
Logix5000
Controllers General
Instructions

Reference Manual

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Important User Information

Allen-Bradley, ControlLogix, FactoryTalk, Logix5000, RSLogix, RSLogix 5000, Rockwell Automation, RSNetWorx, and RSLinx are
trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Solid state equipment has operational characteristics differing from those of
electromechanical equipment. Safety Guidelines for the Application,
Installation and Maintenance of Solid State Controls (publication SGI-1.1
available from your local Rockwell Automation sales office or online at
http://literature.rockwellautomation.com) describes some important
differences between solid state equipment and hard-wired electromechanical
devices. Because of this difference, and also because of the wide variety of
uses for solid state equipment, all persons responsible for applying this
equipment must satisfy themselves that each intended application of this
equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for
indirect or consequential damages resulting from the use or application of this
equipment.

The examples and diagrams in this manual are included solely for illustrative
purposes. Because of the many variables and requirements associated with
any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to
use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without
written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware
of safety considerations.

WARNING Identifies information about practices or circumstances that
can cause an explosion in a hazardous environment, which
may lead to personal injury or death, property damage, or
economic loss.

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

ATTENTION Identifies information about practices or circumstances that
can lead to personal injury or death, property damage, or
economic loss. Attentions help you to identify a hazard,
avoid a hazard, and recognize the consequences.

SHOCK HAZARD Labels may be on or inside the equipment, for example, a
drive or motor, to alert people that dangerous voltage may
be present.

BURN HAZARD Labels may be on or inside the equipment, for example, a
drive or motor, to alert people that surfaces may be
dangerous temperatures.
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://www.literature.rockwellautomation.com
http://www.literature.rockwellautomation.com
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table of Contents
Summary of Changes Introduction . 15

Updated Information. 15
Preface Introduction . 17

Who Should Use This Manual . 17
Purpose of This Manual. 18
Common Information for All Instructions 19
Conventions and Related Terms. 19

Set and clear . 19
Relay ladder rung condition . 20
Function block states . 21

Instruction Locator Where to Find an Instruction . 23

Chapter 1
Digital Alarm Instruction (ALMD) Introduction . 31

About Operator Parameters . 31
Using the ALMD Instruction to Subscribe to and Display
Alarms. 31

Digital Alarm Operands. 32
Ladder Logic Operands . 32
Structured Text Operands. 32
Function Block Operands. 33

Structure Definition for ALARM_DIGITAL Tag 34
Input Parameters . 34
Output Parameters . 37

Example . 40
Ladder Logic . 40
Function Block . 41

Execution . 42
Ladder Logic . 42
Function Block . 42

Digital State Timing Diagrams . 43
Alarm Acknowledge Required and Latched 43
Alarm Acknowledge Required and Not Latched. 44
Alarm Acknowledge Not Required and Latched. 45
Alarm Acknowledge Not Required and Not Latched 46

Chapter 2
Analog Alarm Instruction (ALMA) Introduction . 47

About Operator Parameters . 47
Using the ALMA Instruction to Subscribe to and Display
Alarms. 47

Analog Alarm Operands . 48
Ladder Logic Operands . 48
Structured Text Operands. 48
Function Block Operands. 49

Structure Definition For ALARM_ANALOG Tag 50
Input Parameters . 50
5 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

6 Table of Contents
 Output Parameters . 55
Example . 62

Ladder Logic . 62
Structured Text . 62
Function Block . 63

Execution . 64
Ladder Logic . 64
Function Block . 64

Analog State Timing Diagrams . 65
Alarm Level Condition Acknowledge Required 65
Alarm Level Condition Acknowledge Not Required 66
Alarm Rate of Change Acknowledge Required 67
Alarm Rate of Change Acknowledge Not Required 68

Chapter 3
Bit Instructions
(XIC, XIO, OTE, OTL, OTU, ONS,
OSR, OSF, OSRI, OSFI)

Introduction . 69
Examine If Closed (XIC) . 70
Examine If Open (XIO) . 72
Output Energize (OTE) . 74
Output Latch (OTL). 76
Output Unlatch (OTU) . 78
One Shot (ONS) . 80
One Shot Rising (OSR) . 83
One Shot Falling (OSF) . 86
One Shot Rising with Input (OSRI) 89
One Shot Falling with Input (OSFI) 92

Chapter 4
Timer and Counter Instructions
(TON, TOF, RTO, TONR, TOFR,
RTOR, CTU, CTD, CTUD, RES)

Introduction . 95
Timer On Delay (TON) . 96
Timer Off Delay (TOF) . 100
Retentive Timer On (RTO). 105
Timer On Delay with Reset (TONR). 110
Timer Off Delay with Reset (TOFR) 114
Retentive Timer On with Reset (RTOR) 118
Count Up (CTU) . 123
Count Down (CTD). 127
Count Up/Down (CTUD) . 131
Reset (RES) . 136

Chapter 5
Input/Output Instructions
(MSG, GSV, SSV, IOT)

Introduction . 139
Message (MSG) . 140
MSG Error Codes . 148

Error Codes . 148
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table of Contents 7
Extended Error Codes . 150
PLC and SLC Error Codes (.ERR). 152
Block-Transfer Error Codes . 154

Specify the Configuration Details . 155
Specify CIP Data Table Read and Write messages 156
Reconfigure an I/O module . 157
Specify CIP Generic messages 158
Specify PLC-5 messages . 159
Specify SLC messages. 161
Specify block-transfer messages 161
Specify PLC-3 messages . 162
Specify PLC-2 messages . 163

MSG Configuration Examples . 164
Specify the Communication Details 165

Specify a path . 165
For Block Transfers . 168
Specify a Communication Method Or Module Address . 169
Choose a cache option. 170
Guidelines . 172

Get System Value (GSV) and Set System Value (SSV) 173
GSV/SSV Objects. 176

Access the CONTROLLER object 177
Access the CONTROLLERDEVICE object 177
Access the CST object . 181
Access the DF1 object . 182
Access the FAULTLOG object . 185
Access The MESSAGE Object . 186
Access The MODULE Object . 188
Access The MOTIONGROUP Object 189
Access The PROGRAM Object 190
Access The Routine object . 192
Access The SERIALPORT Object 192
Access The TASK Object . 194
Access The WALLCLOCKTIME Object 196

GSV/SSV Programming Example . 197
Get Fault Information. 197
Set Enable And Disable Flags . 199

Immediate Output (IOT) . 200

Chapter 6
Compare Instructions
(CMP, EQU, GEQ, GRT, LEQ, LES,
LIM, MEQ, NEQ)

Introduction . 205
Compare (CMP) . 207

CMP expressions . 209
Valid operators . 209
Format Expressions . 210
Determine The Order of Operation. 210
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

8 Table of Contents
Use Strings In an Expression . 211
Equal to (EQU) . 212
Greater than or Equal to (GEQ) . 216
Greater Than (GRT) . 220
Less Than or Equal to (LEQ) . 224
Less Than (LES) . 228
Limit (LIM) . 232
Mask Equal to (MEQ) . 238

Entering an Immediate Mask Value. 239
Not Equal to (NEQ). 243

Chapter 7
Compute/Math Instructions
(CPT, ADD, SUB, MUL, DIV, MOD,
SQR, SQRT, NEG, ABS)

Introduction . 247
Compute (CPT). 249

Valid operators . 251
Format Expressions . 251
Determine the order of operation 252

Add (ADD) . 253
Subtract (SUB) . 257
Multiply (MUL) . 260
Divide (DIV). 263
Modulo (MOD) . 268
Square Root (SQR) . 272
Negate (NEG) . 276
Absolute Value (ABS) . 279

Chapter 8
Move/Logical Instructions
(MOV, MVM, BTD, MVMT, BTDT,
CLR, SWPB, AND, OR, XOR, NOT,
BAND, BOR, BXOR, BNOT)

Introduction . 283
Move (MOV). 285
Masked Move (MVM) . 287

Enter an immediate mask value 288
Masked Move with Target (MVMT) 290
Bit Field Distribute (BTD) . 293
Bit Field Distribute with Target (BTDT) 296
Clear (CLR) . 299
Swap Byte (SWPB) . 301
Bitwise AND (AND) . 305
Bitwise OR (OR) . 308
Bitwise Exclusive OR (XOR) . 311
Bitwise NOT (NOT) . 315
Boolean AND (BAND) . 319
Boolean OR (BOR) . 322
Boolean Exclusive OR (BXOR) . 325
Boolean NOT (BNOT). 328
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table of Contents 9
Chapter 9
Array (File)/Misc. Instructions
(FAL, FSC, COP, CPS, FLL, AVE,
SRT, STD, SIZE)

