2/19/2012

PROGRAMMING

8-BIT PIC 8-bit PIC
weee - Microcontrollers
inC

Martin Bates
Elsevier 2008

This presentation contains illustrations from the book
‘Programming 8-bit PIC Microcontrollers in C’ by Martin Bates

Part 1 Microcontroller Systems
describes in detail the internal architecture and interfaces
available in the PIC 16F887A, a typical PIC chip, as well as
outlining the main features of the development system

Part 2 C Programming Essentials
provides simple example programs for the microcontroller
which show the basic principles of C programming,
and interfacing to basic I/O devices

Part 3 C Peripheral Interfaces
provides example programs for operating PIC chips with a
full range of peripherals, using timers and interrupts

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Part 2

PROGRAMMING
ESSENTIALS

2.1 PIC16 C Getting Started
e Simple program and test circuit
e Variables, looping, and decisions
e SIREN program
2.2 PIC16 C Program Basics
® Variables
e Looping
® Decisions
2.3 PIC16 C Data Operations
e Variable types
e Floating point numbers
o Characters
e Assignment operators
2.4 PIC16 C Sequence Control
e While loops
e Break, continue, goto
e If, else, switch

Outline

2.5 PIC16 C Functions and Structure

e Program structure

e Functions, arguments

® Global and local variables
2.6 PIC16 C Input and Output

o RS232 serial data

e Serial LCD

o Calculator and keypad
2.7 PIC16 C More Data Types

e Arrays and strings

e Pointers and indirect addressing

o Enumeration

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2.1 PIC16 C Getting Started

e Simple program and test circuit
e Variables, looping, and decisions
o SIREN program

Programming PIC microcontrollers in C is introduced here using the
simplest possible programs, assuming that the reader has no previous
experience of the language.

The CCS compiler uses ANSI standard syntax and structures.
However, a compiler for any given microcontroller uses its own
variations for processor-specific operations, particularly input and
output processes. These are fundamental to MCU programs and so will
be introduced from the start.

Simple Program

Microcontroller programs contain three main features:
e Sequences of instructions

e Conditional repetition of sequences

e Selection of alternative sequences

The following basic programs show how these processes
are implemented in CCS C. The program in Listing 2.1 is
a minimal program that simply sets the bits of an 8-bit port
in the 16F877 to any required combination.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Listing 2.1 A program to output a binary code
/* Source code file: OUTNUM.C
Author, date, version: MPB 11-7-07 V1.0
Program function: Outputs an 8-bit code
Simulation circuit: OUTBYTE .DSN
***/
#include "16F877A.h" // MCU select
void main () // Main block
{
output_D (255) ; // Switch on outputs
}
Figure 2.1 MPLAB IDE Screenshot

= (1 outnum.mep
= (22 source Fies
autnum.c

Header Fles
7 D 167877 source code file:

Author, date, version:
Program function:
simulation circuit:

(2 Other Fies

(21 Files | %2 Symbols

#include "16F8T7TA.h"

void main()

output_D(255) ;
}

6Messagels)

CuuDuongThanCong.com https://fb.com/tailieudientucntt 4

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Figure 2.2

#++RAQQ (0> iR TEEE R B%

ISIS dialogue to attach program

E4=E

+E>-8UOENHYYSEE

s Edit Component

Other Propertes:

Conperen Bfeence b idden =
G o Hdden =
PCB Package: [piceo [zl [Hidear -] Data
Pregntie Poibpecel S (S
Prosessor Clock Frequency: [1hiHz [Hidear]
R

Randoriz Fogran Herary? <l Bl

Attach hisrachy machle:
Edit ol propertes as text

([

[[W [] | Footsheett

Figure 2.3

OUTBYTE.DSN test circuit with output LEDs

U1

OSC1/CLKIN
0SC2/CLKOUT
MCLR/NVpp/THV

RAO/ANO
RA1/AN1
RA2/AN2/VREF-
RAB/AN3/VREF+
RA4/TOCKI
RA5/AN4/SS

REO/ANS/RD
RE1/ANG/WR
RE2/AN7/CS

|°|®|m |\'|m|m|‘>|w|N |Q|b|w

PIC16F877

RBO/INT
RB1

RB2
RB3/PGM
RB4

RB5
RB6/PGC
RB7/PGD

RCO/T10SO/T1CKI
RC1/T10SI/CCP2
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

RDO/PSPO
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7

leb’l@l@lwlw
gl<lslslels

2
©

N
S|

o

5>

~

o]

l

[
o3|

o
R

N
&3

N
|

|

(SN

20
19

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

2.2 PIC16 C Program Basics

PIC16 C Program Basics
e Variables

e Looping

e Decisions

The purpose of an embedded program is to read in data or control
inputs, process them and operate the outputs as required. Input from
parallel, serial, and analog ports are held in the file registers for
temporary storage and processing; and the results are output later
on, as data or a signal.

The program for processing the data usually contains repetitive loops
and conditional branching, which depends on an input or calculated
value.

Variables

Most programs need to process data in some way, and named variables are
needed to hold their values. A variable name is a label attached to the memory
location where the variable value is stored.

In C, the variable label is automatically assigned to the next available location
or locations (many variable types need more than 1 byte of memory). The
variable name and type must be declared at the start of the program block, so
that the compiler can allocate a corresponding set of locations.

Variable values are assumed to be in decimal by default; so if a value is given
in hexadecimal in the source code, it must be written with the prefix 0x, so that
O0xFF represents 255, for example.

Avariable called x is used in the program in Listing 2.2 , VARI.C. Longer labels
are sometimes preferable, such as “ output_value, ” but spaces are not
allowed. Only alphanumeric characters (a—z, A—Z, 0-9) and underscore,
instead of space, can be used.

