
2/19/2012

1

1

Multi-Tasking and Real-Time
Operating Systems

HCM IU

Subject: ERTS

Instructor: Ho Trung My

Ref: Dogan Ibrahim

2

Outline

10.1 State Machines
10.2 The Real-Time Operating System (RTOS)

10.2.1 The Scheduler

10.3 RTOS Services
10.4 Synchronization and Messaging Tools
10.5 CCS PIC C Compiler RTOS

10.5.1 Preparing for RTOS

10.5.2 Declaring a Task

PROJECT 10.1-LEDs

PROJECT 10.2-Random Number Generator

PROJECT 10.3-Voltmeter with RS232 Serial Output

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

2

3

Multitasking

• Nearly all microcontroller-based systems perform more 

than one activity. For example, a temperature monitoring 

system is made up of three tasks that normally repeat 

after a short delay, namely:

– Task 1 Reads the temperature

– Task 2 Formats the temperature

– Task 3 Displays the temperature

• More complex systems may have many complex tasks. 

In a multi-tasking system, numerous tasks require CPU 

time, and since there is only one CPU, some form of 

organization and coordination is needed so each task 

has the CPU time it needs. In practice, each task takes a 

very brief amount of time, so it seems as if all the tasks 

are executing in parallel and simultaneously.

4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

3

5

6

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

4

7

8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

5

9

10

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

6

11

12

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

7

13

14

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

8

15

RTOS

• Almost all microcontroller-based systems work in real time. A real-

time system is a time responsive system that can respond to its 

environment in the shortest possible time.

• Real time does not necessarily mean the microcontroller should 

operate at high speed. What is important in a real-time system is a 

fast response time, although high speed can help. 

– For example, a real-time microcontroller-based system with various 

external switches is expected to respond immediately when a switch is 

activated or some other event occurs.

• A real-time operating system (RTOS) is a piece of code (usually 

called the kernel) that controls task allocation when the 

microcontroller is operating in a multi-tasking environment. RTOS 

decides, for instance, which task to run next, how to coordinate the 

task priorities, and how to pass data and messages among tasks.

16

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

9

17

18

• This chapter explores the basic principles of multi-

tasking embedded systems and gives examples of an 

RTOS used in simple projects. Multi-tasking code and 

RTOS are complex and wide topics, and this chapter 

describes the concepts pertaining to these tools only 

briefly. 

• There are several commercially available RTOS systems 

for PIC microcontrollers.

– Two popular high-level RTOS systems for PIC microcontrollers 

are Salvo (www.pumpkin.com),  which can be used from a Hi-

Tech PIC C compiler, and 

– the CCS (Customer Computer Services) built-in RTOS system. 

• In this chapter, the example RTOS projects are based on 

the CCS (www.ccsinfo.com) compiler, one of the popular 

PIC C compilers developed for the PIC16 and PIC18 

series of microcontrollers.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

10

19

10.1 State Machines

• State machines are simple constructs used to perform several 

activities, usually in a sequence. Many real-life systems fall into this 

category. For example, the operation of a washing machine or a 

dishwasher is easily described with a state machine construct.

• Perhaps the simplest method of implementing a state machine 

construct in C is to use a switch-case statement. For example, our 

temperature monitoring system has three tasks, named Task 1, 

Task 2, and Task 3 as shown in Figure 10.1. 

• The state machine implementation of the three tasks using switch-

case statements is shown in Figure 10.2.

– The starting state is 1, and each task increments the state number by 

one to select the next state to be executed. 

– The last state selects state 1, and there is a delay at the end of the 

switch-case statement. 

– The state machine construct is executed continuously inside an endless 

for loop.

20

Figure 10.1: State machine implementation

Figure 10.2: State machine implementation in C

state = 1;
for(;;)
{

switch (state)
{

CASE 1:
// implement TASK 1
state++;
break;

CASE 2:
// i/mplement TASK 2
state++;
break;

CASE 3:
// implement TASK 3
state = 1;
break;

}
delay_ms(n);

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

11

21

• In many applications, the states need not be executed in 

sequence. Rather, the next state is selected by the 

present state either directly or based on some condition. 