Introduction . 331
Selecting Mode of Operation . 332

All mode . 332
Numerical mode . 333
Incremental mode . 335

File Arithmetic and Logic (FAL) . 337
FAL Expressions. 346
Valid operators . 347
Format Expressions . 347
Determine the order of operation 348

File Search and Compare (FSC) . 349
FSC expressions. 354
Valid Operators . 355
Format Expressions . 355
Determine the order of operation 356
Use Strings In an Expression . 357

Copy File (COP) Synchronous Copy File (CPS). 358
File Fill (FLL) . 364
File Average (AVE) . 368
File Sort (SRT). 373
File Standard Deviation (STD) . 378
Size In Elements (SIZE) . 384

Chapter 10
Array (File)/Shift Instructions
(BSL, BSR, FFL, FFU, LFL, LFU)

Introduction . 387
Bit Shift Left (BSL). 388
Bit Shift Right (BSR) . 392
FIFO Load (FFL) . 396
FIFO Unload (FFU) . 402
LIFO Load (LFL) . 408
LIFO Unload (LFU) . 414

Chapter 11
Sequencer Instructions
(SQI, SQO, SQL)

Introduction . 421
Sequencer Input (SQI). 422

Enter an Immediate Mask Value 423
Use SQI without SQO . 425

Sequencer Output (SQO) . 426
Enter an Immediate Mask Value 427
Using SQI with SQO . 429
Resetting the position of SQO 429

Sequencer Load (SQL). 430
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

10 Table of Contents
Chapter 12
Program Control Instructions
(JMP, LBL, JSR, RET, SBR, JXR,
TND, MCR, UID, UIE, AFI,
NOP, EOT, SFP, SFR, EVENT)

Introduction . 435
Jump to Label (JMP)
Label (LBL) . 436
Jump to Subroutine (JSR)
Subroutine (SBR) Return (RET) . 438
Jump to External Routine (JXR) . 449
Temporary End (TND) . 452
Master Control Reset (MCR). 454
User Interrupt Disable (UID) User Interrupt Enable (UIE) . . 456
Always False Instruction (AFI) . 458
No Operation (NOP) . 459
End of Transition (EOT) . 460
SFC Pause (SFP) . 462
SFC Reset (SFR) . 464
Trigger Event Task (EVENT) . 466

Programmatically Determine if an EVENT Instruction
Triggered a Task . 466

Chapter 13
For/Break Instructions
(FOR, FOR...DO, BRK, EXIT, RET)

Introduction . 471
For (FOR) . 472
Break (BRK) . 475
Return (RET). 476

Chapter 14
Special Instructions
(FBC, DDT, DTR, PID)

Introduction . 479
File Bit Comparison (FBC). 480

Selecting the Search Mode . 482
Diagnostic Detect (DDT) . 488

Selecting the search mode . 490
Data Transitional (DTR). 496

Enter an immediate mask value 497
Proportional Integral Derivative (PID) 499
Configure a PID Instruction . 505

Specify tuning . 506
Specify configuration . 507
Specifying Alarms . 507
Specifying Scaling . 508

Using PID Instructions. 508
Anti-reset Windup And Bumpless Transfer From Manual To
Auto . 510
PID instruction timing . 511
Bumpless restart . 515
Derivative Smoothing. 516
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table of Contents 11
Set the deadband. 517
Use output limiting . 517
Feedforward or output biasing 518
Cascading loops. 518
Control a Ratio. 519

PID Theory. 520
PID Process . 520
PID Process With Master/slave Loops 520

Chapter 15
Trigonometric Instructions
(SIN, COS, TAN, ASN, ASIN, ACS,
ACOS, ATN, ATAN)

Introduction . 521
Sine (SIN) . 522
Cosine (COS) . 525
Tangent (TAN) . 529
Arc Sine (ASN) . 532
Arc Cosine (ACS) . 536
Arc Tangent (ATN) . 540

Chapter 16
Advanced Math Instructions
(LN, LOG, XPY)

Introduction . 545
Natural Log (LN) . 546
Log Base 10 (LOG) . 549
X to the Power of Y (XPY) . 552

Chapter 17
Math Conversion Instructions
(DEG, RAD, TOD, FRD, TRN,
TRUNC)

Introduction . 555
Degrees (DEG) . 556
Radians (RAD) . 559
Convert to BCD (TOD) . 562
Convert to Integer (FRD) . 565
Truncate (TRN) . 567

Chapter 18
ASCII Serial Port Instructions
(ABL, ACB, ACL, AHL, ARD, ARL,
AWA, AWT)

Introduction . 571
Instruction Execution . 572
ASCII Error Codes . 574
String Data Types. 574

ASCII Test For Buffer Line (ABL) . 575
ASCII Chars in Buffer (ACB) . 578
ASCII Clear Buffer (ACL) . 581
ASCII Handshake Lines (AHL) . 583
ASCII Read (ARD) . 587
ASCII Read Line (ARL). 591
ASCII Write Append (AWA). 595
ASCII Write (AWT) . 600
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

12 Table of Contents
Chapter 19
ASCII String Instructions
(CONCAT, DELETE, FIND, INSERT,
MID)

Introduction . 605
String Data Types. 607

String Concatenate (CONCAT) . 608
String Delete (DELETE) . 610
Find String (FIND) . 612
Insert String (INSERT) . 614
Middle String (MID) . 616

Chapter 20
ASCII Conversion Instructions
(STOD, STOR, DTOS, RTOS, UPPER,
LOWER)

Introduction . 619
String Data Types. 621

String To DINT (STOD). 622
String To REAL (STOR) . 624
DINT to String (DTOS) . 626
REAL to String (RTOS). 629
Upper Case (UPPER). 631
Lower Case (LOWER) . 633

Appendix A
Common Attributes Introduction . 635

Immediate Values . 635
Data Conversions . 635

SINT or INT to DINT . 637
Integer to REAL . 639
DINT to SINT or INT . 639
REAL to an integer . 640

Appendix B
Function Block Attributes Introduction . 641

Choose the Function Block Elements 641
Latching Data . 642
Order of Execution . 644

Resolve a Loop . 645
Resolve Data Flow Between Two Blocks 647
Create a One Scan Delay . 648
Summary . 648

Function Block Responses to Overflow Conditions. 649
Timing Modes. 650

Common instruction parameters for timing modes. 652
Overview of timing modes . 654

Program/Operator Control. 655
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Table of Contents 13
Appendix C
Structured Text Programming Introduction . 659

Structured Text Syntax. 659
Assignments . 661

Specify a non-retentive assignment 662
Assign an ASCII character to a string. 663

Expressions . 663
Use arithmetic operators and functions 665
Use relational operators . 666
Use logical operators . 668
Use bitwise operators. 669
Determine the order of execution. 669

Instructions. 670
Constructs. 671

Some key words are reserved for future use 671
IF...THEN . 672
CASE...OF. 675
FOR…DO. 678
WHILE…DO. 681
REPEAT…UNTIL . 684
Comments . 687

ASCII Character Codes . 689
Index Rockwell Automation Support . 705

Installation Assistance . 705
New Product Satisfaction Return 705

Back Cover
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

14 Table of Contents
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Summary of Changes

Introduction This release of this document contains new and updated information.
To find new and updated information, look for change bars, as shown
next to this paragraph.

Updated Information This document contains the following changes:

Change Page

Instruction locator table — Added the new digital and analog alarm
instructions.

Instruction Locator

Chapter 1 — Added new chapter 1, Digital Alarm Instruction 31

Chapter 2 — Added new chapter 2, Analog Alarm Instruction 47

Remaining chapters 3...20 — Renumbered. 69...619
15 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

16 Summary of Changes
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Preface

Introduction This manual is one of several Logix5000-based instruction manuals.

Who Should Use
This Manual

This document provides a programmer with details about each
available instruction for a Logix-based controller. You should already
be familiar with how the Logix-based controller stores and
processes data.

Novice programmers should read all the details about an instruction
before using the instruction. Experienced programmers can refer to
the instruction information to verify details.

