
Page 1

U
si

ng
 U

M
L

, P
at

te
rn

s,
 a

nd
 J

av
a

O
bj

ec
t-

O
ri

en
te

d
 S

of
tw

ar
e

E
ng

in
ee

ri
n

g
Integration and
System Testing

Overview

• Integration testing
• Big bang
• Bottom up
• Top down
• Sandwich
• Continuous

• System testing
• Functional
• Performance

• Acceptance testing
• Examples
• Summary

1

2

Page 2

Integration Testing

• The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

• Goal: Test all interfaces between subsystems
and the interaction of subsystems

• The Integration testing strategy determines the
order in which the subsystems are selected for
testing and integration.

Why do we do integration testing?

• Unit tests only test the unit in isolation

• Many failures result from faults in the interaction of
subsystems

• Often many Off-the-shelf components are used that
cannot be unit tested

• Without integration testing the system test will be very
time consuming

• Failures that are not discovered in integration testing will
be discovered after the system is deployed and can be
very expensive.

3

4

Page 3

Stubs and drivers

• Driver:
• A component, that calls the TestedUnit
• Controls the test cases

• Stub:
• A component, the TestedUnit

depends on
• Partial implementation
• Returns fake values.

Driver

Tested
Unit

Stub

Example: A 3-Layer-Design

Layer I

Layer II

Layer III

Spread
SheetView

A

Calculator

C

BinaryFile
Storage

E

XMLFile
Storage

F

Currency
DataBase

G

Currency
Converter

D

Data
Model

B

A

C

E F G

DB

Spread
SheetView

BinaryFile
Storage

Entity
Model

A

E F

Currency
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile
Storage

(Spreadsheet)

5

6

Page 4

A

C

E F G

DB

Big-Bang Approach

Test A

Test B

Test G

Test F

Test E

Test C

Test D
Test

A, B, C, D,
E, F, G

Big bang Example
1. Test xem

trang chu
2. Test xem

san pham
3. Test Tim

kiem
4. Test xem chi

tiet SP
5. ……..
6. Test xem

theo chung
loai

7. Test xem
theo nha SX

8. Test mua
hang

7

8

Page 5

Bottom-up Testing Strategy

• The subsystems in the lowest layer of the call
hierarchy are tested individually

• Then the next subsystems are tested that call the
previously tested subsystems

• This is repeated until all subsystems are included
• Drivers are needed.

A

C

E F G

DB

Bottom-up Integration A

Test
A, B, C, D,

E, F, G

E
Test E

F

Test F

B

Test B, E, F

C

Test C

D

Test D,G

G

Test G

9

10

Page 6

Bottom-up Example
1. Test xem

trang chu
2. Test xem

theo nha SX
3. Test xem

theo chung
loai

4. Test xem
san pham

5. Test mua
hang

6. Test Quan
ly gio hang

7. Test xem chi
tiet SP

8. ……..

Pros and Cons of Bottom-Up Integration
Testing

• Con:
• Tests the most important subsystem (user interface)

last
• Drivers needed

• Pro
• No stubs needed
• Useful for integration testing of the following systems

• Object-oriented systems
• Real-time systems
• Systems with strict performance requirements.

11

12

Page 7

Top-down Testing Strategy

• Test the top layer or the controlling subsystem
first

• Then combine all the subsystems that are called
by the tested subsystems and test the resulting
collection of subsystems

• Do this until all subsystems are incorporated
into the test

• Stubs are needed to do the testing.

Top-down Integration

Test
A, B, C, D,

E, F, G

All LayersLayer I + II

Test A, B, C, D

Layer I

Test A

A

E F

B C D

G

13

14

Page 8

Top-down Example
1. Test xem

trang chu
2. Test xem

san pham
3. Test xem

theo nha SX
4. Test xem

theo chung
loai

5. Test Quan
ly gio hang

6. Test mua
hang

7. Test xem chi
tiet SP

8. ……..

Pros and Cons of Top-down Integration
Testing

Pro
• Test cases can be defined in terms of the

functionality of the system (functional
requirements)

• No drivers needed

Cons
• Writing stubs is difficult: Stubs must allow all

possible conditions to be tested.
• Large number of stubs may be required,

especially if the lowest level of the system
contains many methods.

• Some interfaces are not tested separately.

15

16

Page 9

Sandwich Testing Strategy

• Combines top-down strategy with bottom-up
strategy

• The system is viewed as having three layers
• A target layer in the middle
• A layer above the target
• A layer below the target

• Testing converges at the target layer.