By default, the CCS compiler is not case sensitive, so ‘a’is the same as ‘A’
(even though the ASCII code is different). A limited number of key words in C,
such as main and include , must not be used as variable names.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 6

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Listing 2.2 Variables

/* Source code file: VARI.C
Author, date, version: MPB 11-7-07 V1.0
Program function: Outputs an 8-bit variable
Simulation circuit: OUTBYTE .DSN

***/

#include "16F877A.h"

void main()

{

int x; // Declare variable and type
x=99; // Assign variable value
output_D (x) ; // Display the value in binary
}
Looping

Most real-time applications need to execute continuously until the
processor is turned off or reset. Therefore, the program generally
jumps back at the end to repeat the main control loop. In C this can be
implemented as a “ while ” loop, as in Listing 2.3 .

The condition for continuing to repeat the block between the while
braces is contained in the parentheses following the while keyword.

The block is executed if the value, or result of the expression, in the
parentheses is not zero. In this case, it is 1, which means the
condition is always true; and the loop repeats endlessly.

This program represents in simple form the general structure of
embedded applications, where an initialization phase is followed by
an endless control loop. Within the loop, the value of x is incremented
(x ++) . The output therefore appears to count up in binary when
executing. When it reaches the maximum for an 8-bit count (11111111
255), it rolls over to 0 and starts again.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 7

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Listing 2.3 Endless loop

/* Source code file: ENDLESS.C
Author, date, version: MPB 11-7-07 V1.0
Program function: Outputs variable count
Simulation circuit: OUTBYTE.DSN

***/

#include "16F877A.h"

void main ()

{

int x; // Declare variable

while (1) // Loop endlessly

{ output_D (x); // Display value
x++; // Increment value

}

Decision Making

The simplest way to illustrate basic decision making is to change an output
depending on the state of an input. A circuit for this is shown in Figure 2.4 |
INBIT.DSN. The switch generates an input at RCO and RDO provides the
test output.

The common keyword for selection in many high level languages is IF.
Program IFIN.C (Listing 2.4) has the usual endless “ while ” loop but
contains a statement to switch off Port D initially.

The input state is read within the loop using the bit read function
input(PIN_CO0). This assigns the input value 1 or 0 to the variable x. The
value is then tested in the if statement and the output set accordingly.

Note that the test uses a double equals to differentiate it from the
assignment operator used in the previous statement.

The effect of the program is to switch on the output if the input is
high. The switch needs to be closed before running to see this effect.
The LED cannot be switched off again until the program is restarted.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 8

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Figure 2.4 INBIT.DSN test circuit with input switch
U1
2L oscricLiin RBO/INT (32
241 oscaicLkout RB1 |
1 MCLRVppITHV RB2 %
RB3/PGM |——=
—{ RaoANo R4 2L R1
= Rat/ANt Res 35 10k
=i RA2/AN2/VREF- RB6/PGC =
= RA3/AN3/VREF+ RB7/PGD i
51 Raarrock
L RASIAN4/SS RCOT10SOMT1CKI [—2
RC1T10SICCP2 [
g— REO/ANS/RD. RC2/CCP1 —1;
——{ REVANSWR ReascruscL (&
201 Re2/an7/CS RC4/SDI/SDA [—22
RC5/SDO |22
RCE/TXICK |22 ©
RC7T/RX/DT |—2& D1 o)
RDO/PSPO ‘9—@—:—4
RD1/PSP1 |22 2R
RD2/PSP2 |21 LED-RED
RD3PSP3 22
RD4/PSP4 |—2L
ROS/PSPS (22 —
RDG/IPSPG (22 =
RO7/PSP7 |22
PIC16F877
Listing 2.4 IF statement
/* Source code file: IFIN.C

Author,
Program
Simulati

date, version:
function:
on circuit:

MPB 11-7-07 V1.0
Tests an input
INBIT.DSN

khkkhkhkkhkhkkhkhkhkkhkkkhkhkhkkhkhkkhkhkhkkhkhkkkkx

/

#include "16F877A.h"

void main ()

{
int x;
output_D

while (1)
{

X =

if (x==1)output_high (PIN_DO);

}

(0);

input (PIN_CO);

// Declare test var.
// Clear all outputs

// Loop always

// Get input
// Change out

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Loop Control

The program can be simplified by combining the input function with the
condition statement as follows:
if (input(PIN_C0)) output_high(PIN_DO);

The conditional sequence can also be selected by a while condition. In
Program WHILOOP.C (Listing 2.5), the input is tested in the loop
condition statement and the output flashed on and off while the switch is
open (input high). If the switch is closed, the flash loop is not executed
and the LED is switched off.

The program also demonstrates the delay function. If this were absent,
the loop would execute in just a few microseconds, since each machine
code instruction takes 4 y s at a clock rate of 1 MHz.The flashing of the
output would be invisible. The delay required (in milliseconds) is given as
the function parameter, and a reference to the function library is provided
at the start of the program with the # use directive. This allows the
compiler to find the library routine delay_ms() . The clock speed of the
target processor must be given in the use directive, so that the correct
delay is calculated within the function.

Listing 2.5 Conditional loop

/* Source code file: WHILOOP.C
Author, date, version: MPB 11-7-07 V1.0
Program function: Input controls output loop
Simulation circuit: INBIT.DSN

***/

#include "16F877A.h"
#use delay (clock=1000000) // MCU clock = 1MHz

void main ()

{

while (1)
{
while (input (PIN_CO)); // Repeat while switch open
{ output_high (PIN_DO) ;
delay_ms (300); // Delay 0.3s
output_low (PIN_DO);
delay_ms (500); // Delay 0.5s
}
output_low (PIN_DO); // Switch off LED

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 0

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

FOR Loop

The WHILE loop repeats until some external event or internally modified
value satisfies the test condition. In other cases, we need a loop to
repeat a fixed number of times. The FOR loop uses a loop control
variable, which is set to an initial value and modified for each

iteration while a defined condition is true. In the demo program
FORLOOP.C (Listing 2.6), the loop control parameters are given within
the parentheses that follow the for keyword.