Task/Goal Documents

Program the controller for sequential
applications

Logix5000 Controllers General Instructions Reference Manual, publication
1756-RM003

Program the controller for process or drives
applications

Logix5000 Controllers Process Control and Drives Instructions Reference Manual,
publication 1756-RM006

Program the controller for motion
applications

Logix5000 Controllers Motion Instruction Set Reference Manual, publication
1756-RM007

Program the controller to use equipment
phases

PhaseManager User Manual, publication LOGIX-UM001

Import a text file or tags into a project Logix5000 Controllers Import/Export Reference Manual, publication 1756-RM084

Export a project or tags to a text file

Convert a PLC-5 or SLC 500 application to a
Logix5000 application

Logix5550 Controller Converting PLC-5 or SLC 500 Logic to Logix5550 Logic Reference
Manual, publication 1756-6.8.5

You are here
17 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

18 Preface
Purpose of This Manual This manual provides a description of each instruction in this format.

The following icons help identify language specific information:

This section Provides this type of information

Instruction name identifies the instruction

defines whether the instruction is an input or an output instruction

Operands lists all the operands of the instruction

Instruction structure lists control status bits and values, if any, of the instruction

Description describes the instruction’s use

defines any differences when the instruction is enabled and disabled, if appropriate

Arithmetic status flags defines whether or not the instruction affects arithmetic status flags

see appendix Common Attributes

Fault conditions defines whether or not the instruction generates minor or major faults

if so, defines the fault type and code

Execution defines the specifics of how the instruction operates

Example provides at least one programming example in each available programming language

includes a description explaining each example

if available in relay ladder, describes the operands

if available in function block, describes the operands

The pins shown on a default function block are only the default pins. The operands
table lists all the possible pins for a function block.

if available in structured text, describes the operands

This icon Indicates this programming language

relay ladder

structured text

function block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Preface 19
Common Information for
All Instructions

The Logix5000 instruction set has some common attributes:

Conventions and
Related Terms

Set and clear

This manual uses set and clear to define the status of bits (booleans)
and values (non-booleans):

If an operand or parameter support more than one data type, the
bold data types indicate optimal data types. An instruction executes
faster and requires less memory if all the operands of the instruction
use the same optimal data type, typically DINT or REAL.

For this information See this appendix

common attributes appendix Common Attributes defines:

• arithmetic status flags

• data types

• keywords

function block attributes appendix Function Block Attributes defines:

• program and operator control

• timing modes

This term Means

set the bit is set to 1 (ON)

a value is set to any non-zero number

clear the bit is cleared to 0 (OFF)

all the bits in a value are cleared to 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

20 Preface
Relay ladder rung condition

The controller evaluates ladder instructions based on the rung
condition preceding the instruction (rung-condition-in). Based on the
rung-condition-in and the instruction, the controller sets the rung
condition following the instruction (rung-condition-out), which in
turn, affects any subsequent instruction.

If the rung-in condition to an input instruction is true, the controller
evaluates the instruction and sets the rung-out condition based on the
results of the instruction. If the instruction evaluates to true, the
rung-out condition is true; if the instruction evaluates to false, the
rung-out condition is false.

The controller also prescans instructions. Prescan is a special scan of
all routines in the controller. The controller scans all main routines
and subroutines during prescan, but ignores jumps that could skip the
execution of instructions. The controller executes all FOR loops and
subroutine calls. If a subroutine is called more than once, it is
executed each time it is called. The controller uses prescan of relay
ladder instructions to reset non-retentive I/O and internal values.

During prescan, input values are not current and outputs are not
written. The following conditions generate prescan:

• Toggle from Program to Run mode

• Automatically enter Run mode from a power-up condition.

Prescan does not occur for a program when:

• The program becomes scheduled while the controller is running.

• The program is unscheduled when the controller enters Run
mode.

input instruction

rung-in
condition

output instruction

rung-out
condition
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Preface 21
Function block states

The controller evaluates function block instructions based on the state
of different conditions.

Every function block instruction also includes EnableIn and
EnableOut parameters:

• function block instructions execute normally when EnableIn
is set.

• when EnableIn is cleared, the function block instruction either
executes prescan logic, postscan logic, or just skips normal
algorithm execution.

• EnableOut mirrors EnableIn, however, if function block
execution detects an overflow condition EnableOut is
also cleared.

• function block execution resumes where it left off when
EnableIn toggles from cleared to set. However there are some
function block instructions that specify special functionality,
such as re-initialzation, when EnableIn toggles from cleared to
set. For function block instructions with time base parameters,
whenever the timing mode is Oversample, the instruction
always resumes were it left off when EnableIn toggles from
cleared to set.

If the EnableIn parameter is not wired, the instruction always executes
as normal and EnableIn remains set. If you clear EnableIn, it changes
to set the next time the instruction executes.

IMPORTANT When programming in function block, restrict the range of engineering units to
+/-10+/-15 because internal floating point calculations are done using single
precision floating point. Engineering units outside of this range may result in a loss
of accuracy if results approach the limitations of single precision floating point
(+/-10+/-38).

Possible Condition Description

prescan Prescan for function block routines is the same as for relay ladder routines. The only difference is that the
EnableIn parameter for each function block instruction is cleared during prescan.

instruction first scan Instruction first scan refers to the first time an instruction is executed after prescan. The controller uses
instruction first scan to read current inputs and determine the appropriate state to be in.

instruction first run Instruction first run refers to the first time the instruction executes with a new instance of a data structure.
The controller uses instruction first run to generate coefficients and other data stores that do not change for
a function block after initial download.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

22 Preface
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Instruction Locator

Where to Find an Instruction
Use this locator to find the reference details about Logix
instructions (the grayed-out instructions are available in
other manuals). This locator also lists which programming
languages are available for the instructions.

If the locator lists: The instruction is documented in:

a page number this manual

motion Logix5000 Controllers Motion Instruction Set Reference Manual,
publication 1756-RM007

PhaseManager PhaseManager User Manual, publication LOGIX-UM001

process control Logix5000 Controllers Process Control and Drives Instruction Set
Reference Manual, publication 1756-RM006
23 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

24 Instruction Locator
Instruction: Location: Languages:

ABL
ASCII Test For Buffer Line

616 relay ladder
structured text

ABS
Absolute Value

279 relay ladder
structured text
function block

ACB
ASCII Chars in Buffer

578 relay ladder
structured text

ACL
ASCII Clear Buffer

581 relay ladder
structured text

ACS
Arc Cosine

536 relay ladder
structured text
function block

ADD
Add

253 relay ladder
structured text
function block

AFI
Always False Instruction

458 relay ladder

AHL
ASCII Handshake Lines

583 relay ladder
structured text

ALM
Alarm

process control structured text
function block

ALMA
Analog Alarm

47 relay ladder
structured text
function block

ALMD
Digital Alarm

31 relay ladder
structured text
function block

AND
Bitwise AND

305 relay ladder
structured text
function block

ARD
ASCII Read

587 relay ladder
structured text

ARL
ASCII Read Line

591 relay ladder
structured text

ASN
Arc Sine

532 relay ladder
structured text
function block

ATN
Arc Tangent

540 relay ladder
structured text
function block

AVE
File Average

368 relay ladder

AWA
ASCII Write Append

595 relay ladder
structured text

AWT
ASCII Write

600 relay ladder
structured text

BAND
Boolean AND

319 structured text
function block

BNOT
Boolean NOT

328 structured text
function block

BOR
Boolean OR

322 structured text
function block

BRK
Break

475 relay ladder

BSL
Bit Shift Left

388 relay ladder

BSR
Bit Shift Right

392 relay ladder

BTD
Bit Field Distribute

296 relay ladder

BTDT
Bit Field Distribute with
Target

296 structured text
function block

BTR
Message

140 relay ladder
structured text

BTW
Message

140 relay ladder
structured text

BXOR
Boolean Exclusive OR

325 structured text
function block

CLR
Clear

296 relay ladder
structured text

CMP
Compare

207 relay ladder

CONCAT
String Concatenate

608 relay ladder
structured text

COP
Copy File

358 relay ladder
structured text

COS
Cosine

525 relay ladder
structured text
function block

CPS
Synchronous Copy File

358 relay ladder
structured text

CPT
Compute

249 relay ladder

CTD
Count Down

127 relay ladder

CTU
Count Up

123 relay ladder

CTUD
Count Up/Down

131 structured text
function block

D2SD
Discrete 2-State Device

process control structured text
function block

Instruction: Location: Languages:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Instruction Locator 25
D3SD
Discrete 3-State Device

process control structured text
function block

DDT
Diagnostic Detect

488 relay ladder

DEDT
Deadtime

process control structured text
function block

DEG
Degrees

559 relay ladder
structured text
function block

DELETE
String Delete

610 relay ladder
structured text

DERV
Derivative

process control structured text
function block

DFF
D Flip-Flop

process control structured text
function block

DIV
Divide

263 relay ladder
structured text
function block

DTOS
DINT to String

626 relay ladder
structured text

DTR
Data Transitional

496 relay ladder

EOT
End of Transition

460 relay ladder
structured text

EQU
Equal to

207 relay ladder
structured text
function block

ESEL
Enhanced Select

process control structured text
function block

EVENT
Trigger Event Task

466 relay ladder
structured text

FAL
File Arithmetic and Logic

337 relay ladder

FBC
File Bit Comparison

480 relay ladder

FFL
FIFO Load

396 relay ladder

FFU
FIFO Unload

402 relay ladder

FGEN
Function Generator

process control structured text
function block

FIND
Find String

612 relay ladder
structured text

FLL
File Fill

364 relay ladder

Instruction: Location: Languages:

FOR
For

472 relay ladder

FRD
Convert to Integer

565 relay ladder
function block

FSC
File Search and Compare

349 relay ladder

GEQ
Greater than or Equal to

216 relay ladder
structured text
function block

GRT
Greater Than

220 relay ladder
structured text
function block

GSV
Get System Value

173 relay ladder
structured text

HLL
High/Low Limit

process control structured text
function block

HPF
High Pass Filter

process control structured text
function block

ICON
Input Wire Connector

641 function block

INSERT
Insert String

614 relay ladder
structured text

INTG
Integrator

process control structured text
function block

IOT
Immediate Output

200 relay ladder
structured text

IREF
Input Reference

641 function block

JKFF
JK Flip-Flop

process control structured text
function block

JMP
Jump to Label

436 relay ladder

JSR
Jump to Subroutine

438 relay ladder
structured text
function block

JXR
Jump to External Routine

449 relay ladder

LBL
Label

436 relay ladder

LDL2
Second-Order Lead Lag

process control structured text
function block

LDLG
Lead-Lag

process control structured text
function block

LEQ
Less Than or Equal to

224 relay ladder
structured text
function block

Instruction: Location: Languages:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

26 Instruction Locator
LES
Less Than

228 relay ladder
structured text
function block

LFL
LIFO Load

408 relay ladder

LFU
LIFO Unload

414 relay ladder

LIM
Limit

232 relay ladder
function block

LN
Natural Log

546 relay ladder
structured text
function block

LOG
Log Base 10

(1) relay ladder
structured text
function block

LOWER
Lower Case

633 relay ladder
structured text

LPF
Low Pass Filter

process control structured text
function block

MAAT
Motion Apply Axis Tuning

motion relay ladder
structured text

MAFR
Motion Axis Fault Reset

motion relay ladder
structured text

MAG
Motion Axis Gear

motion relay ladder
structured text

MAHD
Motion Apply Hookup
Diagnostics

motion relay ladder
structured text

MAH
Motion Axis Home

motion relay ladder
structured text

MAJ
Motion Axis Jog

motion relay ladder
structured text

MAM
Motion Axis Move

motion relay ladder
structured text

MAOC
Motion Arm Output Cam

motion relay ladder
structured text

MAPC
Motion Axis Position Cam

motion relay ladder
structured text

MAR
Motion Arm Registration

motion relay ladder
structured text

MASD
Motion Axis Shutdown

motion relay ladder
structured text

MAS
Motion Axis Stop

motion relay ladder
structured text

MASR
Motion Axis Shutdown Reset

motion relay ladder
structured text

Instruction: Location: Languages:

MATC
Motion Axis Time Cam

motion relay ladder
structured text

MAVE
Moving Average

process control structured text
function block

MAW
Motion Arm Watch

motion relay ladder
structured text

MAXC
Maximum Capture

process control structured text
function block

MCCD
Motion Coordinated Change
Dynamics

motion relay ladder
structured text

MCCM
Motion Coordinated Circular
Move

motion relay ladder
structured text

MCCP
Motion Calculate Cam Profile

motion relay ladder
structured text

MCD
Motion Change Dynamics

motion relay ladder
structured text

MCLM
Motion Coordinated Linear
Move

motion relay ladder
structured text

MCR
Master Control Reset

454 relay ladder

MCSD
Motion Coordinated
Shutdown

motion relay ladder
structured text

MCS
Motion Coordinated Stop

motion relay ladder
structured text

MCSR
Motion Coordinated
Shutdown Reset

motion relay ladder
structured text

MCT
Motion Coordinated
Transform

motion relay ladder
structured text

MCTP
Motion Calculate Transform
Position

motion relay ladder
structured text

MDF
Motion Direct Drive Off

motion relay ladder
structured text

MDOC
Motion Disarm Output Cam

motion relay ladder
structured text

MDO
Motion Direct Drive On

motion relay ladder
structured text

MDR
Motion Disarm Registration

motion relay ladder
structured text

Instruction: Location: Languages:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Instruction Locator 27
MDW
Motion Disarm Watch

motion relay ladder
structured text

MEQ
Mask Equal to

238 relay ladder
structured text
function block

MGSD
Motion Group Shutdown

motion relay ladder
structured text

MGS
Motion Group Stop

motion relay ladder
structured text

MGSP
Motion Group Strobe
Position

motion relay ladder
structured text

MGSR
Motion Group Shutdown
Reset

motion relay ladder
structured text

MID
Middle String

616 relay ladder
structured text

MINC
Minimum Capture

process control structured text
function block

MOD
Modulo

268 relay ladder
structured text
function block

MOV
Move

285 relay ladder

MRAT
Motion Run Axis Tuning

motion relay ladder
structured text

MRHD
Motion Run Hookup
Diagnostics

motion relay ladder
structured text

MRP
Motion Redefine Position

motion relay ladder
structured text

MSF
Motion Servo Off

motion relay ladder
structured text

MSG
Message

140 relay ladder
structured text

MSO
Motion Servo On

motion relay ladder
structured text

MSTD
Moving Standard Deviation

process control structured text
function block

MUL
Multiply

260 relay ladder
structured text
function block

MUX
Multiplexer

process control function block

MVM
Masked Move

287 relay ladder

Instruction: Location: Languages:

MVMT
Masked Move with Target

290 structured text
function block

NEG
Negate

276 relay ladder
structured text
function block

NEQ
Not Equal to

243 relay ladder
structured text
function block

NOP
No Operation

459 relay ladder

NOT
Bitwise NOT

315 relay ladder
structured text
function block

NTCH
Notch Filter

process control structured text
function block

OCON
Output Wire Connector

641 function block

ONS
One Shot

80 relay ladder

OR
Bitwise OR

308 relay ladder
structured text
function block

OREF
Output Reference

641 function block

OSFI
One Shot Falling with Input

92 structured text
function block

OSF
One Shot Falling

86 relay ladder

OSRI
One Shot Rising with Input

83 structured text
function block

OSR
One Shot Rising

83 relay ladder

OTE
Output Energize

74 relay ladder

OTL
Output Latch

76 relay ladder

OTU
Output Unlatch

78 relay ladder

PATT
Attach to Equipment Phase

PhaseManager relay ladder
structured text

PCLF
Equipment Phase Clear
Failure

PhaseManager relay ladder
structured text

PCMD
Equipment Phase Command

PhaseManager relay ladder
structured text

Instruction: Location: Languages:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

28 Instruction Locator
PDET
Detach from Equipment
Phase

PhaseManager relay ladder
structured text

PFL
Equipment Phase Failure

PhaseManager relay ladder
structured text

PIDE
Enhanced PID

process control structured text
function block

PID
Proportional Integral
Derivative

499 relay ladder
structured text

PI
Proportional + Integral

process control structured text
function block

PMUL
Pulse Multiplier

process control structured text
function block

POSP
Position Proportional

process control structured text
function block

POVR
Equipment Phase Override
Command

PhaseManager relay ladder
structured text

PPD
Equipment Phase Paused

PhaseManager relay ladder
structured text

PRNP
Equipment Phase New
Parameters

PhaseManager relay ladder
structured text

PSC
Phase State Complete

PhaseManager relay ladder
structured text

PXRQ
Equipment Phase External
Request

PhaseManager relay ladder
structured text

RAD
Radians

559 relay ladder
structured text
function block

RESD
Reset Dominant

process control structured text
function block

RES
Reset

136 relay ladder

RET
Return

438 and 476 relay ladder
structured text
function block

RLIM
Rate Limiter

process control structured text
function block

RMPS
Ramp/Soak

process control structured text
function block

RTO
Retentive Timer On

105 relay ladder

Instruction: Location: Languages:

RTOR
Retentive Timer On with
Reset

118 structured text
function block

RTOS
REAL to String

629 relay ladder
structured text

SBR
Subroutine

438 relay ladder
structured text
function block

SCL
Scale

process control structured text
function block

SCRV
S-Curve

process control structured text
function block

SEL
Select

process control function block

SETD
Set Dominant

process control structured text
function block

SFP
SFC Pause

462 relay ladder
structured text

SFR
SFC Reset

464 relay ladder
structured text

SIN
Sine

522 relay ladder
structured text
function block

SIZE
Size In Elements

384 relay ladder
structured text

SNEG
Selected Negate

process control structured text
function block

SOC
Second-Order Controller

process control structured text
function block

SQI
Sequencer Input

422 relay ladder

SQL
Sequencer Load

430 relay ladder

SQO
Sequencer Output

426 relay ladder

SQR
Square Root

272 relay ladder
function block

SQRT
Square Root

272 structured text

SRT
File Sort

373 relay ladder
structured text

SRTP
Split Range Time
Proportional

process control structured text
function block

SSUM
Selected Summer

process control structured text
function block

Instruction: Location: Languages:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Instruction Locator 29
SSV
Set System Value

173 relay ladder
structured text

STD
File Standard Deviation

378 relay ladder

STOD
String To DINT

622 relay ladder
structured text

STOR
String To REAL

624 relay ladder
structured text

SUB
Subtract

257 relay ladder
structured text
function block

SWPB
Swap Byte

301 relay ladder
structured text

TAN
Tangent

529 relay ladder
structured text
function block

TND
Temporary End

452 relay ladder

TOD
Convert to BCD

562 relay ladder
function block

TOFR
Timer Off Delay with Reset

114 structured text
function block

TOF
Timer Off Delay

100 relay ladder

TONR
Timer On Delay with Reset

110 structured text
function block

TON
Timer On Delay

96 relay ladder

TOT
Totalizer

process control structured text
function block

TRN
Truncate

567 relay ladder
function block

TRUNC
Truncate

567 structured text

UID
User Interrupt Disable

456 relay ladder
structured text

UIE
User Interrupt Enable

456 relay ladder
structured text

UPDN
Up/Down Accumulator

process control structured text
function block

UPPER
Upper Case

631 relay ladder
structured text

XIC
Examine If Closed

70 relay ladder

XIO
Examine If Open

72 relay ladder

Instruction: Location: Languages:

XOR
Bitwise Exclusive OR

311 relay ladder
structured text
function block

XPY
X to the Power of Y

552 relay ladder
structured text
function block

(1)

Instruction: Location: Languages:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

30 Instruction Locator
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 1

Digital Alarm Instruction (ALMD)

Introduction Use the ALMD instruction to detect alarms based on Boolean
(true/false) conditions.

You can use the ALMD instruction to provide control of boolean
alarms using program or operator interface control ("Prog" or "Oper"
control parameters).

The ALMD instruction has parameters that appear as operands on the
instruction. The instruction operands are not common to all
languages. The ALMD instruction has a corresponding tag structure
(ALARM_DIGITAL) which is common to all languages.

Refer to Structure Definition for ALARM_DIGITAL Tag on page 34 for
descriptions of the tag elements and alarm execution.

About Operator Parameters

Operator parameters (for example, OperSuppress) work wih any
Rockwell Automation or third-party operator interface to allow control
of alarm states.

When an Operator request is set, the ALMD instruction evaluates
whether it can respond to the request, then always resets the request.
This lets operator interfaces work with this instruction by merely
resetting the desired request bit. You don’t have to program the
operator interface to reset the request bits.

Using the ALMD Instruction to Subscribe to and Display Alarms

The ALMD instruction provides additional functionality when used
with RSLinx Enterprise and FactoryTalk View SE software. You can
display alarms in the Alarm Summary, Alarm Banner, Alarm Status
Explorer, and Alarm Log Viewer displays in FactoryTalk View SE
software.

RSLinx Enterprise software subscribes to alarms in the controller.
Using several output parameters (shown in the output parameter
tables that follow), you can monitor the instruction to see the alarm
31 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

32 Digital Alarm Instruction (ALMD)
subscription status and to display alarm status changes. If a
connection to RSLinx Enterprise software is lost, the controller can
briefly buffer alarm data until the connection is restored.

Digital Alarm Operands These operands are located on the instruction.

Ladder Logic Operands

Structured Text Operands

Operand Type Format Description

ALMD tag ALARM_DIGITAL structure ALMD structure

ProgAck BOOL Tag
Immediate

Value is copied to .ProgAck when instruction executes.
On transition from False to True, acknowledges alarm
(if acknowledgement is required).

ProgReset BOOL Tag
Immediate

Value is copied to .ProgReset when instruction
executes. On transition from False to True, resets alarm
(if resetting is required).

ProgDisable BOOL Tag
Immediate

Value is copied to .ProgDisable when instruction
executes. When True, disables alarm (does not
override Enable Commands).

ProgEnable BOOL Tag
Immediate

Value is copied to .ProgEnable when instruction
executes. When True, enables alarm (takes precedence
over Disable commands).

MinDurationPRE DINT Immediate Specifies how long the alarm condition must be met
before it is reported (milliseconds).

MinDurationACC DINT Immediate Indicates the current accumulator value for the alarm’s
MinDuration timer.

ALMD(ALMD,In,ProgAck,ProgReset,ProgDisable,ProgEnable)

Operand Type Format Description

ALMD ALARM_DIGITAL structure ALMD structure

In BOOL Tag
Immediate

Alarm Condition to be monitored. Value is copied to .In when
instruction executes.

ProgAck BOOL Tag
Immediate

Value is copied to .ProgAck when instruction executes. On transition
from False to True, acknowledges alarm (if acknowledgement is
required).
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Digital Alarm Instruction (ALMD) 33
Function Block Operands

ProgReset BOOL Tag
Immediate

Value is copied to .ProgReset when instruction executes. On transition
from False to True, resets alarm (if resetting is required).

ProgDisable BOOL Tag
Immediate

Value is copied to .ProgDisable when instruction executes. When True,
disables alarm (does not override Enable Commands).

ProgEnable BOOL Tag
Immediate

Value is copied to .ProgEnable when instruction executes. When True,
enables alarm (takes precedence over Disable commands).

Operand Type Format Description

Operand Type Format Description

ALMD tag ALARM_DIGITAL structure ALMD structure
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

34 Digital Alarm Instruction (ALMD)
Structure Definition for
ALARM_DIGITAL Tag

The tag structure, ALARM_DIGITAL, which corresponds to the ALMD
tag, is common to all languages, except where noted.

Input Parameters

Input Parameter Data Type Description

EnableIn BOOL System-defined input.

Ladder Logic: Corresponds to the rung state. Does not affect processing.

Structured Text: Does not affect processing.

Function Block: Enable input. If cleared, the instruction does not execute and outputs are not
updated.

Default is set.

In BOOL The digital signal input to the instruction.

Ladder Logic: Follows rung state.

Structured Text: Copied from instruction operand.

Default is 0.0.

InFault BOOL Input bad health indicator. If In is read from a digital input, then InFault is normally controlled
by the digital input fault status. When InFault is set, it indicates the input signal has an error.

Default is cleared = good health.

Condition BOOL Specifies how alarm is activated.

When set, alarm condition is activated when In is Set.

When reset, alarm condition is activated when In is Cleared.

Default is set.

AckRequired BOOL Specifies whether alarm acknowledgement is required.

Set - Acknowledgement required.

Cleared - Acknowledgement not required.

Default is set.

Latched BOOL Specifies whether alarm is latched. Latched alarms remain InAlarm when the alarm
condition becomes false, until a Reset command is received.

Set - Latched.

Cleared - Unlatched.

Default is cleared.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Digital Alarm Instruction (ALMD) 35
ProgAck BOOL Program Acknowledge. Set by the user program to acknowledge the alarm. Requires a
False-to-True transition while the alarm is Unacknowledged.

Ladder Logic: Copied from instruction operand.

Structured Text: Copied from instruction operand.

Default is cleared.

OperAck BOOL Operator Acknowledge. Set by the operator interface to acknowledge the alarm. Requires a
False-to-True transition while the alarm is Unacknowledged. The alarm instruction clears this
parameter.

Default is cleared.

ProgReset BOOL Program Reset. Set by the user program to reset the alarm. Requires a False-to-True
transition while the alarm is InAlarm and the In condition is not in alarm.