This is shown in Figure 10.3.

• State machines, although easy to implement, are 

primitive and have limited application. They can only be 

used in systems which are not truly responsive, where 

the task activities are well-defined and the tasks are not 

prioritized.

• Moreover, some tasks may be more important than 

others. We may want some tasks to run whenever they 

become eligible. For example, in a manufacturing plant, 

a task that sets off an alarm when the temperature is too 

hot must be run. This kind of implementation of tasks 

requires a sophisticated system like RTOS.

22

Figure 10.3: Selecting the next state from the current state

state = 1;
for(;;)
{

switch (state)
{

CASE 1:
// implement TASK 1
state = 2;
break;

CASE 2:
// i/mplement TASK 2
state = 3;
break;

CASE 3:
// implement TASK 3
state = 1;
break;

}
delay_ms(n);

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

12

23

10.2 The Real-Time Operating System (RTOS)

• Real-time operating systems are built around a multi-tasking kernel 

which controls the allocation of time slices to tasks. A time slice is the 

period of time a given task has for execution before it is stopped and 

replaced by another task. This process, also known as context 

switching, repeats continuously. 

• When context switching occurs, the executing task is stopped, the 

processor registers are saved in memory, the processor registers of the 

next available task are loaded into the CPU, and the new task begins 

execution. 

• An RTOS also provides task-to-task message passing, synchronization 

of tasks, and allocation of shared resources to tasks.

• The basic parts of an RTOS are:

– Scheduler

– RTOS services

– Synchronization and messaging tools

24

10.2.1 The Scheduler

• A scheduler is at the heart of every RTOS, as it provides the algorithms 

to select the tasks for execution. Three of the more common scheduling 

algorithms are:

– Cooperative scheduling

– Round-robin scheduling

– Preemptive scheduling

• Cooperative scheduling is perhaps the simplest scheduling algorithm 

available. 

– Each task runs until it is complete and gives up the CPU voluntarily.

– Cooperative scheduling cannot satisfy real-time system needs, since it 

cannot support the prioritization of tasks according to importance. 

– Also, a single task may use the CPU too long, leaving too little time for other 

tasks. And the scheduler has no control of the various tasks’ execution time. 

– A state machine construct is a simple form of a cooperative scheduling 

technique.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

13

25

Round-robin scheduling

• In round-robin scheduling, each task is assigned an equal share of 

CPU time (see Figure 10.4). 

• A counter tracks the time slice for each task. When one task’s time 

slice  completes, the counter is cleared and the task is placed at the 

end of the cycle. 

• Newly added tasks are placed at the end of the cycle with their 

counters cleared to 0. This, like cooperative scheduling, is not very 

useful in a real-time system, since very often some tasks take only a 

few milliseconds while others require hundreds of milliseconds or 

more.

Figure 10.4: Round-robin scheduling

26

Preemptive scheduling

• Preemptive scheduling is considered a real-time scheduling 

algorithm. It is prioritybased, and each task is given a priority (see 

Figure 10.5). 

• The task with the highest priority gets the CPU time. 

• Real-time systems generally support priority levels ranging from 0 to 

255, where 0 is the highest priority and 255 is the lowest.

Figure 10.5: Preemptive scheduling

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

14

27

Mixed scheduling

• In some real-time systems where more than one task can be at the 

same priority level, preemptive scheduling is mixed with round-robin 

scheduling. 

• In such cases, tasks at higher priority levels run before lower priority 

ones, and tasks at the same priority level run by round-robin 

scheduling. 

• If a task is preempted by a higher priority task, its run time counter is 

saved and then restored when it regains control of the CPU.

• In some systems a strict real-time priority class is defined where 

tasks above this class may run to completion (or run until a resource 

is not available) even if there are other tasks at the same priority 

level.

28

Task states

• In a real-time system a task can be in any one of the following states:

– Ready to run

– Running

– Blocked

Figure 10.6: Task states

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

15

29

• When a task is first created, it is usually ready to run and is entered in 

the task list. From this state, subject to the scheduling algorithm, the task 

can become a running task.