Sandwich Testing Strategy

Test
A, B, C, D,

E, F, G
Test B, E, F

Test D,G

Test A

Test E

Test F

Test G

Test A,B,C, D

A

E F

B C D

G

17

18

Page 10

Pros and Cons of Sandwich Testing

• Top and Bottom Layer Tests can be done in
parallel

• Problem: Does not test the individual
subsystems and their interfaces thoroughly
before integration

• Solution: Modified sandwich testing strategy

Sandwich Example
1. Test xem trang

chu
2. Test xem theo

nha SX
3. Test xem theo

chung loai
4. Test xem san

pham
5. Test mua hang
6. Test Quan ly gio

hang
7. Test xem theo

nha SX
8. Test xem theo

chung loai
9. Test Quan Ly

gio hang
10. Test Mua hang
11. Test xem chi tiet

SP
12. ……..

19

20

Page 11

Modified Sandwich Testing Strategy

• Test in parallel:
• Middle layer with drivers and stubs
• Top layer with stubs
• Bottom layer with drivers

• Test in parallel:
• Top layer accessing middle layer (top layer

replaces drivers)
• Bottom accessed by middle layer (bottom

layer replaces stubs).

Modified Sandwich Testing

Test F

Test E

Test B

Test G

Test D

Test A

Test C

Test B, E, F

Test D,G

Test A,C

Test
A, B, C, D,

E, F, G

A

E F

B C D

G

21

22

Page 12

Continuous Testing

• Continuous build:
• Build from day one
• Test from day one
• Integrate from day one
 System is always runnable

• Requires integrated tool support:
• Continuous build server
• Automated tests with high coverage
• Tool supported refactoring
• Software configuration management
• Issue tracking.

Spread
SheetView

BinaryFile
Storage

Data
Model

Continuous Testing Strategy

Layer I

Layer II

Layer III

A

E F

Currency
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile
Storage

Sheet View + Cells
+ Addition

+ File Storage

23

24

Page 13

Steps in Integration Testing

.

1. Based on the integration
strategy, select a
component to be tested.
Unit test all the classes in
the component.

2. Put selected component
together; do any
preliminary fix-up
necessary to make the
integration test operational
(drivers, stubs)

3. Test functional
requirements: Define test
cases that exercise all uses
cases with the selected
component

4. Test subsystem 4. Test subsystem
decomposition: Define test
cases that exercise all
dependencies

5. Test non-functional
requirements: Execute
performance tests

6. Keep records of the test
cases and testing activities.

7. Repeat steps 1 to 7 until
the full system is tested.

The primary goal of integration
testing is to identify failures
with the (current)
component configuration.

System Testing

• Functional Testing
• Validates functional requirements

• Performance Testing
• Validates non-functional requirements

• Acceptance Testing
• Validates clients expectations

25

26

Page 14

.

Functional Testing

Goal: Test functionality of system
• Test cases are designed from the requirements

analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

• The system is treated as black box
• Unit test cases can be reused, but new test

cases have to be developed as well.

Performance Testing

Goal: Try to violate non-functional requirements
• Test how the system behaves when overloaded.

• Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

• Try unusual orders of execution
• Call a receive() before send()

• Check the system’s response to large volumes
of data

• If the system is supposed to handle 1000 items, try it
with 1001 items.

• What is the amount of time spent in different
use cases?

• Are typical cases executed in a timely fashion?

27

28

Page 15

Types of Performance Testing

• Stress Testing
• Stress limits of system

• Volume testing
• Test what happens if large

amounts of data are handled

• Configuration testing
• Test the various software and

hardware configurations

• Compatibility test
• Test backward compatibility

with existing systems

• Timing testing
• Evaluate response times and

time to perform a function

• Security testing
• Try to violate security

requirements

• Environmental test
• Test tolerances for heat,

humidity, motion

• Quality testing
• Test reliability, maintain-

ability & availability

• Recovery testing
• Test system’s response to

presence of errors or loss
of data

• Human factors testing
• Test with end users.

Acceptance Testing

• Goal: Demonstrate system is
ready for operational use

• Choice of tests is made by
client

• Many tests can be taken
from integration testing

• Acceptance test is
performed by the client, not
by the developer.

• Alpha test:
• Client uses the software

at the developer’s
environment.

• Software used in a
controlled setting, with
the developer always
ready to fix bugs.

• Beta test:
• Conducted at client’s

environment (developer is
not present)

• Software gets a realistic
workout in target environ-
ment

29

30

Page 16

Testing has many activities

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing

Test Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

31

32

Page 17

The 4 Testing Steps

1. Select what has to be tested
• Analysis: Completeness of

requirements
• Design: Cohesion
• Implementation: Source

code

2. Decide how the testing is
done

• Review or code inspection
• Proofs (Design by Contract)
• Black-box, white box,
• Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
• A test case is a set of test

data or situations that will
be used to exercise the unit
(class, subsystem, system)
being tested or about the
attribute being measured

4. Create the test oracle
• An oracle contains the

predicted results for a set of
test cases

• The test oracle has to be
written down before the
actual testing takes place.

