
8/15/2022

1

Component & Deployment
Diagrams

 Extending UML
 Component
 Deployment

INTRODUCTION
An Uml diagram classification:
 Static

 Use case diagram, Class diagram
 Dynamic

 State diagram, Activity diagram, Sequence diagram,
Collaboration diagram

 Implementation
 Component diagram, Deployment diagram

UML components diagrams are
 Implementation diagrams:

describe the different elements required for
implementing a system

1

2

8/15/2022

2

Why extend UML?

 Although UML is very well-defined, there
are situations in which it needs to be
customized to specific problem domains

 UML extension mechanisms are used to
extend UML by:

- adding new model elements,
- creating new properties,
- and specifying new semantics

 There are three extension mechanisms:
- stereotypes, tagged values, constraints and notes

Stereotypes
 Stereotypes are used to extend UML to

create new model elements that can be
used in specific domains

 E.g. when modeling an elevator control
system, we may need to represent some
classes, states etc. as
 «hardware»
 «software»

 Stereotypes should always be applied in a
consistent way

3

4

8/15/2022

3

Stereotypes (cont.)

«button»
CancelButton

Stereotype

state

 Ways of representing a stereotype:
- Place the name of the stereotype above the name of an

existing UML element (if any)
 The name of the stereotype needs to be between «» (e.g.

«node»)
 Don’t use double ‘<‘ or ‘>’ symbols, there are special

characters called open and close guillemets
- Create new icons



CancelButton

Stereotype
in form of icon

Tagged Values
 Tagged values

 Define additional properties for any kind of model
elements

 Can be defined for existing model elements and for
stereotypes

 Are shown as a tag-value pair where the tag represent the
property and the value represent the value of the property

 Tagged values can be useful for adding
properties about

- code generation
- version control
- configuration management
- authorship
- etc.

5

6

8/15/2022

4

Tagged Values (cont.)
 A tagged value is shown as a string that is

enclosed by brackets {} and which consists
of:

- the tag, a separator (the symbol =), and a value

{author = “Bob”,
Version = 2.5}

Employee

name
address

Two tagged values

Constraints
 used to extend the semantics of UML by

adding new rules, or modifying existing
ones.

 can also be used to specify conditions that
must be held true at all times for the
elements of a model.

 can be represented using the natural
language or OCL (Object Constraint
Language)

7

8

8/15/2022

5

Comments
 Comments are used to help clarify the

models that are being created
- e.g. comments may be used for explaining the rationale

behind some design decisions
 A comment is shown as a text string within a

note icon.
 A note icon can also contain an OCL

expression

Title Copy
1..*

Abstraction-occurrence
pattern

UML Profiles
UML Profiles provide an extension

mechanism for building UML models for
particular domains

- e.g. real-time systems, web development, etc…

 A profile consists of a package that contains
one or more related extension mechanisms
(such as stereotypes, tagged values and
constraints)
 that are applied to UML model elements

- Profiles do not extend the UML metamodel.
They are also called the UML light-weight
extension mechanism

9

10

8/15/2022

6

UML Profiles (cont.)
A UML profile is a specification that
does one or more of the following:

- Identifies a subset of the UML metamodel
(which may be the entire UML metamodel)

- Specifies stereotypes and/or tagged values
- Specifies well-formedness rules beyond those
that already exist

- Specifies semantics expressed in natural
language

Example of a profile
inspired by the research report of Cabot et al. (2003)

We would like to create a UML profile for
representing basic GUI components.

We suppose that our GUI contains the
following components:

- Forms (which can also be dialog boxes)
- Buttons

 Constraints: (in practice, we need to be more
precise)
 A form can invoke a dialog box
 A form as well as a dialog box can contain

buttons

11

12

8/15/2022

7

The GUI profile package

GUI Profile

Class

<<stereotype>>
Form

<<stereotype>>
Button

Association

<<stereotype>>
Contains

<<stereotype>>
DialogBox

Class and Association
are part of UML
metamodel

<<stereotype>>
Invokes

Instance Diagram of the GUI
Profile

<<Form>>
MainView

1 1

<<Button>>
OkButton

<<Button>>
CancelButton

<<Invokes>>

<<Contains>> <<Contains>>

<<DialogBox>>
OpenDialogBox

1 1

1 1

13

14

8/15/2022

8

Drawing Subsystems

 System design must model static and
dynamic structures:
 Component Diagrams for static structures

 show the structure at design time or compilation
time

 Deployment Diagram for dynamic structures
 show the structure of the run-time system

Component

Component:
• A component is a named physical and replaceable part of a system that represents
physical packaging of otherwise logical elements and that conforms to, and provides
the realization of, one or more interfaces.
• A component type represents a piece of software code (source, binary, or executable)

• A component type has a type name
• A component instance represents a run-time code unit

• A component instance has a name and a type (component-name : component-
type)

A component is represented as a rectangle with two small rectangles protruding
from its side

PlannerScheduler

15

16

8/15/2022

9

Component

Component:
• Physical packaging of model elements

- Source, binary, executable, configuration, makefile, IDL bindings, etc.
- Aggregate of other components