The loop control variable x is initially set to 0, and the loop continues
while it is less than 6. Value x is incremented each time round the loop.
The effect is to flash the output five times.

The FORLOOP program also includes the use of the while loop to wait
for the switch to close before the flash sequence begins. In addition, an
unconditional while loop terminates the program, preventing the
program execution from running into undefined locations after the end of
the sequence. This is advisable whenever the program does not run in a
continuous loop. Note that the use of the empty braces, which contain
no code, is optional.

Listing 2.6 FOR Loop

// FORLOOP.C Repeat loop a set number of times

#include "16F877A.h"
#use delay (clock=1000000)

volid main()

{

int x;
while (input (PIN_CO0)){}; // Wait until switch closed
for (x=0; x<5; x++) // For loop conditions
{
output_high (PIN_DO) ; // Flash sequence

delay_ms(500) ;
output_low(PIN_DO) ;
delay _ms(500) ;
}
while(1); // Wait for reset

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

SIREN Program

A program combining some of these basic features is shown in
SIREN.C (Listing 2.7). This program outputs to a sounder rather than
an LED, operating at a higher frequency.

The delay is therefore in microseconds. The output is generated when
the switch is closed (input CO low). The delay picks up the incrementing
value of “ step, ” giving a longer pulse each time the for loop is
executed. This causes a burst of 255 pulses of increasing length
(reducing frequency), repeating while the input is on.

Note that 255 is the maximum value allowed for “ step, ” as it is an 8-bit
variable. When run in VSM, the output can be heard via the simulation
host PC sound card. Note the inversion of the input test condition using
I not true.

The header information is now more extensive, as would be the case in
a real application. Generally, the more complex a program, the more
information is needed in the header. Information about the author and
program version and/or date, the compiler version, and the intended
target system are all useful. The program description is important, as
this summarizes the specification for the program.

Listing 2.7 Siren Program
/* Source code file: SIREN.C
Author, date, version: MPB 11-7-07 V1.0
Program function: Outputs a siren sound
Simulation circuit: INBIT.DSN

***/

#include "16F877A.h"
#use delay (clock=1000000)

void main ()

{

int step;
while (1)
{ while (!input (PIN_CO)) // loop while switch ON
{ for (step=0; step<255; step++) // Loop control

{
output_high (PIN_DO) ; // Sound sequence
delay_us(step);
output_low (PIN_DO) ;
delay_us(step);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

12

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Listing 2.8 Program Blank
/* Source Code Filename:
Author/Date/Version:

Program Description:

Hardware/simulation:
B T T T T LY

#include "16F877A.h" // Specify PIC MCU

#use // Include library routines

void main() // Start main block

{ int // Declare global variables
while (1) // Start control loop

{

// Program statements

}
} // End main block

Blank Program

A blank program is shown in Listing 2.8 , which could be used as a
general template.

We should try to be consistent in the header comment information, so a
standard comment block is suggested. Compiler directives are
preceded by hash marks and placed before the main block. Other
initialization statements should precede the start of the main control
loop. Inclusion of the unconditional loop option while(1) assumes that
the system will run continuously until reset.

We now have enough vocabulary to write simple C programs for the
PIC microcontroller.

A basic set of CCS C language components is shown in Table 2.1 .
Don’t forget the semicolon at the end of each statement.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 3

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Table 2.1 A basic set of CCS C components

Compiler Directives
#include source files Include another source code or header file
#use functions (parameters) Include library functions

C Blocks
main(condition) {statements } Main program block
while(condition) {statements } Conditional loop
if (condition) {statements } Conditional sequence
for (condition) {statements } Preset loop

C Functions
delay_ms (nnn) Delay in milliseconds
delay_us (nnn) Delay in microseconds
output_x (n) Output 8-bit code at Port X
output_high (PIN_nn) Set output bit high
output_low (PIN_nn) Set output bit low
input (PIN_nn) Get input

2.3 PIC16 C Data Operations

e Variable types

e Floating point numbers
e Characters

e Assignment operators

A main function of any computer program is to carry out calculations
and other forms of data processing. Data structures are made up of
different types of numerical and character variables, and a range of

arithmetical and logical operations are needed.

Microcontroller programs do not generally need to process large
volumes of data, but processing speed is often important.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 4

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table 2.1 Integer Variables
Name Type Min Max
intl 1 bit 0 1
unsigned int8 8 bits 0 255
signed int8 8 bits -127 +127
unsigned intlé 16 bits 0 65525
signed int16 16 bits -32767 +32767
unsigned int32 32 bits 0 4294967295
signed int32 32 bits -2147483647 +2147483647

Table 2.2 Microchip/CCS Floating Point Number Format

Exponent Sign Mantissa

XXXX XXXX X XXX XXXX XXXX XXXX XXXX XXXX

8 bits 1 23 bits
Table 2.4 Example of 32-bit floating point number conversion
FP number: 1000 0011 1101 0010 0000 0000 0000 0000
!

Mantissa: 101 0010 0000 0000 0000 0000
Exponent : 1000 0011
Sign: 1 = negative number

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

15

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Figure 2.5

 vars - MPLAB IDE v7.50
Fle Edt View Project Debugger Programmer Tools Configure Window Help

Variable Types

= O varsmep
= (3 Sourcs Files

55> Warning 202 "CHPICE
Mermory usage: ROM-
0Enors, 7 Warnings.