• According to the conditions of preemptive scheduling, the task will run if 

it is the highest priority task in the system and is not waiting for a 

resource.

• A running task becomes a blocked task if it needs a resource that is not 

available. For example, a task may need data from an A/D converter 

and is blocked until it is available. Once the resource can be accessed, 

the blocked task becomes a running task if it is the highest priority task 

in the system, otherwise it moves to the ready state. 

• Only a running task can be blocked. A ready task cannot be blocked.

• When a task moves from one state to another, the processor saves the 

running task’s context in memory, loads the new task’s context from 

memory, and then executes the new instructions as required.

30

Task operations

• The kernel usually provides an interface to manipulate 

task operations. Typical task operations are:

– Creating a task

– Deleting a task

– Changing the priority of a task

– Changing the state of a task

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

16

31

10.3 RTOS Services

• RTOS services are utilities provided by the kernel that 

help developers create real-time tasks efficiently. For 

example, a task can use time services to obtain the 

current date and time. 

• Some of these services are:

– Interrupt handling services

– Time services

– Device management services

– Memory management services

– Input-output services

32

10.4 Synchronization and Messaging Tools

• Synchronization and messaging tools are kernel constructs 

that help developers create real-time applications. 

• Some of these services are:

– Semaphores

– Event flags

– Mailboxes

– Pipes

– Message queues

• Semaphores are used to synchronize access to shared 

resources, such as common data areas. 

• Event flags are used to synchronize the intertask activities.

• Mailboxes, pipes, and message queues are used to send 

messages among tasks.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

17

33

10.5 CCS PIC C Compiler RTOS

• The CCS PIC C compiler is one of the popular C compilers for the 
PIC16 and PIC18 series of microcontrollers. 

• The syntax of the CCS C language is slightly different from that of 
the mikroC language, but readers who are familiar with mikroC 
should find CCS C easy to use.

• CCS C supports a rudimentary multi-tasking cooperative RTOS 
for the PIC18 series of microcontrollers that uses their PCW and 
PCWH compilers. This RTOS allows a PIC microcontroller to run 
tasks without using interrupts. When a task is scheduled to run, 
control of the processor is given to that task. When the task is 
complete or does not need the processor any more, control 
returns to a dispatch function, which gives control of the processor 
to the next scheduled task. 

• Because the RTOS does not use interrupts and is not 
preemptive, the user must make sure that a task does not run 
forever. Further details about the RTOS are available in the 
compiler’s user manual.

34

RTOS in CCS C

• The CCS language provides the following RTOS functions in addition to 

the normal C functions:

• rtos_run() initiates the operation of RTOS. All task control operations 

are implemented after calling this function.

• rtos_terminate() terminates the operation of RTOS. Control returns to 

the original program without RTOS. In fact, this function is like a return 

from rtos_run().

• rtos_enable() receives the name of a task as an argument. The function 

enables the task so function rtos_run() can call the task when its time is 

due.

• rtos_disable() receives the name of a task as an argument. The 

function disables the task so it can no longer be called by rtos_run() 

unless it is re-enabled by calling rtos_enable().

• rtos_ yield() when called from within a task, returns control to the 

dispatcher. All tasks should call this function to release the processor so 

other tasks can utilize the processor time.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

18

35

• rtos_msg_send() receives a task name and a byte as arguments. The 

function sends the byte to the specified task, where it is placed in the task’s 

message queue.

• rtos_msg_read() reads the byte located in the task’s message queue.

• rtos_msg_ poll() returns true if there is data in the task’s message queue. 

This function should be called before reading a byte from the task’s 

message queue.

• rtos_signal() receives a semaphore name and increments that 

semaphore.

• rtos_wait() receives a semaphore name and waits for the resource 

associated with the semaphore to become available. The semaphore count 

is then decremented so the task can claim the resource.

• rtos_await() receives an expression as an argument, and the task waits 

until the expression evaluates to true.

• rtos_overrun() receives a task name as an argument, and the function 

returns true if that task has overrun its allocated time.

• rtos_stats() returns the specified statistics about a specified task. The 

statistics can be the minimum and maximum task run times and the total 

task run time. The task name and the type of statistics are specified as 

arguments to the function.