Ladder Logic: Copied from instruction operand.

Structured Text: Copied from instruction operand.

Default is cleared.

OperReset BOOL Operator Reset. Set by the operator interface to reset the alarm. Requires a False-to-True
transition while the alarm is InAlarm and the In condition is not in alarm. The alarm
instruction clears this parameter.

Default is cleared.

ProgSuppress BOOL Program Suppress. Set by the user program to suppress the alarm.

Default is cleared.

OperSuppress BOOL Operator Suppress. Set by the operator interface to suppress the alarm. The alarm
instruction clears this parameter.

Default is cleared.

ProgUnsuppress BOOL Program Unsuppress. Set by the user program to unsuppress the alarm. Takes precedence
over Suppress commands.

Default is cleared.

OperUnsuppress BOOL Operator Unsuppress. Set by the operator interface to unsuppress the alarm. Takes
precedence over Suppress commands. The alarm instruction clears this parameter.

Default is cleared.

ProgDisable BOOL Program Disable. Set by the user program to disable the alarm.

Ladder Logic: Copied from instruction operand.

Structured Text: Copied from instruction operand.

Default is cleared.

Input Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

36 Digital Alarm Instruction (ALMD)
OperDisable BOOL Operator Disable. Set by the operator interface to disable the alarm. The alarm instruction
clears this parameter.

Default is cleared.

ProgEnable BOOL Program Enable. Set by the user program to enable the alarm. Takes precedence over
Disable command.

Ladder Logic: Copied from instruction operand.

Structured Text: Copied from instruction operand.

Default is cleared.

OperEnable BOOL Operator Enable. Set by the operator interface to enable the alarm. Takes precedence over
Disable command. The alarm instruction clears this parameter.

Default is cleared.

AlarmCountReset BOOL A False-to-True transition resets the alarm count to zero.

Default is cleared.

UseProgTime BOOL Specifies whether the controller’s clock is used to timestamp the InAlarm and
ReturnToNormal events, or if these events are timestamped by the user program (using the
ProgTime parameter).

Set - ProgTime value provides timestamp.

Cleared - Controller’s clock provides timestamp.

Default is cleared.

ProgTime LINT Specifies a timestamp value for the InAlarm and ReturnToNormal events, if UseProgTime is
Set.

Severity DINT Specifies the severity of the alarm.

Valid = 1 to 1000 (1000 = most severe; 1 = least severe).

Default is 500.

MinDurationPRE DINT Specifies the minimum duration preset for the alarm condition to remain true before the
alarm is marked as InAlarm and alarm notification is sent to clients (milliseconds).

Valid = 0 to 2147483647.

Default is 0.

Input Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Digital Alarm Instruction (ALMD) 37
Output Parameters

Output Parameter Data Type Description

EnableOut BOOL System-defined output parameter. Follows the state of EnableIn.

InAlarm BOOL Indicates whether the alarm is active.

Set - In alarm.

Cleared - Normal.

Acked BOOL Indicates whether the alarm is acknowledged.

Set - Alarm acknowledged.

Cleared - Alarm not acknowledged.

(Always set when AckRequired is false).

InAlarmUnack BOOL Indicates whether an alarm is active (InAlarm) and unacknowledged.

Set - Alarm is both active (InAlarm) and unacknowledged.

Cleared - Alarm is either inactive or acknowledged (or both).

Suppressed BOOL Indicates whether the alarm is suppressed.

Set - Alarm suppressed.

Cleared - Alarm unsuppressed.

Disabled BOOL Indicates whether the alarm is disabled.

Set - Alarm disabled.

Cleared - Alarm enabled.

MinDurationACC DINT Indicates the elapsed time since the alarm was detected. When this value reaches
MinDurationPRE, the alarm becomes active (InAlarm), and a notification is sent to clients.

AlarmCount DINT The number of times the alarm has been activated (InAlarm). If the maximum value is
reached, the counter leaves the value at the maximum count value.

InAlarmTime LINT Timestamp of alarm detection.

AckTime LINT Timestamp of alarm acknowledgement. If the alarm does not require acknowledgement, this
timestamp is equal to alarm time.

RetToNormalTime LINT Timestamp of alarm returning to a normal state.

AlarmCountResetTime LINT Timestamp indicating when the alarm count was reset.

DeliveryER BOOL Indicates alarm notification message delivery error.

Set – delivery error – either no alarm subscriber was subscribed or at least one subscriber
did not receive the latest alarm change state message.

Cleared – delivery successful or in progress.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

38 Digital Alarm Instruction (ALMD)
DeliveryDN BOOL Indicates alarm notification message delivery success.

Set – delivery success – at least one subscriber was subscribed and all subscribers received
the latest alarm change state message successfully.

Cleared – delivery not completed successfully or in progress.

DeliveryEN BOOL Indicates alarm notification message delivery in process.

Set – delivery in progress.

Cleared – delivery not in progress.

NoSubscriber BOOL Indicates that the alarm had no subscribers when attempting to deliver the most recent state
change message.

Set – no subscribers.

Cleared – At least one subscriber.

NoConnection BOOL Indicates that all of the alarm’s subscribers were disconnected when attempting to deliver
the most recent state change message:

Set – all subscribers disconnected.

Cleared – at least one subscriber connected.

CommError BOOL Indicates that there was a communication error when delivering last alarm message to at
least one subscriber:

Set – communication errors – all retries exhausted.

Cleared – all connected subscribers successfully received alarm message

If this error is indicated then it means that a subscriber was subscribed, and it had a
connection opened, but the message was not delivered successfully.

AlarmBuffered BOOL Indicates that the alarm message was buffered when not delivered to subscriber(s), either
due to a CommError or a lost Connection:

Set – alarm message buffered for at least one subscriber.

Cleared – alarm message is not buffered.

Subscribers DINT Indicates number of subscribers for this alarm.

SubscNotified DINT Indicates number of subscribers successfully notified about the most recent alarm state
change.

Status DINT Indicates the bit-mapped status of the instruction execution.

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Digital Alarm Instruction (ALMD) 39
InstructFault BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

InFaulted BOOL User program has set InFault to indicate bad quality input data.

SeverityInv BOOL Indicates invalid alarm severity configuration.

If severity <1, the instruction uses Severity = 1.

If severity >1000, the instruction uses Severity = 1000.

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

40 Digital Alarm Instruction (ALMD)
Example This illustration shows the manner in which a digital alarm executes in
a typical system configuration.

Alarm execution is shown below.

In this example, two motor failure signals are combined such that if
either one occurs, a motor fault alarm is activated. A programmatic
acknowledge is sometimes used to acknowledge the alarm.

Ladder Logic

Structured Text

Motor101FaultConditions := Motor101Overtemp AND
Motor101FailToStart;

ALMD(Motor101Fault,Motor101FaultConditions,Motor101Ack,0,0,0);

Motor01Overtemp
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Digital Alarm Instruction (ALMD) 41
Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

42 Digital Alarm Instruction (ALMD)
Execution The tables below show execution action for Ladder Logic and
Function Block programming languages.

Ladder Logic

Function Block

Condition Action

prescan The rung-condition-out is set to false. All operator requests,
timestamps, and delivery flags are cleared. The alarm
condition is set to OutOfAlarm and Acknowledged.

rung-condition-in is false The rung-condition-out is set to false. The .In parameter is
cleared, and the instruction evaluates to determine the
alarm state.

rung-condition-in is true The rung-condition-out is set to true. The .In parameter is
set, and the instruction evaluates to determine the alarm
state.

postscan The rung-condition-out is set to false.

Condition Action

prescan All operator requests, timestamps, and
delivery flags are cleared. The alarm
condition is set to OutOfAlarm and
Acknowledged.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared The instruction does not execute. EnableOut
is cleared.

EnableIn is set The instruction executes.EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Digital Alarm Instruction (ALMD) 43
Digital State Timing
Diagrams

These timing diagrams show the sequence of bit operations in a
typical system configuration.

Alarm Acknowledge Required and Latched
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

44 Digital Alarm Instruction (ALMD)
Alarm Acknowledge Required and Not Latched
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Digital Alarm Instruction (ALMD) 45
Alarm Acknowledge Not Required and Latched
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

46 Digital Alarm Instruction (ALMD)
Alarm Acknowledge Not Required and Not Latched
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 2

Analog Alarm Instruction (ALMA)

Introduction Use the ALMA instruction to detect alarms based on the level or rate
of change of analog value.