• Standard stereotypes
- <<executable>> - a program that may run on a node
- <<application>> - consists of several executables
- <<file>> - file containing source code or data
- <<library>> - static or dynamic library
- <<document>> - a document
- <<page>> - HTML page
- technology specific

• <<ActiveX>>, <<JavaBean>>, <<Applet>>, <<DLL>>, <<CORBA Component>>

Component
Modelling Elements: Components

• Basic
• Class
• Object
• Interface
• Collaboration
• Use-case
• Active Class
• Component
• Node

• Composite
• Package

Classes are basic model elements.
Class names are shown in boldface type.
Abstract classes are shown in italic.
Object (Class Instance) are shown by class elements
with underlined names.
Interfaces are indicated by lollipops.
Collaborations are indicated by dashed ovals. (They
realize use-cases).
Use-case is shown by ellipse.
Active classes are shown by thick bordered class
boxes.(They represent independent thread of processing).
A Component is a combination of one or more classes
that forms a physical software element.
A Node is a processor or hardware device.
A Composite Model element is a package or a subsystem
of base or composite elements.

17

18

8/15/2022

10

Component Diagram
 Component Diagram

 A graph of components connected by dependency
relationships.

 Shows the dependencies among software
components
 source code, linkable libraries, executables

 has only a type form, not an instance form

 Dependencies are shown as dashed arrows
from the client component to the supplier
component.
 The kinds of dependencies are implementation

language specific.

Component Diagram
Component Characteristics

• Components trace to the model elements they implement (hence
all the way back to use cases)

• A Component usually implements several elements

• Components provide the same interface as the model elements
they implement

• Compilation dependencies denote which elements are required to
compile a specific component

• Implement component stubs to ease compilation, integration and
test

19

20

8/15/2022

11

CASE STUDY
 Development of an application collecting students’ opinions

about courses
 A student can

 Read
 Insert
 Update
 Make data permanent about the courses in its schedule

 A professor can only see statistic elaboration of the data
 The student application must be installed in pc client

(sw1, sw2)
 The manager application must be installed in pc client (in

the manager’s office)
 There is one or more servers with DataBase and

components for courses management

COMPONENT NOTATION

 A component is shown as a rectangle
with
 A keyword <<component>>

 Components can be labelled with a stereotype
there are a number of standard stereotypes
ex: <<entity>>, <<subsystem>>

21

22

8/15/2022

12

Component ELEMENTS
 A component can have

 Interfaces
An interface represents a declaration of a set of
operations and obligations

 Usage dependencies
A usage dependency is relationship which one element
requires another element for its full implementation

 Ports
Port represents an interaction point between a component
and its environment

 Connectors
 Connect two components
 Connect the external contract of a component to the

internal structure

INTERFACE
 A component defines its behaviour in terms of

provided and required interfaces
 An interface

 Is the definition of a collection of one or more
operations

 Provides only the operations but not the implementation
 Implementation is normally provided by a class/

component
 In complex systems, the physical implementation is

provided by a group of classes rather than a single class

23

24

8/15/2022

13

INTERFACE
 May be shown using a rectangle

symbol with a keyword
<<interface>> preceding the name

 For displaying the full signature,
the interface rectangle can be
expanded to show details

 Can be
 Provided
 Required

INTERFACE
 A provided interface

 Characterize services that the
component offers to its
environment

 Is modeled using a ball, labelled
with the name, attached by a
solid line to the component

 A required interface
 Characterize services that the component expects

from its environment
 Is modeled using a socket, labelled with the name,

attached by a solid line to the component
 In UML 1.x were modeled using a dashed arrow

25

26

8/15/2022

14

INTERFACE
 Where two components/classes provide and require

the same interface, these two notations may be
combined

 The ball-and-socket notation hint at that interface in
question serves to mediate interactions between the two
components

 If an interface is shown using the rectangle symbol, we
can use an alternative notation, using dependency arrows

INTERFACE

 A component
 Specifies a CONTRACT of the services that it provides

to its clients and that it requires from others
components in terms of its provided and required
interfaces

 Can be replaced
 The system can be extended

 In a system context where there are multiple components
that require or provide a particular interface, a notation
abstraction can be used that combines by joining
the interfaces

27

28

8/15/2022

15

DEPENDENCIES

 Usage Dependency
 A usage dependency is relationship which one

element requires another element for its full
implementation

 Is a dependency in which the client requires the
presence of the supplier

 Is shown as dashed arrow with a <<use>> keyword
 The arrowhead point from the dependent

component to the one of which it is dependent

 Components can be
connected by usage
dependencies

PORT

 Is shown as a small square symbol
 Ports can be named, and the name is

placed near the square symbol
 Is associated with the interfaces that

specify the nature of the interactions
that may occur over a port

 Specifies a distinct interaction point
 Between that component and its environment
 Between that component and its internal parts