36

RTOS Setup

#use  rtos(timer=X,#use  rtos(timer=X,#use  rtos(timer=X,#use  rtos(timer=X,
[minor_cycle=cycle_time])[minor_cycle=cycle_time])[minor_cycle=cycle_time])[minor_cycle=cycle_time])

− Timer can be any timer available

− Minor_Cycle is rate of fastest task

− Example:
#use  rtos(timer=1,        minor_cycle=50ms)#use  rtos(timer=1,        minor_cycle=50ms)#use  rtos(timer=1,        minor_cycle=50ms)#use  rtos(timer=1,        minor_cycle=50ms)

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 48
CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

19

37

RTOS Tasks

#task(rate=xxxx,#task(rate=xxxx,#task(rate=xxxx,#task(rate=xxxx,
[max=yyyy],     [queue=z])[max=yyyy],     [queue=z])[max=yyyy],     [queue=z])[max=yyyy],     [queue=z])

− Following function is RTOS task

− Will be called at specified rate

− Max is slowest execution time, used
for budgeting.

− Queue defines RX message size© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 49

38

RTOS Start and Stop

rtos_run()

− Starts the RTOS

− Will not return until rtos_terminate()

rtos_terminate()

− Stops the RTOS

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 50
CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

20

39

#use  rtos(timer=1)#use  rtos(timer=1)#use  rtos(timer=1)#use  rtos(timer=1)#task(rate=100ms,       max=5ms)#task(rate=100ms,       max=5ms)#task(rate=100ms,       max=5ms)#task(rate=100ms,       max=5ms)void   TaskInput(void)void   TaskInput(void)void   TaskInput(void)void   TaskInput(void){  /*    get    user   input    */    }{  /*    get    user   input    */    }{  /*    get    user   input    */    }{  /*    get    user   input    */    }#task(rate=25ms)#task(rate=25ms)#task(rate=25ms)#task(rate=25ms)void   TaskSystem(void)void   TaskSystem(void)void   TaskSystem(void)void   TaskSystem(void){  /*    do   some stuff     */    }{  /*    do   some stuff     */    }{  /*    do   some stuff     */    }{  /*    do   some stuff     */    }void   main(void)     {void   main(void)     {void   main(void)     {void   main(void)     {while(TRUE)    {while(TRUE)    {while(TRUE)    {while(TRUE)    {rtos_run();rtos_run();rtos_run();rtos_run();sleep();sleep();sleep();sleep();}}}}}}}}© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 51

40

RTOS Task Control

rtos_enable(task)

rtos_disable(task)

−

−

−

−

Dynamic task control

Enable/Disable the specified task

Task is the function name

All tasks are enabled at start© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 52
CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

21

41

RTOS Messaging

rtos_msg_send(task, char)

− Sends char to task

avail=rtos_msg_poll()

− TRUE if a char is waiting for this task

byte=rtos_msg_read()

− Read next char destined for this task© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 53

42

RTOS Yielding

rtos_yield()

− Stops processing current task

− Returns to this point on next cycle

rtos_await(expression)

− rtos_yield() if expression not TRUE

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 54
CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

22

43

#task(rate=100ms,       max=5ms)#task(rate=100ms,       max=5ms)#task(rate=100ms,       max=5ms)#task(rate=100ms,       max=5ms)void   TaskInput(void)        {void   TaskInput(void)        {void   TaskInput(void)        {void   TaskInput(void)        {if    (KeyReady())if    (KeyReady())if    (KeyReady())if    (KeyReady())rtos_msg_send(TaskSystem,      KeyGet());rtos_msg_send(TaskSystem,      KeyGet());rtos_msg_send(TaskSystem,      KeyGet());rtos_msg_send(TaskSystem,      KeyGet());}}}}#task(rate=25ms,       queue=1)#task(rate=25ms,       queue=1)#task(rate=25ms,       queue=1)#task(rate=25ms,       queue=1)void   TaskSystem(void)      {void   TaskSystem(void)      {void   TaskSystem(void)      {void   TaskSystem(void)      {SystemPrepare();SystemPrepare();SystemPrepare();SystemPrepare();rtos_await(rtos_msg_poll());rtos_await(rtos_msg_poll());rtos_await(rtos_msg_poll());rtos_await(rtos_msg_poll());SystemDo(rtos_msg_read());SystemDo(rtos_msg_read());SystemDo(rtos_msg_read());SystemDo(rtos_msg_read());rtos_yield();rtos_yield();rtos_yield();rtos_yield();SystemVerify();SystemVerify();SystemVerify();SystemVerify();}}}}© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 55