The ALMA instruction has parameters which appear as operands on
the instruction. The instruction operands are not common to all
languages. The ALMA instruction has a corresponding tag structure
(ALARM_ANALOG) that is common to all languages.

Refer to Structure Definition For ALARM_ANALOG Tag on page 50 for
descriptions of the tag elements and alarm execution.

About Operator Parameters

Operator parameters (for example, OperSuppress) work wih any
Rockwell Automation or third-party operator interface to allow control
of alarm states.

When an Operator request is set, the ALMA instruction evaluates
whether it can respond to the request, then always resets the request.
This lets operator interfaces work with this instruction by merely
setting the desired request bit. You don’t have to program the
operator interface to reset the request bits.

Using the ALMA Instruction to Subscribe to and Display Alarms

The ALMA instruction provides additional functionality when used
with RSLinx Enterprise and FactoryTalk View SE software. You can
display alarms in the Alarm Summary, Alarm Banner, Alarm Status
Explorer, and Alarm Log Viewer displays in FactoryTalk View SE
software.

RSLinx Enterprise software subscribes to alarms in the controller.
Using several output parameters (shown in the output paramater
tables that follow), you can monitor the instruction to see the alarm
subscription status and to display alarm status changes. If a
connection to RSLinx Enterprise software is lost, the controller can
briefly buffer alarm data until the connection is restored.
47 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

48 Analog Alarm Instruction (ALMA)
Analog Alarm Operands These operands are located on the instruction.

Ladder Logic Operands

Structured Text Operands

Operand Type Format Description

ALMA tag ALARM_ANALOG structure ALMA structure

In REAL
DINT
INT
SINT

Tag
Immediate

Value is copied to .In when
instruction executes. The
alarm input value, which is
compared with alarm limits to
detect the alarm conditions.

ProgAckAll BOOL Tag
Immediate

Value is copied to .ProgAckAll
when instruction executes. On
transition from False to True,
acknowledges all alarm
conditions that require
acknowledgement.

ProgDisable BOOL Tag
Immediate

Value is copied to
.ProgDisable when instruction
executes. When True,
disables alarm (does not
override Enable Commands).

ProgEnable BOOL Tag
Immediate

Value is copied to .ProgEnable
when instruction executes.
When True, enables alarm
(takes precedence over
Disable commands).

HHlimit REAL Immediate High High alarm limit

HLimit REAL Immediate High alarm limit

LLimit REAL Immediate Low alarm limit

LLLimit REAL Immediate Low low alarm limit

ALMA(ALMA,In,ProgAckAll,ProgDisable,ProgEnable)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 49
Function Block Operands

Operand Type Format Description

ALMA ALARM_ANALOG structure ALMA structure

In REAL
DINT
INT
SINT

Tag
Immediate

Value is copied to .In when
instruction executes. The
alarm input value, which is
compared with alarm limits to
detect the alarm conditions.

ProgAckAll BOOL Tag
Immediate

Value is copied to .ProgAckAll
when instruction executes. On
transition from False to True,
acknowledges all alarm
conditions that require
acknowledgement.

ProgDisable BOOL Tag
Immediate

Value is copied to
.ProgDisable when instruction
executes. When True,
disables alarm (does not
override Enable Commands).

ProgEnable BOOL Tag
Immediate

Value is copied to .ProgEnable
when instruction executes.
When True, enables alarm
(takes precedence over
Disable commands).

Operand Type Format Description

ALMA tag ALARM_ANALOG structure ALMA structure
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

50 Analog Alarm Instruction (ALMA)
Structure Definition For
ALARM_ANALOG Tag

The tag structure, ALARM_ANALOG, which corresponds to the ALMA
tag, is common to all languages, except where noted.

Input Parameters

Input Parameter Data Type Description

EnableIn BOOL System-defined input.

Ladder Logic: Corresponds to the rung state. If cleared, the instruction does not execute and
outputs are not updated.

Structured Text: Does not affect processing.

Function Block: Enable input. If cleared, the instruction does not execute and outputs are not
updated.

Default is set.

In REAL The alarm input value, which is compared with alarm limits to detect the alarm condition.

Ladder Logic: copied from instruction operand.

Structured Text: copied from instruction operand.

Default is 0.0.

InFault BOOL Input bad health indicator. If In is read from an analog input, then InFault is normally controlled
by the analog input fault status. When InFault is set, it indicates the input signal has an error.

Default is cleared = good health.

HHEnabled BOOL Specifies whether a high-high alarm condition detection is enabled. Set - Condition detection
enabled. Cleared - Condition detection disabled.

Default is set.

HEnabled BOOL Specifies whether a high alarm condition detection is enabled. Set - Condition detection
enabled. Cleared - Condition detection disabled.

Default is set.

LEnabled BOOL Specifies whether a low alarm condition detection is enabled. Set - Condition detection
enabled. Cleared - Condition detection disabled.

Default is set.

LLEnabled BOOL Specifies whether a low-low alarm condition detection is enabled. Set - Condition detection
enabled. Cleared - Condition detection disabled.

Default is set.

AckRequired BOOL Specifies whether alarm acknowledgement is required. Set - Acknowledgement required.
Cleared - Acknowledgement not required.

Default is set.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 51
ProgAckAll BOOL Program Acknowledge All. Set by the user program to acknowledge all conditions of this alarm.
Requires a False-to-True transition while the alarm condition(s) are Unacknowledged.

Default is cleared.

OperAckAll BOOL Operator Acknowledge All. Set by the operator interface to acknowledge all conditions of this
alarm. Requires a False-to-True transition while the alarm condition(s) are Unacknowledged.
The alarm instruction clears this parameter.

Default is cleared.

HHProgAck BOOL High-High Alarm Program Acknowledge. Set by the user program to acknowledge the alarm
high-high condition. Requires a False-to-True transition while the alarm condition is
Unacknowledged.

Default is cleared.

HHOperAck BOOL High-High Alarm Operator Acknowledge. Set by the operator interface to acknowledge the
alarm high-high condition. Requires a False-to-True transition while the alarm condition is
Unacknowledged. The alarm instruction clears this parameter.

Default is cleared.

HProgAck BOOL High Alarm Program Acknowledge. Set by the user program to acknowledge the alarm high
condition. Requires a False-to-True transition while the alarm condition is Unacknowledged.

Default is cleared.

HOperAck BOOL High Alarm Operator Acknowledge. Set by the operator interface to acknowledge the alarm
high condition. Requires a False-to-True transition while the alarm condition is
Unacknowledged. The alarm instruction clears this parameter.

Default is cleared.

LProgAck BOOL Low Alarm Program Acknowledge. Set by the user program to acknowledge the alarm low
condition. Requires a False-to-True transition while the alarm condition is Unacknowledged.

Default is cleared.

LOperAck BOOL Low Alarm Operator Acknowledge. Set by the operator interface to acknowledge the alarm low
condition. Requires a False-to-True transition while the alarm condition is Unacknowledged.
The alarm instruction clears this parameter.

Default is cleared.

LLProgAck BOOL Low-Low Alarm Program Acknowledge. Set by the user program to acknowledge the alarm
low-low condition. Requires a False-to-True transition while the alarm condition is
Unacknowledged.

Default is cleared.

LLOperAck BOOL Low-Low Alarm Operator Acknowledge. Set by the operator interface to acknowledge alarm
low-low conditions. Requires a False-to-True transition while the alarm condition is
Unacknowledged. The alarm instruction clears this parameter.

Default is cleared.

Input Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

52 Analog Alarm Instruction (ALMA)
ROCPosProgAck BOOL Rate Of Change Positive Alarm Program Acknowledge. Set by the user program to acknowledge
a positive rate-of-change alarm condition. Requires a False-to-True transition while the alarm
condition is Unacknowledged.

Default is cleared.

ROCPosOperAck BOOL Rate Of Change Positive Alarm Operator Acknowledge. Set by the operator interface to
acknowledge a positive rate-of-change alarm condition. Requires a False-to-True transition
while the alarm condition is Unacknowledged. The alarm instruction clears this parameter.

Default is cleared.

ROCNegProgAck BOOL Rate Of Change Negative Alarm Program Acknowledge. Set by the user program to
acknowledge a negative rate-of-change alarm condition. Requires a False-to-True transition
while the alarm condition is Unacknowledged.

Default is cleared.

ROCNegOperAck BOOL Rate Of Change Negative Alarm Operator Acknowledge. Set by the operator interface to
acknowledge a negative rate-of-change alarm condition. Requires a False-to-True transition
while the alarm condition is Unacknowledged. The alarm instruction clears this parameter.

