
Chương 9: Các giải thuật thay

thế trang

9.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Ôn lại

Virtual memory – separation of user logical memory from physical

memory.

Only part of the program needs to be in memory for execution

Logical address space can therefore be much larger than

physical address space

Allows address spaces to be shared by several processes

Allows for more efficient process creation

Virtual memory can be implemented via:

Demand paging

Demand segmentation

9.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Virtual Memory That is Larger Than Physical Memory



9.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Virtual-address Space

9.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Shared Library Using Virtual Memory

9.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Demand Paging

Bring a page into memory only when it is needed

Less I/O needed

Less memory needed

Faster response

More users

Page is needed  reference to it

invalid reference  abort

not-in-memory  bring to memory

Lazy swapper – never swaps a page into memory unless page will

be needed

Swapper that deals with pages is a pager

9.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Transfer of a Paged Memory to Contiguous Disk Space

9.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Valid-Invalid Bit

With each page table entry a valid–invalid bit is associated
(v  in-memory, i  not-in-memory)

Initially valid–invalid bit is set to i on all entries

Example of a page table snapshot:

During address translation, if valid–invalid bit in page table entry

 is I  page fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table

9.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Table When Some Pages Are Not in Main Memory

9.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Fault

If there is a reference to a page, first reference to that
page will trap to operating system:

 page fault

1. Operating system looks at another table to decide:

Invalid reference  abort

Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

5. Set validation bit = v

6. Restart the instruction that caused the page fault

9.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Fault (Cont.)

Restart instruction

block move

auto increment/decrement location

9.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Steps in Handling a Page Fault

9.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Performance of Demand Paging

Page Fault Rate 0  p  1.0

if p = 0 no page faults

if p = 1, every reference is a fault

Effective Access Time (EAT)

 EAT = (1 – p) x memory access

 + p (page fault overhead

 + swap page out

 + swap page in

 + restart overhead

)

9.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Demand Paging Example

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1 – p) x 200 + p (8 milliseconds)

 = (1 – p x 200 + p x 8,000,000

 = 200 + p x 7,999,800

If one access out of 1,000 causes a page fault, then

 EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!!

9.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Before Process 1 Modifies Page C

9.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

After Process 1 Modifies Page C

9.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

What happens if there is no free frame?

Page replacement – find some page in memory, but not

really in use, swap it out

algorithm

performance – want an algorithm which will result in

minimum number of page faults

Same page may be brought into memory several times

9.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Replacement

Prevent over-allocation of memory by modifying page-fault service

routine to include page replacement

Use modify (dirty) bit to reduce overhead of page transfers – only

modified pages are written to disk

Page replacement completes separation between logical memory

and physical memory – large virtual memory can be provided on a

smaller physical memory

9.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Need For Page Replacement

9.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;

update the page and frame tables

4. Restart the process

9.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Replacement

9.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular

string of memory references (reference string) and

computing the number of page faults on that string

In all our examples, the reference string is

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

3 frames (3 pages can be in memory at a time per process)

4 frames

Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

FIFO Page Replacement

9.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Optimal Algorithm

Replace page that will not be used for longest period of time

4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?

Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Optimal Page Replacement

9.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Least Recently Used (LRU) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Counter implementation

Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter

When a page needs to be changed, look at the counters to

determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Page Replacement

9.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Algorithm (Cont.)