44

RTOS Semaphores

Semaphore
−
−
−
−

Determine shared resource availability
A user defined global variable
Set to non-zero if used
Set to zero if free

rtos_wait(semaphore)
− rtos_yield() until semaphore free
− Once free, sets semaphore as used

− Release semaphore11028 CCSrtos_signal(semaphore)© 2007 Microchip Technology Incorporated. All Rights Reserved. Slide 56
CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

23

45

RTOS Timing Statistics

overrun=rtos_overrun(task)

rtos_stats(task, rtos_stats)typedef    structtypedef    structtypedef    structtypedef    structint32    total;int32    total;int32    total;int32    total;int16    min;int16    min;int16    min;int16    min;int16    max;int16    max;int16    max;int16    max;int16    hns;int16    hns;int16    hns;int16    hns;}  rtos_stats;}  rtos_stats;}  rtos_stats;}  rtos_stats; {{{{////////////////////////////////
− TRUE if task took longer than max

− Get timing statistics for specified tasktotal     ticks     used  by  tasktotal     ticks     used  by  tasktotal     ticks     used  by  tasktotal     ticks     used  by  taskminimum tick    time    usedminimum tick    time    usedminimum tick    time    usedminimum tick    time    usedmaximum tick    time   usedmaximum tick    time   usedmaximum tick    time   usedmaximum tick    time   usedus  =  (ticks*hns)/10us  =  (ticks*hns)/10us  =  (ticks*hns)/10us  =  (ticks*hns)/10© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 57

46

RTOS Application Ideas

User I/O

Communication Protocols

© 2007 Microchip Technology Incorporated. All Rights Reserved. 11028 CCS Slide 58
CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

24

47

10.5.1 Preparing for RTOS

• In addition to the preceding functions, the #use rtos() 

preprocessor command must be specified at the beginning 

of the program before calling any of the RTOS functions. 

• The format of this preprocessor command is:

#use rtos(timer=n, minor_cycle=m)

where timer is between 0 and 4 and specifies the processor 

timer that will be used by the RTOS, and minor_cycle is the 

longest time any task will run. The number entered here 

must be followed by s, ms, us, or ns.

• In addition, a statistics option can be specified after the 

minor_cycle option, in which case the compiler will keep 

track of the minimum and maximum processor times the 

task uses at each call and the task’s total time used.

48

10.5.2 Declaring a Task

• A task is declared just like any other C function, but tasks in 

a multi-tasking application do not have any arguments and 

do not return any values. Before a task is declared, a #task 

preprocessor command is needed to specify the task 

options. 

• The format of this preprocessor command is:

#task(rate=n, max=m, queue=p)

– rate specifies how often the task should be called. The number 

specified must be followed by s, ms, us, or ns. 

– max specifies how much processor time a task will use in one 

execution of the task. The time specifed here must be equal to or less 

than the time specified by minor_cycle. 

– queue is optional and if present specifies the number of bytes to be 

reserved for the task to receive messages from other tasks. The 

default value is 0.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

25

49

• In the following example, a task called my_ticks is every 

20ms and is expected to use no more than 100ms of 

processor time. 

• This task is specified with no queue option:

#task(rate=20ms, max=100ms)

void my_ticks()

{

...........

...........

}

50

PROJECT 10.1—LEDs

• In the following simple RTOS-based project, four LEDs are 

connected to the lower half of PORTB of a PIC18F452-type 

microcontroller. The software consists of four tasks, where each 

task flashes an LED at a different rate:

– Task 1, called task_B0, flashes the LED connected to port RB0 at a rate 

of 250ms.