<\ mm)

WPLAB SIM

DS | BE S8 2 | |Relese v/

:\PIC BOOKSWIC Programming book\pps\progsWariables\varsivars.c

25O ¢

/%
VARS.C

Cr B PEE

Demo of variable types

#include "16F877A.h"

void main()

1
intl hibit=1;
int8 hibyte=255;
intlé hiword=6553

while (1) {};

Wikl zdec

5

int32 hilong=2147483647 ;
float afloat=12.3456789
char aletter='n";

hibit
hibyte
hiword
hilong
afloat

aletter

0x7FFFFEFE
12.3456793
0x41

Table 2.5 ASCII Codes

Low High Bits

Bits 0010 0011 0100 0101 0110 0111
0000 Spac 0 @ P) p
0001 § 1 A Q a q
0010 " 2 B R b r
0011 # 3 (o] S c S
0100 $ 4 D T d t
0101 % 5 E u e u
0110 & 6 F ' f v
0111 ' 7 G w g w
1000 (8 H X h x
1001) 9 1 Y i y
1010 * : J z i z
1011 + ; K [Kk {
1100 , < L \ 1 |
1101 - = M 1 m }
1110 . > N A n ~
1111 / ? o _ o Del

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

16

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Fle Edit View Project Debugger Programmer Tools Configue Window Help

o e anwe

\PIC BOOKSWPIC Program

[Release Vi1 S H B @ | 218

& book\Apps\progs\Variables\ope rsiopers. . Waich

| banoe Y B RE

bytel-123, byte2-45;
ints addbyte, subbyte, mulbyte, divbyte,
int8 incbytel, dechytel, combytel,

int8 ANDbyte, ORbyte, XORbyte

bytez
bytel
bytez 0x2D
bytel 01111011
byte2 00101101
incbytel ox7c
decbytel 0x7A

float numl=12. 34, num2?=56.78;
float addfloat, subfloat, mulfloat, divfloat,

inchbytel — bytel, incbytel:+; combytel 10000100
decbytel - bytel; decbytel--; addbyte 168

subbyte 78
combytel —- bytel: mulbyte 159

divbyte 2

addfloat 69.1200027

= + .

Smbgte bytel - byrer. Subfloat 44 oo

mulbyte = bytel * byte2, muitloat: 700.665222

divbyte - bytel / byte?; divtloat 4.60129642
ANDbyte 00101001
ORbyte 01111111

addfloat = num2 + numl, XOR{;te 131013

subfloat - num? - numl;

mulfloat = num? * numl;

divfloat - num2 / numl;

ANDbyte = bytel & byte?;
ORbyte = bytel | byte2;
XORbyte — bytel * byte2;

PICI6FE7TA pobx37z WidkSs zdec bark 0

Table 2.6 Arithmetic and Logical Operations
OPERATION OPERATOR DESCRIPTION SOURCE CODE EXAMPLE RESULT
Single operand

Increment ++ Add one result = numl++; 0000 0000 0000
to integer 0001

Decrement - Subtract one result = numl--; 1111 1111 1111
from integer 1110

Complement ~ Invert all bits result = ~numl; 0000 0000 1111
of integer 1111

Arithmetic Operation

Add + Integer or result = 0000 1010 0000
Float numl + num2; + 0000 0011 1101

Subtract - Integer or result = 0000 1010 0000
Float numl - num2; - 0000 0011 0111

Multiply * Integer or result = 0000 1010 0001
Float numl * num2; * 0000 0011 1110

Divide / Integer or result = 0000 1100 0000
Float numl / num2; / 0000 0011 0100

Logical Operation

Logical AND & Integer result = 1001 0011 0001
Bitwise numl & num2; & 0111 0001 0001

Logical OR | Integer result = 1001 0011 1111
Bitwise numl | num2; | 0111 0001 0011

Exclusive OR n Integer result = 1001 0011 1110
Bitwise numl 4 num2; ~ 0111 0001 0010

Figure 2.6 Variable Operations

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

17

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operation

Equal to

Not equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

Table 2.7 Conditional Operators

Symbol

if(a
if(a
if(a
if(a

if(a

== 0) b=b+5;
= 1) b=b+4;
> 2) Db=b+3;
< 3) b=b+2;
>= 4) b=b+l;

<= 5) b=b+0;

e While loops

e Break, continue, goto
e If, else, switch

2.4 PIC16 C Sequence Control

Conditional branching operations are a basic feature of
any program. These must be properly organized so that
the program structure is maintained and confusion
avoided. The program then is easy to understand and
more readily modified and upgraded.

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

18

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

While Loops

The basic while(condition) provides a logical test at the start
of a loop, and the statement block is executed only if the
condition is true. It may, however, be desirable that the loop
block be executed at least once, particularly if the test
condition is affected within the loop. This option is provided by
the do..while(condition) syntax. The difference between
these alternatives is illustrated in Figure 2.7 . The WHILE test
occurs before the block and the DO WHILE after.

The program DOWHILE shown in Listing 2.9 includes the
same block of statements contained within both types of loop.
The WHILE block is not executed because the loop control
variable has been set to 0 and is never modified. By contrast, °
count’ is incremented within the DO WHILE loop before being
tested, and the loop therefore is executed.

Figure 2.3.1 Comparison of While and Do..While Loop

Condition
True? Statement
Block

Statement —
Block Condition
True?
L]
(a) While loop (b) Do..While loop

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 9

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Listing 2.9 DOWHILE.C contains both types of ‘while’ loop

// DOWHILE.C
// Comparison of WHILE and DO WHILE loops

#include "16F877A.H"

main ()

{

int outbytel=0;
int outbyte2=0;
int count;

count=0; // This loop is not
while (count!=0) // executed
{ output_C (outbytel) ;
outbytel++;
count--;
}
count=0; // This loop is
do // executed
{ output_C (outbyte2) ;
outbyte2++;

count--;
} while (count!=0);

while(1)({};

Break, Continue, and Goto

It may sometimes be necessary to break the execution of a loop or
block in the middle of its sequence (Figure 2.8). The block must be
exited in an orderly way, and it is useful to have the option of restarting
the block (continue) or proceeding to the next one (break).

