCU needs time to get ready to receive data. A delay of about 500 ms should be

allowed in the main controller before attempting to access the LCD. A basic

program for driving the LCD is shown in Listing 2.15 .

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

29CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

30

2.7 PIC16 C More Data Types
● Arrays and strings

● Pointers and indirect addressing

● Enumeration

The data in a C program may be most conveniently

handled as sets of associated variables. These occur more

frequently as the program data becomes more complex,

but only the basics are mentioned here.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

31

2.8 PIC16 C Compiler Directives
● Include and use directives

● Header file listing and directives

Compiler directives are typically used at the top of the program to set

up compiler options, control project components, define constant

labels, and so on before the main program is created. They are

preceded by the hash symbol to distinguish them from other

types of statements and do not have a semicolon to end the line.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

32CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

33CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

34CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