– Task 2, called task_B1, flashes the LED connected to port RB1 at a rate 

of 500ms.

– Task 3, called task_B2, flashes the LED connected to port RB2 once a 

second.

– Task 4, called task_B3, flashes the LED connected to port RB3 once 

every two seconds.

• Figure 10.7 shows the circuit diagram of the project. A 4MHz 

crystal is used as the clock. PORTB pins RB0–RB3 are 

connected to the LEDs through current limiting resistors.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

26

51

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Figure 10.7: Circuit diagram of the project

52

• The software is based on the CCS C compiler, and the program listing 

(RTOS1.C) is given in Figure 10.8. The main program is at the end of the 

program, and inside the main program PORTB pins are declared as outputs 

and RTOS is started by calling function rtos_run().

• The file that contains CCS RTOS declarations should be included at the 

beginning of the program. The preprocessor command #use delay tells the 

compiler that we are using a 4MHz clock. Then the RTOS timer is declared as 

Timer 0, and minor_cycle time is declared as 10ms using the preprocessor 

command #use rtos.

• The program consists of four similar tasks:

– task_B0 flashes the LED connected to RB0 at a rate of 250ms. Thus, the LED is 
ON for 250ms, then OFF for 250ms, and so on. CCS statement output_toggle is 
used to change the state of the LED every time the task is called. In the CCS 
compiler PIN_B0 refers to port pin RB0 of the microcontroller.

– task_B1 flashes the LED connected to RB1 at a rate of 500ms as described.

– task_B2 flashes the LED connected to RB2 every second as described.

– Finally, task_B3 flashes the LED connected to RB3 every two seconds as 
described. 

• The program given in Figure 10.8 is a multi-tasking program where the LEDs 

flash independently of each other and concurrently.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

27

53

RTOS1.c (1/3)
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

54

RTOS1.c (2/3)
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

28

55

RTOS1.c (3/3)

56

PROJECT 10.2—Random Number Generator

• In this slightly more complex RTOS project, a random number between 0 

and 255 is generated. Eight LEDs are connected to PORTB of a 

PIC18F452 microcontroller. In addition, a push-button switch is connected 

to bit 0 of PORTD (RD0), and an LED is connected to bit 7 of PORTD 

(RD7).

• Three tasks are used in this project: Live, Generator, and Display.

– Task Live runs every 200ms and flashes the LED on port pin RD7 to indicate 

that the system is working.

– Task Generator increments a variable from 0 to 255 continuously and checks 

the status of the push-button switch. When the push-button switch is pressed, 

the value of the current count is sent to task Display using a messaging 

queue.

– Task Display reads the number from the message queue and sends the 

received byte to the LEDs connected to PORTB. Thus, the LEDs display a 

random pattern every time the push button is pressed.

• Figure 10.9 shows the project’s block diagram. The circuit diagram is 

given in Figure 10.10. The microcontroller is operated from a 4MHz 

crystal.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

29

57

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Figure 10.9: Block diagram of the project

58

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Figure 10.10: Circuit diagram of the project

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

30

59

• The program listing of the project (RTOS2.C) is given in Figure 10.11. 

The main part of the program is in the later portion, and it configures 

PORTB pins as outputs. Also, bit 0 of PORTD is configured as input and 

other pins of PORTD are configured as outputs. Timer 0 is used as the 

RTOS timer, and the minor_cycle is set to 1s. 

• The program consists of three tasks:

– Task Live runs every 200ms and flashes the LED connected to port pin RD7. 

This LED indicates that the system is working.

– Task Generator runs every millisecond and increments a byte variable called 

count continuously. When the push-button switch is pressed, pin 0 of PORTD 

(RD0) goes to logic 0. When this happens, the current value of count is sent 

to task Display using RTOS function call rtos_msg_send(display, count), 
where Display is the name of the task where the message is sent and count 

is the byte sent.