Occasionally, an unconditional jump may be needed, but this should
be regarded as a last resort, as it tends to threaten the program
stability. It is achieved by assigning a label to the jump destination and
executing a goto..label.

The use of these control statements is illustrated in Listing 2.10 . The
events that trigger break and continue are asynchronous (independent
of the program timing) inputs from external switches, which allows the
counting loop to be quit or restarted at any time.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 20

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Figure 2.8 Break, continue and goto

label

\ 4

Statement
Block

Continue —

L Goto
Break —

Listing 2.10 Continue, Break & Goto

// CONTINUE.C
// Continue, break and goto jumps

#include "16F877A.H"
#use delay(clock=4000000)

main ()
{
int outbyte;

again: outbyte=0;

while (1)

{
output_C (outbyte) ;
delay ms (10);
outbyte++;

if (!input (PIN_DO)) continue;
if (!input (PIN_D1)) break;
delay ms (100);

if (outbyte==100) goto again;

// Goto destination

// Loop operation

// Restart loop
// Terminate loop

// Unconditional jump

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

21

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

If..Else and Switch..Case

We have seen the basic if control option, which allows a block to be
executed or skipped conditionally. The else option allows an alternate
sequence to be executed, when the if block is skipped. We also need a
multichoice selection, which is provided by the switch..case syntax. This
tests a variable value and provides a set of alternative sequences, one of
which is selected depending on the test result.

These options are illustrated in flowchart form in Figures 2.9 and 2.10 , and
the if.. else and switch..case syntax is shown in Listing 2.11 . The control
statement switch(variable) tests the value of the variable used to select the
option block.

The keyword case n: is used to specify the value for each option. Note that
each option block must be terminated with break, which causes the
remaining blocks to be skipped.

A default block is executed if none of the options is taken. The same effect
can be achieved using if..else, but switch..case provides a more

elegant solution for implementing multichoice operations, such as menus.
If the case options comprise more than one statement, they are best
implemented using a function block call, as explained in the next section.

Figure 2.9 Comparison of If and If..Else

NO
Condition Condition
True? N True?

YES
If Else
block block

YES

CuuDuongThanCong.com https://fb.com/tailieudientucntt 22

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Figure 2.10 Switch..case branching structure

!

Test Variable

Procedure 1
Procedure 2 >
Procedure 3 >
Procedure n >
Default
Procedure
v
Listing 2.11 Comparison of Switch and If..Else control
// SWITCH.C
// Switch and if..else sequence control
// Same result from both sequences
#include "16F877A.h"
void main ()
{
int8 inbits;
while (1)
{
inbits = input _D(); // Read input byte
// Switch..case OpPtion............iiiuniiiuiiie it
switch (inbits) // Test input byte
case 1: output_C(1); // Input = 0x01, output = 0x01
break; // Quit block
case 2: output_C(3); // Input = 0x02, output = 0x03
break; // Quit block
case 3: output_C(7); // Input = 0x03, output = 0x07
break; // Quit block
default :output_C(0); // If none of these, output = 0x00
}
// If..else OPLiON. ... ittt s
if (input (PIN_DO)) output_C(1); // Input RDO high
if (input (PIN_D1)) output_C(2); // Input RD1 high
if (input (PIN_DO) && input (PIN_D1)) output_C(7); // Both high
else output_C(0); // If none of these, output = 0x00
}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt 23

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2.5 PIC16 C Functions and Structure
e Program structure
e Functions, arguments
e Global and local variables

The structure of a C program is created using functions (Figure 2.11). This
is a block of code written and executed as a self-contained process,
receiving the required parameters (data to be processed) from the calling
function and returning results to it. Main() is the primary function in all C
programs, within which the rest of the program is constructed.

When running on a PC, main() is called by the operating system, and control
is returned to the OS when the C program is terminated. In the
microcontroller, main() is simply used to indicate the start of the main control
sequence, and more care needs to be taken in terminating the program.

Normally, the program runs in a continuous loop, but if not, the final
statement should be while(1);, which causes the program to wait and
prevents the program running into undefined locations following the
application code.

Figure 2.11 Hierarchical C program structure

: LEVELO : LEVEL 1 : | LEVEL2 |
e :
PN void funi()
i statements
i
!
Main() }
i
statements : '
funi() ! H
statements P S]
statements
________ void fun2(arg) __,| void fun3
i { ol
| statements | statements
statements ! !
fun2(arg) D fun3 L ____ .
statements ! L)
} H return(val) E .
i } : :
i
H
b

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

24

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

Basic Functions

A simple program using a function is shown in FUNC1.C, Listing 2.12..
The main block is very short, consisting of the function call out() and a
while statement, which provides the wait state at the end of main(). In
this case, the variables are declared before the main block. This
makes them global in scope; that is, they are recognized throughout
the whole program and within all function blocks. The function out() is
also defined before main() , so that, when it is called, the function
name is recognized. The function starts with the keyword void , which
indicates that no value is returned by the function. The significance of
this is explained shortly.

The function itself simply increments Port C from 0 to 255. It contains a
for loop to provide a delay, so that the output count is visible. This is a
simple alternative to the built-in delay functions seen in previous
examples and is used here to avoid the inclusion of such functions
while we study user-defined functions. It simply counts up to a preset
value to waste time. The delay time is controlled by this set value.