29

30

8/15/2022

16

PORT
 Ports can support unidirectional communication or

bi-directional communication

 If there are multiple
interfaces associated
with a port, these
interfaces may be listed
with the interface icon,
separated by a commas

PORT
 All interactions of a component with its

environment are achieved through a port
 The internals are fully isolated from the

environment
 This allows such a component to be used in any

context that satisfies the constraints specified by
its ports

 Ports are not defined in UML 1.x

31

32

8/15/2022

17

Component Diagram Examples

UML Interface
UML Component

Scheduler

Planner

GUI

reservations

update

Component Diagram Examples

33

34

8/15/2022

18

Component Diagram Examples

UML 2.0

Component Diagram Examples

UML 1.0

35

36

8/15/2022

19

UML 1.x vs. 2.x
Component Diagrams

Notational differences:
• UML 2 components are modeled as simple rectangles

•uses this symbol as a visual stereotype within the rectangle
• UML 1.x there were depicted as rectangles with two smaller
rectangles jutting out from the left-hand side. As you can see
• Both diagrams model dependencies, either between components or
between components and interfaces.

•both diagrams use the lollipop symbol to indicate an implemented
interface

•the UML 2 version introduces the socket symbol to indicate a
required interface.

DEPLOYMENT DIAGRAMS

 Deployment diagrams
 Show the physical relationship between hardware

and software in a system
 Hardware elements:

 Computers (clients, servers)
 Embedded processors
 Devices (sensors, peripherals)

 Are used to show the nodes where software
components reside in the run-time system

 There is a strong link between components diagrams and
deployment diagrams

37

38

8/15/2022

20

•A deployment diagram is a graph of nodes connected
by communication associations. Nodes may contain
component instances; indicates “Component” run on
nodes.

•Components may contain objects; indicates “Objects”
is part of the component.

•Components are connected to other components by
dashed-arrow dependencies.

Deployment Diagram

A Deployment Diagram shows the actual
Hardware configuration consisting of

• Nodes (processors)

• Software - Components

• Processes

• Objects

Deployment Diagram

39

40

8/15/2022

21

Deployment Diagram

• Captures the distinct number of computers involved
• Shows the communication modes employed
• Component diagrams can be embedded into deployment

diagrams effectively…

DEPLOYMENT DIAGRAMS

Deployment diagrams show the configuration of run-time
processing elements and the software components,
processes, and objects that live on them. Software

component instances represent run-time manifestation of
code units.

Components that do not exist as run-time entities do not appear in Deployment diagrams.

41

42

8/15/2022

22

DEPLOYMENT DIAGRAMS
 Deployment diagram

 Contains nodes and connections
 A node usually represent a piece of hardware in

the system

 A connection depicts the
communication path used by
the hardware to
communicate

 Usually indicates the
method such as TCP/IP

DEPLOYMENT DIAGRAMS

 An artifact
 Is the specification of a

phisycal piece of
information

 Ex: source files, binary
executable files, table in
a database system,….

 An artifact defined by
the user represents a
concrete element in the
physical world

 Deployment diagrams
contain artifact

43

44

8/15/2022

23

DEPLOYMENT DIAGRAMS

 An artifact manifest one or more model elements
 A <<manifestation>> is the concrete physical of one

or more model elements by an artifact
 This model element often is a component

 A manifestation is
notated as a dashed line
with an open arrow-head
labeled with the keyword
<<manifest>>

DEPLOYMENT DIAGRAMS

45

46

8/15/2022

24

Deployment Diagram
 Deployment diagrams are useful for showing a

system design after the following decisions are made
 Subsystem decomposition
 Concurrency
 Hardware/Software Mapping

 A deployment diagram is a graph of nodes connected
by communication associations.
 Nodes are shown as 3-D boxes.
 Nodes may contain component instances.
 Components may contain objects (indicating that the object

is part of the component)

Deployment Diagrams

Note embedded
component diagrams

47

48

8/15/2022

25

Deployment Diagram Example

Runtime
Dependency

Compile Time
Dependency

:Planner

:PC

:Scheduler

:HostMachine

<<database>>
meetingsDB

Deployment Diagram

Text

Sample Deployment Diagram

This diagram shows 3 machines: 2 PC workstations running
WebLogic and a Mainframe running the ODSs in DB2

<<Buildmaster Workstation>>
PC:Win2000 on Intel

<<WLS Instance: Port
8888>>

Admin Domain:WLS 6.1
Admin Server

<<Web
Browser>>

IE 5.5 Text

<<WIN2000 on 1 Ghz PIII>>
WebLogic W(dev) Server: WLS Managed

Server

<<WLS Instance: Port 8888>>
Admin Domain:WLS 6.1

Admin Server

<<WL Instance: Port 7001>>
Team's Server: WLS 6.1

<<Enterprise
Application>>

JDG.ear

Text

<<Mainframe>>
DB2 UNT: SYS D

<<database>>
Claim:ODS

<<database>>
PA&R:ODS

<<database>>
Login:ODS

administer SSL

administer

get data

49

50

8/15/2022

26

Deployment Diagram

Deployment + Component Diagram

51

52