Guidance for Test Case Selection
Use analysis knowledge• Use analysis knowledge
about functional
requirements (black-box
testing):

• Use cases
• Expected input data
• Invalid input data

• Use design knowledge
about system structure,
algorithms, data structures
(white-box testing):

• Control structures
• Test branches, loops,

...
• Data structures

• Test records fields,
arrays, ...

• Use implementation
knowledge about
algorithms and
datastructures:

• Force a division by zero
• If the upper bound of an

array is 10, then use 11 as
index.

33

34

Page 18

Examples

• Web site with constrains
• Over 100 user login to web site
• Response time < 1ms
• Connect SQL database
• Authenticate user: user name/password
• Access home page after login
• High security

Functional testing examples

Test Case ID Test Scenario Test Steps Test Data Expected
Results Actual Results Pass/Fail

F01
Check Customer
Login with valid
Data

1.Go to site
http://demo.guru9
9.com
2.Enter UserId
3.Enter Password
4.Click Submit

Userid = guru99
Password =
pass99

User should Login
into home page As Expected Pass

F02
Check Customer
Login with invalid
Data

1.Go to site
http://demo.guru9
9.com
2.Enter UserId
3.Enter Password
4.Click Submit

Userid = guru99
Password =
glass99

User should not
Login into home
page

As Expected Pass

35

36

Page 19

Performance test case examples
Test Case ID Test Scenario Test Steps Test Data Expected

Results Actual Results Pass/Fail

P01 Check user limited

1.Open web site
http://demo.guru9
9.com with 51th
times
2.Enter UserId
3.Enter Password
4.Click Submit

Userid = guru99
Password =
pass99

User should Login
into home page Non As Expected Fail

P02 Check time
response

1.Go to site
http://demo.guru9
9.com with 51th
times
2.Enter UserId
3.Enter Password
4.Click Submit

Userid = guru99
Password =
glass99

T<1ms Not As Expected Fail

P03
Check SQL
Injection
(security)

1.Go to site
http://demo.guru9
9.com with 51th
times
2.Enter UserId
3.Enter Password
4.Click Submit

Userid =
<JavaScript
alert=‘Okie’>
Password =
<JavaScript
alert=‘Okie’>

No user like this SQL injecttion
data fail Fail

P04 Check web page
request (security)

1.Go to site
http://demo.guru9
9.com/home.aspx

No data No access Access home page Fail

Acceptant test case example

Test Case ID Test Scenario Test Steps Test Data Expected
Results Actual Results Pass/Fail

A01 Check browser

1.Open Firefox
2.Go to site
http://demo.guru9
9.com
3.Enter UserId
4.Enter Password
5.Click Submit
6.Open IE
7.Go to site
http://demo.guru9
9.com
8.Enter UserId
9.Enter Password
10.Click Submit

Userid = guru99
Password =
pass99

1. Firefox: ok
2. IE: ok

Firefox: Ok
IE: not ok Fail

A02 Check invalid user

1.Go to site
http://demo.guru9
9.com
2.Enter UserId
3.Enter Password
4.Click Submit

Userid = user 1
Password =
glass99

User can not Login
into web page As Expected Pass

37

38

Page 20

Test case guide

• Should
• Test Cases need to be simple and transparent
• Create Test Case with End User in Mind
• Avoid test case repetition.
• Do not Assume
• Using test case tools
• Ensure 100% Coverage
• Repeatable and self-standing
• Peer Review.

Scenario 1

• System testing
• 1 system includes:

• 2 web server
• 2 SQL database server
• 4 switch
• 3 LAN

• Constraints
• Redundancy (dự phòng)
• Cluster (gom cụm)
• Security (bảo mật)
• Available (sẳn sàng)

39

40

Page 21

Scenario 2

• System testing
• 1 system includes:

• 2 mail server
• 2 Domain controller
• 2 DHCP server
• 4 switch
• 5 LAN
• 2 Access point

• Constraints
• Redundancy (dự phòng)
• Cluster (gom cụm)
• Security (bảo mật)
• Available (sẳn sàng)

Summary

• Testing is still a black art, but many rules and
heuristics are available

• Testing consists of
• Unit testing
• Integration testing
• System testing
• Acceptance testing

• Design patterns can be used for integration
testing

• Testing has its own lifecycle

• Testing is still a black art, but many rules and
heuristics are available

• Testing consists of
• Unit testing
• Integration testing
• System testing
• Acceptance testing

• Design patterns can be used for integration
testing

• Testing has its own lifecycle

41

42