Listing 2.12 Basic function call

// FUNC1l.C
// Function call structure

#include "16F877A.H"

int8 outbyte=1;
intlé6 n;

void out () // Start of function block
{
while (outbyte!=0) // Start loop, quit when output =0
{
output_C (outbyte) ; // Output code 1 - OxFF
outbyte++; // Increment output
for (n=1;n<500;n++) ; // Delay so output is visible

}

main ()

{
out () ; // Function call
while(1); // Wait until reset

CuuDuongThanCong.com https://fb.com/tailieudientucntt 25

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Global and Local Variables

Now, assume that we wish to pass a value to the function for local use
(that is, within the function). The simplest way is to define it as a global
variable, which makes it available throughout the program. In program
FUNC2.C, Listing 2.13, the variable count, holding the delay count,
hence the delay time, is global.

If there is no significant restriction on program memory, global variables
may be used. However, microcontrollers, by definition, have limited
memory, so it is desirable to use local variables whenever possible within
the user functions. This is because local variables exist only during
function execution, and the locations used for them are freed up on
completion of function call. This can be confirmed by watching the values
of C program variables when the program is executed in simulation mode
— the local ones become undefined once the relevant function block is
terminated.

If only global variables are used and the functions do not return results to
the calling block, they become procedures. Program FUNCS3.C, Listing
2.14 , shows how local variables are used.

Listing 2.13 Passing a parameter to the function

// FUNC2.C
#include "16F877A.H"

int8 outbyte=1; // Declare global variables
intlé n, count;

void out () // Function block
{
while (outbyte!=0)
{ output_C (outbyte) ;
outbyte++;
for (n=1; n<count;n++);

}

main ()

{
count=2000;
out () ; // Call function
while(1);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

26

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Listing 2.14 Local variables

// FUNC3.C
// Use of local variables

#include "16F877A.H"

int8 outbyte=1; //
intlé count;

int out (intl6 t) //
{
intl6 n; //

while (input (PIN_DO)) //
{ outbyte++;
for (n=1;n<t;n++);
}
return outbyte; //
}

main ()
{
count=50000;

out (count) ; //
output_C (outbyte) ; //
while (1) ;

Declare global variables

Declare argument types
Declare local variable

Run output at speed t

Return output when loop stops

Pass count value to function
Display returned value

e RS232 serial data
e Serial LCD

e Calculator and keypad

2.6 PIC16 C Input and Output

If an electronic gadget has a small alphanumeric LCD, the chances
are that it is a microcontroller application. Smart card terminals,
mobile phones, audio systems, coffee machines, and many other
small systems use this display. The LCD we use here has a standard
serial interface, and only one signal connection is needed. The signal
format is RS232, a simple low-speed protocol that allows 1 byte or
character code to be sent at a time. The data sequence also includes
start and stop bits, and simple error checking can be applied if
required. The PIC 16F877, in common with many microcontrollers,
has a hardware RS232 port built in.

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

27

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Serial LCD

CCS C provides an RS232 driver routine that works with any 1/O pin (that is, the
hardware port need not be used). This is possible because the process for
generating the RS232 data frame is not too complex and can be completed fast
enough to generate the signal in real time. At the standard rate of 9600 baud,
each bit is about 100 p s long, giving an overall frame time of about 1 ms. The
data can be an 8-bit integer or, more often, a 7-bit ASCII character code. This
method of transferring character codes via a serial line was originally used in
mainframe computer terminals to send keystrokes to the computer and return the
output — that is how long it's been around. In this example, the LCD receives
character codes for a 2-row 16-character display.

The program uses library routines to generate the RS232 output, which are called
up by the directive # use RS232. The baud rate must be specified and the send
(TX) and receive (RX) pins specified as arguments of this directive. The directive
must be preceded by a # use delay, which specifies the clock rate in the target
system. The LCD has its own controller, which is compatible with the Hitachi
44780 MCU, the standard for this interface.

When the system is started, the LCD takes some time to initialize itself; its own
MCU needs time to get ready to receive data. A delay of about 500 ms should be
allowed in the main controller before attempting to access the LCD. A basic
program for driving the LCD is shown in Listing 2.15 .

Listing 2.15 Serial LCD Operation

// LCD.C
// Serial LCD test-send character using putc() and printf()
TEPELT T L TT R ST E PP EI T T I EETEd I f P i i iiritiiiiiirtiriiiy

#include "16F877A.h"

#use delay(clock=4000000)

#use rs232(baud=9600, xmit=PIN_DO, rcv=PIN_D1) // Define speed
and pins

void main()

{

char acap='A'; // Test data

delay _ms(1000) ; // Wait for LCD to wake up

putc(254); putc(l); // Home cursor

delay ms(10); // Wait for LCD to finish

while (1)

{
putc (acap) ; // Send test character
putc(254); putc(192); delay ms(10); // Move to second row
printf ("ASCIT %c CHAR %4 ",acap,acap); // Send test data again
while (1) ;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

28

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table 2.8: Essential Control Codes for Serial 2x16 LCD