– Task Display runs every 10ms. This task checks whether there is a message 

in the queue. If so, the message is extracted using RTOS function call 

rtos_msg_read(), and the read byte is sent to the LEDs connected to 

PORTB. Thus, the LEDs display the binary value of count as the switch is 

pressed. The message queue should be checked by using function 

rtos_msg_poll(), as trying to read the queue without any bytes in the queue 

may freeze the program.

60

TROS2.C (1/4)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

31

61

TROS2.C (2/4)

62

TROS2.C (3/4)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

32

63

TROS2.C (4/4)

64

PROJECT 10.3—Voltmeter with RS232 Serial Output

• In this RTOS project, which is more complex than the preceding ones, the 

voltage is read using an A/D converter and then sent over the serial port to a 

PC. The project consists of three tasks: Live, Get_voltage, and To_RS232.

– Task Live runs every 200ms and flashes an LED connected to port RD7 of the 

microcontroller to indicate that the system is working. 

– Task Get_voltage reads channel 0 of the A/D converter where the voltage to be 

measured is connected. The read value is formatted and then stored in a 

variable. This task runs every two seconds.

– Task To_RS232 reads the formatted voltage and sends it over the RS232 line to 

a PC every second.

• Figure 10.12 shows the block diagram of the project. The circuit diagram is 

given in Figure 10.13. A PIC18F8520-type microcontroller with a 10MHz 

crystal is used in this project (though any PIC18F-series microcontroller can 

be used). The voltage to be measured is connected to analog port AN0 of 

the microcontroller. The RS232 TX output of the microcontroller (RC6) is 

connected to a MAX232-type RS232-level converter chip and then to the 

serial input of a PC (e.g., COM1) using a 9-pin D-type connector. Port pin 

RD7 is connected to an LED to indicate whether the project is working.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

33

65

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Figure 10.12: Block diagram of the project

66

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Figure 10.13: Circuit diagram of the project

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

34

67

• In the main part of the program PORTD is configured as 

output and all PORTD pins are cleared. Then PORTA is 

configured as input (RA0 is the analog input), the 

microcontroller’s analog inputs are configured, the A/D clock 

is set, and the A/D channel 0 is selected (AN0). The RTOS is 

then started by calling function rtos_run().

• The program consists of three tasks:

– Task Live runs every 200ms and flashes an LED connected to port pin 

RD7 of the microcontroller to indicate that the project is working.

– Task Get_voltage reads the analog voltage from channel 0 (pin RA0 

or AN0) of the microcontroller. The value is then converted into 

millivolts by multiplying by 5000 and dividing by 1024 (in a 10-bit A/D 

there are 1024 quantization levels, and when working with a reference 

voltage of þ5V, each quantization level corresponds to 5000/1024mV). 

The voltage is stored in a global variable called Volts.

– Task To_RS232 reads the measured voltage from common variable 

Volts and sends it to the RS232 port using the C printf statement. The 

result is sent in the following format:

Measured voltage = nnnn mV

68

RTOS3.C (1/4)
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

35

69

RTOS3.C (2/4)
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

70

RTOS3.C (3/4)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

36

71

RTOS3.C (4/4)

72

Figure 10.15: Typical output from the program

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

37

73

Using a Semaphore

• The program given in Figure 10.14 is working and displays the 

measured voltage on the PC screen. This program can be 

improved slightly by using a semaphore to synchronize the 

display of the measured voltage with the A/D samples. The 

modified program (RTOS4.C) is given in Figure 10.16. The 

operation of the new program is as follows:

– The semaphore variable (sem) is set to 1 at the beginning of the 

program.

– Task Get_voltage decrements the semaphore (calls rtos_wait) variable 

so that task To_RS232 is blocked (semaphore variable sem = 0) and 

cannot send data to the PC. When a new A/D sample is ready, the 

semaphore variable is incremented (calls rtos_signal) and task 

To_RS232  can continue. 

– TaskTo_RS232 then sends the measured voltage to the PC and 

increments the semaphore variable to indicate that it had access to the 

data. Task Get_voltage can then get a new sample. This process is 

repeated forever.

74

RTOS.C (1/4)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

38

75

RTOS.C (2/4)

76

RTOS.C (3/4)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2/19/2012

39

77

RTOS.C (4/4)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