Stack implementation – keep a stack of page numbers in a double

link form:

Page referenced:

 move it to the top

 requires 6 pointers to be changed

No search for replacement

9.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Use Of A Stack to Record The Most Recent Page References

9.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Approximation Algorithms

Reference bit

With each page associate a bit, initially = 0

When page is referenced bit set to 1

Replace the one which is 0 (if one exists)

 We do not know the order, however

Second chance

Need reference bit

Clock replacement

If page to be replaced (in clock order) has reference bit = 1
then:

 set reference bit 0

 leave page in memory

 replace next page (in clock order), subject to same rules

9.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Second-Chance (clock) Page-Replacement Algorithm

9.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Counting Algorithms

Keep a counter of the number of references that have been

made to each page

LFU Algorithm: replaces page with smallest count

MFU Algorithm: based on the argument that the page with

the smallest count was probably just brought in and has yet

to be used

9.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Keeping Track of the Working Set

Approximate with interval timer + a reference bit

Example:  = 10,000

Timer interrupts after every 5000 time units

Keep in memory 2 bits for each page

Whenever a timer interrupts copy and sets the values of all

reference bits to 0

If one of the bits in memory = 1  page in working set

Why is this not completely accurate?

Improvement = 10 bits and interrupt every 1000 time units

9.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory

A file is initially read using demand paging. A page-sized portion of

the file is read from the file system into a physical page.

Subsequent reads/writes to/from the file are treated as ordinary

memory accesses.

Simplifies file access by treating file I/O through memory rather
than read() write() system calls

Also allows several processes to map the same file allowing the

pages in memory to be shared

9.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory Mapped Files

9.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory-Mapped Shared Memory in Windows

9.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Operating System Examples

Windows

Solaris

9.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Windows

Uses demand paging with clustering. Clustering brings in pages

surrounding the faulting page.

Processes are assigned working set minimum and working set

maximum

Working set minimum is the minimum number of pages the process

is guaranteed to have in memory

A process may be assigned as many pages up to its working set

maximum

When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to

restore the amount of free memory

Working set trimming removes pages from processes that have

pages in excess of their working set minimum

9.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Solaris

Maintains a list of free pages to assign faulting processes

Lotsfree – threshold parameter (amount of free memory) to begin

paging

Desfree – threshold parameter to increasing paging

Minfree – threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges from

slowscan to fastscan

Pageout is called more frequently depending upon the amount of

free memory available

Thanks

	Slide 1: Chương 9: Các giải thuật thay thế trang
	Slide 2: Ôn lại
	Slide 3: Virtual Memory That is Larger Than Physical Memory
	Slide 4: Virtual-address Space
	Slide 5: Shared Library Using Virtual Memory
	Slide 6: Demand Paging
	Slide 7: Transfer of a Paged Memory to Contiguous Disk Space
	Slide 8: Valid-Invalid Bit
	Slide 9: Page Table When Some Pages Are Not in Main Memory
	Slide 10: Page Fault
	Slide 11: Page Fault (Cont.)
	Slide 12: Steps in Handling a Page Fault
	Slide 13: Performance of Demand Paging
	Slide 14: Demand Paging Example
	Slide 15: Before Process 1 Modifies Page C
	Slide 16: After Process 1 Modifies Page C
	Slide 17: What happens if there is no free frame?
	Slide 18: Page Replacement
	Slide 19: Need For Page Replacement
	Slide 20: Basic Page Replacement
	Slide 21: Page Replacement
	Slide 22: Page Replacement Algorithms
	Slide 23: First-In-First-Out (FIFO) Algorithm
	Slide 24: FIFO Page Replacement
	Slide 25: Optimal Algorithm
	Slide 26: Optimal Page Replacement
	Slide 27: Least Recently Used (LRU) Algorithm
	Slide 28: LRU Page Replacement
	Slide 29: LRU Algorithm (Cont.)
	Slide 30: Use Of A Stack to Record The Most Recent Page References
	Slide 31: LRU Approximation Algorithms
	Slide 32: Second-Chance (clock) Page-Replacement Algorithm
	Slide 33: Counting Algorithms
	Slide 34: Keeping Track of the Working Set
	Slide 35: Memory-Mapped Files
	Slide 36: Memory Mapped Files
	Slide 37: Memory-Mapped Shared Memory in Windows
	Slide 38: Operating System Examples
	Slide 39: Windows
	Slide 40: Solaris
	Slide 41: Thanks