Code Effect
254 Switch to control mode
followed by
00 Home to start of row 1
01 Clear screen
192 Go to start of row 2
Table 2.9: Output Format Codes
Code Displays
2d Signed integer
Fu Unsigned integer
%Lu Long unsigned integer (16 or 32 bits)
%Ls Long signed integer (16 or 32 bits)
g Rounded decimal float (use decimal formatting)
sf Truncated decimal float (use decimal formatting)
%e Exponential form of float
W Unsigned integer with decimal point inserted (use decimal formatting)
%X Hexadecimal
%LX Long hex
%c ASClI character corresponding to numerical value
%s Character or string
U1
% OSC1/CLKIN RBO/INT
e OSC2/CLKOUT RB1
— 1 MCLR/VPP/THV RB2
2 RB3/PGM
3 RAQ/ANO RB4
7] RA1/AN1 RBS
< RA2/AN2VAEF— RB6/PGC
%1 RAS/ANI/VREF+ RB7/PGD
—— RA/TOGKI_
— RAB/AN4/SS RCO/T10S0/T1CKI
a _ RC1/T10SKVCCP2
5 REO/ANS/RD RC2/CCP1
o | REI/ANG/WR RC3/SCK/SCL
—— RE2/AN7/CS RC4/SDI/'SDA
RC5/SDO
RCE/TX/CK
RC7/RX/DT
RDO/PSPO 12
RD1/PSP1 51
RD2/PSP2 22
RD3/PSP3 57
RD4/PSP4 o8
RDS/PSPS — -
RDB/PSPE 20 1 ~cot
RD7/PSP7 —\— VDD
PIC16F&77 RXD
vss

MILFORD-2X18-BKP

Figure 2.12: Calculator Schematic

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2/19/2012

29

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

2.7 PIC16 C More Data Types
e Arrays and strings
e Pointers and indirect addressing
e Enumeration

The data in a C program may be most conveniently
handled as sets of associated variables. These occur more
frequently as the program data becomes more complex,
but only the basics are mentioned here.

Listing 2.18 Numerical and Character Arrays

// BRRAYS.C

// Demo of numerical and string arrays

// Attach ARRAYS.COF to LCD.DSN to display

LATTEELETAT LTI LTI PP Ei i i i iiiidiirtidiiitiiiiiiitiitiiirs?

#include "16F877A.h"
#use delay(clock=4000000)
#use rs232(baud=9600, xmit=PIN_DO, rcv=PIN D1)

main ()

{
int8 aval=0, n; // Declare single variables
int8 anum[10]; // Declare integer array
char astring[l6]; // Declare character array

= 5 o= o o I
delay_ms(1000);
putc(254); putc(l); delay ms(10);

// Bssign data to arrays.. ..ottt ittt et
for (n=0; n<l1l0; n++) { anum[n]l=aval; aval++; }
strcpy(astring, "Hello!");

// Display Aaba. .. vttt e e e e et
for (n=0; n<10; n++) printf("%d",anum[n]);
putc(254); putc(192); delay_ms(10);
puts (astring) ;

while(1); // Wait
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt 30

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

2.8 PIC16 C Compiler Directives

e Include and use directives
e Header file listing and directives

Compiler directives are typically used at the top of the program to set
up compiler options, control project components, define constant
labels, and so on before the main program is created. They are
preceded by the hash symbol to distinguish them from other

types of statements and do not have a semicolon to end the line.

Program Directives

Examples using the directives encountered thus far follow—refer to the compiler
reference manual for the full range of options.

#include "16F877A.h"

The include directive allows source code files (o be included as though they had been
typed in by the user. In fact. any block of source code can be included in this way, and
the directive can thus be used to incorporate previously written reusable functions. The
header file referred to in this case provides the information needed by the complier to
create a program for a specific PIC chip.

#use delay(clock=4000000)

The ‘use’ directive allows library files to be included. As can be seen, additional
operating parameters may be needed so that the library function works correctly. The
clock frequency given here needs to be specified so that both software and hardware
timing loops can be correctly calculated.

#use rs232(baud=9600, xmit=PIN D0, rcv=PIN D1)
In this directive, the parameters set the R§232 data (baud) rate and the MCU pins to be

used to transmit and receive the signal. This software serial driver allows any available
pin to be used.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3 1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Listing 2.19 Header File 16F877A.H

NNy
#device
#nolist
Xy
NNy
XNy
Xy
Xy aEy
IXeeeasy
Xy Eey
Xy
Xy
I/

1/
1/
1/
I

#define
#define
#define
#define
#define
#define

Standard Header file for the PIC16F877A device /////////
PIC16F877A

Program memory: 8192x14 Data RAM: 367 Stack: 8

I/0: 33 Analog Pins: 8

Data EEPROM: 256

C Scratch area: 77 ID Location: 2000

Fuses: LP,XT,HS,RC,NOWDT,WDT, NOPUT, PUT, PROTECT, DEBUG, NODEBUG
Fuses: NOPROTECT, NOBROWNOUT, BROWNOUT, LVP, NOLVP, CPD, NOCPD, WRT_50%
Fuses: NOWRT,WRT_ 25%,WRT_ 5%

LIELLLILLT TSI E TP ErEEET i i v iridiiiiiirirtitidrty

// Discrete I/0 Functions: SET TRIS x(), OUTPUT x(), INPUT x()

PORT_B_PULLUPS(), INPUT(),
OUTPUT_LOW(), OUTPUT_HIGH(),
OUTPUT_FLOAT(), OUTPUT_BIT()

// Constants used to identify pins in the above are:

PIN_AQ 40 // Register 05, pin 0 (5x8)+0=40
PIN_A1 41 // Register 05, pin 1 (5x8)+1=41
PIN_A2 42 // Register 05, pin 2 (5xB)+2=42
PIN_A3 43 // Register 05, pin 3 etc
PIN_A4 44 // Register 05, pin 4

PIN_AS 45 // Register 05, pin 5

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

PIN_BO 48 // Register 06, pin 0 (6+8)+0=48
PIN_B1 49 // Register 06, pin
PIN_B2 50 // Register 06, pin
PIN_B3 51 // Register 06, pin
PIN_B4 52 // Register 06, pin
PIN_B5 53 // Register 06, pin
PIN_B6 54 // Reglister 06, pin
PIN_B7 55 // Reglster 06, pin

etc

PIN_C1 57 // Register 07, pin etc
PIN C2 58 // Register 07, pin
PIN_C3 59 // Register 07, pin
PIN_C4 60 // Register 07, pin
PIN_C5 61 // Register 07, pin
PIN_C6 62 // Register 07, pin

0
1
2
3
4
5
6
7
PIN CO 56 // Reglster 07, pin 0 (7*8)+0=56
1
2
3
4
5
6
PIN C7 63 // Register 07, pin 7

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

32

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2/19/2012

#define PIN_DO 64 // Register 08, pin 0 (8*8)+0=64
#define PIN D1 65 // Register 08, pin 1 etc
#define PIN D2 66 // Register 08, pin 2

#define PIN D3 67 // Register 08, pin 3

#define PIN D4 68 // Register 08, pin 4

#define PIN D5 69 // Register 08, pin 5

#define PIN D6 70 // Register 08, pin 6

#define PIN D7 71 // Register 08, pin 7

#define PIN_EO 72 // Register 09, pin 0 (9*8)+0=72
#define PIN_E1 73 // Register 09, pin 1 etc
#define PIN_E2 74 // Register 09, pin 2

LELLTTTEELT T PE i r i be i i rrrb ey b iirris/// Useful defines

#define FALSE 0 // Logical state 0

#define TRUE 1 // Logical state 1

#define BYTE int // B-bit walue

#define BOOLEAN short int // 1-bit walue

#define gete getch // Alternate names..

#define fgetc getch // ..for identical functions

#define getchar getch
#define putc putchar
#define fputec putchar
#define fgets gets
#define fputs puts

LELFTEII ISP irbiririririirirtrisririririiiii/i//// Control
// Control Functions: RESET_CPU(), SLEEP(), RESTART CAUSE()

// Constants returned from RESTART CAUSE() are:

#define WDT_FROM_SLEEP 0 // Watchdog timer has woken MCU from sleep
#define WDT_TIMEQUT 8 // Watchdog timer has caused reset

#define MCLR_FROM SLEEP 16 // MCU has been woken by reset input
#define NORMAL_POWER_UP 24 // Normal power on reset has occurred

SILLLTITE TP il it iriririrtrrridriryriifii/7////7 Timer 0
// Timer 0 (AKA RTCC)Functions: SETUP_COUNTERS () or SETUP_TIMERO(),

/I SET_TIMERO() or SET_RTCC(),

i/ GET TIMERO() or GET RTCC()

// Constants used for SETUP_TIMERO() are:

#define RTCC_INTERNAL 0 // Use instruction clock

#define RTCC_EXT L_TO H 32 // Use TOCKI rising edge

#define RTCC_EXT H TO L 48 // Use TOCKI falling edge

#define RTCC DIV 1 8 // No prescale
#define RTCC_ DIV 2 0 // Prescale divide by 2
#define RTCC DIV 4 1 // Prescale divide by 4

CuuDuongThanCong.com https://fb.com/tailieudientucntt 33

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

#define RTCC_DIV_S8
#define RTCC_DIV_16
#define RTCC_DIV_32
#define RTCC_DIV_64
#define RTCC_DIV 128
#define RTCC_DIV_ 256

// Prescale divide by 8

// Prescale divide by 16
// Prescale divide by 32
// Prescale divide by 64
// Prescale divide by 128
// Prescale divide by 256

=1 Oy U W

#define RTCC_8_BIT 0

// Constants used for SETUP_COUNTERS() are the above
// constants for the lst param and the following for
// the 2nd param:

LIEPLTELLETTTEES TP E LTI ET i ri i ri iy riiirirriiriliiriryrir/i7// wor
// Watch Dog Timer Functions: SETUP_WDT() or SETUP_COUNTERS() (see above)

1/ RESTART_WDT ()

// Constants used for SETUP_WDT() are:

#define WDT 18MS 8 // Watchdog timer interval=18ms
#define WDT 36MS 9 // Watchdog timer interval=36ms
#define WDT_72MS 10 // Watchdog timer interval=72ms
#define WDT_144MS 11 // Watchdog timer interval=144ms
#define WDT_ 288MS 12 // Watchdog timer interval=288s
#define WDT 576MS 13 // Watchdog timer interval=576ms
#define WDT_1152MS 14 // Watchdog timer interval=1.15ms
#define WDT_2304MS 15 // Watchdeog timer interval=2.30s

SALSSTLLLTES ST T i iiir i i drdrdrf////7/// Timerl
// Timer 1 Functions: SETUP_TIMER 1, GET TIMER1l, SET_ TIMER1

// Constants used for SETUP_TIMER_1() are:

I/ (or (via |) together constants from each group)

#define T1_DISABLED 0 // Switch off Timer 1
#define T1_TINTERNAL 0385 // Use instruction clock
#define T1_EXTERNAL 0x87 // Use TICEKI as clock input
#define TI1_EXTERNAL_SYNC 0x83 // Synchronise TICKI input
#define T1_CLK_OUT 8

#define T1_DIV_BY_1 0 // No prescale

#define T1_DIV_BY 2 0x10 // Prescale divide by 2
#define T1_DIV_BY 4 0x20 // Prescale divide by 4
#define T1_DIV_BY_8 0x30 /! Prescale divide by 8

LATIETELTIPETEI TP r T T tirdddirirdidriridiiirriiiitir//// Timer 2
// Timer 2 Functions: SETUP_TIMER 2, GET TIMERZ, SET TIMER2

// Constants used for SETUP_TIMER 2() are:

#define T2_DISABLED 0 // No prescale

#define T2_DIV_BY_ 1 4 // Prescale divide by 2

#define T2_DIV_BY 4 5 // Prescale divide by 4

#define T2_DIV _BY 16 6 // Prescale divide by 16

CuuDuongThanCong.com https://fb.com/tailieudientucntt

2/19/2012

34

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