Default is cleared.

ProgSuppress BOOL Program Suppress. Set by the user program to suppress the alarm.

Default is cleared.

OperSuppress BOOL Operator Suppress. Set by the operator interface to suppress the alarm. The alarm instruction
clears this parameter.

Default is cleared.

ProgUnsuppress BOOL Program Unsuppress. Set by the user program to unsuppress the alarm. Takes precedence over
Suppress command.

OperUnsuppress BOOL Operator Unsuppress. Set by the operator interface to unsuppress the alarm. Takes precedence
over Suppress command. The alarm instruction clears this parameter.

Default is cleared.

ProgDisable BOOL Program Disable. Set by the user program to disable the alarm.

Default is cleared.

OperDisable BOOL Operator Disable. Set by the operator interface to disable the alarm. The alarm instruction
clears this parameter.

Default is cleared.

ProgEnable BOOL Program Enable. Set by the user program to enable the alarm. Takes precedence over Disable
command.

Default is cleared.

OperEnable BOOL Operator Enable. Set by the operator interface to enable the alarm. Takes precedence over
Disable command. The alarm instruction clears this parameter.

Default is cleared.

Input Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 53
AlarmCountReset BOOL A False-to-True transition resets the alarm counts for all conditions to zero.

Default is cleared.

HHLimit REAL Specifies the high-high alarm limit.

Valid = HLimit < HHLimit < maximum positive float.

Default = 0.0.

HHSeverity DINT Specifies the severity of the high-high alarm condition.

Valid = 1 to 1000 (1000 = most severe; 1 = least severe).

Default = 500.

HLimit REAL Specifies the high alarm limit.

Valid = LLimit < HLimit < HHLimit.

Default = 0.0.

HSeverity DINT Specifies the severity of the high alarm condition.

Valid = 1 to 1000 (1000 = most severe; 1 = least severe).

Default = 500.

LLimit REAL Specifies the low alarm limit.

Valid = LLLimit < LLimit < HLimit.

Default = 0.0.

LSeverity DINT Specifies the severity of the low alarm condition.

Valid = 1 to 1000 (1000 = most severe; 1 = least severe).

Default = 500.

LLLimit REAL Specifies the low-low alarm limit.

Valid = maximum negative float < LLLimit < LLimit.

Default = 0.0.

LLSeverity DINT Specifies the severity of the low-low alarm condition.

Valid = 1 to 1000 (1000 = most severe; 1 = least severe).

Default = 500.

Input Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

54 Analog Alarm Instruction (ALMA)
MinDurationPRE DINT Specifies the minimum duration preset for the alarm In value to be in any level-based
non-normal condition before the alarm notification is sent to clients (milliseconds). Does not
apply to Rate of Change limits. Once the minimum duration preset it reached, any alarm
notifications for subsequent alarm level events are sent immediately. The minimum duration
time will be reset once the alarm returns to normal.

Valid = 0 to 2147483647.

Default = 0.

Deadband REAL Specifies the deadband for detecting that high-high, high, low, and low-low alarm levels have
returned to normal.

Valid = 0.0 to maximum possible float.

Default = 0.0.

ROCPosLimit REAL Specifies the limit for an increasing rate-of-change in units per second. Detection is enabled for
any value > 0.0 if ROCPeriod is also > 0.0.

Valid = 0.0 to maximum possible float.

Default = 0.0.

ROCPosSeverity DINT Specifies the severity of the increasing rate-of-change alarm condition.

Valid = 1 to 1000 (1000 = most severe; 1 = least severe).

Default = 500.

ROCNegLimit REAL Specifies the limit for a decreasing rate-of-change in units per second. Detection is enabled for
any value > 0.0 if ROCPeriod is also > 0.0.

Valid = 0.0 to maximum possible float.

Default = 0.0.

ROCNegSeverity DINT Specifies the severity of the negative rate-of-change alarm condition.

Valid = 1 to 1000 (1000 = most severe; 1 = least severe).

Default = 500.

ROCPeriod REAL Specifies the time period in seconds for calculation of the ROC value. This value specifies the
sampling interval for calculating the ROC value. Each time the sampling interval expires, the
difference between the current sample and the previous sample is divided by the time interval.

Rate-of-change detection is enabled for any value > 0.0.

Valid = 0.0 to maximum possible float.

Default = 0.0.

Input Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 55
 Output Parameters

Output Parameter Data Type Description

EnableOut BOOL System-defined output parameter. Follows
the state of EnableIn.

InAlarm BOOL Indicates whether any alarm condition is
active.

Set – at least one Alarm condition active
(InAlarm).

Cleared – all Alarm conditions inactive.

AnyInAlarmUnack BOOL Indicates whether any alarm condition is
detected and unacknowledged.

Set – at least one Alarm condition is both
active (InAlarm) and unacknowledged.

Cleared – all Alarm conditions are either
inactive or acknowledged (or both).

HHInAlarm BOOL Indicates a high-high alarm condition.

Set - In alarm.

Cleared - Normal.

HInAlarm BOOL Indicates a high alarm condition.

Set - In alarm.

Cleared - Normal.

LInAlarm BOOL Indicates a low alarm condition.

Set - In alarm.

Cleared - Normal.

LLInAlarm BOOL Indicates a low-low alarm condition.

Set - In alarm.

Cleared - Normal.

ROCPosInAlarm BOOL Indicates whether a positive rate-of-change
alarm condition is detected.

Set - In alarm.

Cleared - Normal.

ROCNegInAlarm BOOL Indicates whether a negative
rate-of-change alarm condition is detected.

Set - In alarm.

Cleared - Normal.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

56 Analog Alarm Instruction (ALMA)
ROC REAL Indicates the calculated rate-of-change of
the In value.

HHAcked BOOL Indicates whether the high-high alarm
condition is acknowledged.

Set - Acknowledged.

Cleared - Not acknowledged.

(Always Set when AckRequired is false).

HAcked BOOL Indicates whether the high alarm condition
is acknowledged.

Set - Acknowledged.

Cleared - Not acknowledged.

(Always Set when AckRequired is false).

LAcked BOOL Indicates whether the low alarm condition
is acknowledged.

Set - Acknowledged.

Cleared - Not acknowledged.

(Always Set when AckRequired is false).

LLAcked BOOL Indicates whether the low-low alarm
condition is acknowledged.

Set - Acknowledged.

Cleared - Not acknowledged.

(Always Set when AckRequired is false).

ROCPosAcked BOOL Indicates whether the positive
rate-of-change alarm condition is
acknowledged.

Set - Acknowledged. Cleared - Not
acknowledged.

(Always Set when AckRequired is false).

ROCNegAcked BOOL Indicates whether the negative
rate-of-change alarm condition is
acknowledged.

Set - Acknowledged.

Cleared - Not acknowledged.

(Always Set when AckRequired is false).

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 57
HHInAlarmUnack BOOL Indicates whether the high-high alarm is
active (InAlarm) and unacknowledged.

Set - Alarm is both active (InAlarm) and
unacknowledged.

Cleared - Alarm is either inactive or
acknowledged (or both).

HInAlarmUnack BOOL Indicates whether the high alarm is active
(InAlarm) and unacknowledged.

Set - Alarm is both active and
unacknowledged.

Cleared - Alarm is either inactive or
acknowledged (or both).

LInAlarmUnack BOOL Indicates whether the low alarm condition
is active (InAlarm) and unacknowledged.

Set - Alarm is both active and
unacknowledged.

Cleared - Alarm is either inactive or
acknowledged (or both).

LLInAlarmUnack BOOL Indicates whether the low-low alarm
condition is active (InAlarm) and
unacknowledged.

Set - Alarm is both active and
unacknowledged.

Cleared - Alarm is either inactive or
acknowledged (or both).

ROCPosInAlarmUnack BOOL Indicates whether the positive
rate-of-change alarm condition is active and
unacknowledged.

Set - Alarm is both active (InAlarm) and
unacknowledged.

Cleared - Alarm is either inactive or
acknowledged (or both).

ROCNegInAlarmUnack BOOL Indicates whether the negative
rate-of-change alarm condition is active and
unacknowledged.

Set - Alarm is both active (InAlarm) and
unacknowledged.

Cleared - Alarm is either inactive or
acknowledged (or both).

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

58 Analog Alarm Instruction (ALMA)
Suppressed BOOL Indicates whether the alarm is suppressed.

Set - Alarm suppressed.

Cleared - Alarm unsuppressed.

Disabled BOOL Indicates whether the alarm is disabled.

Set - Alarm disabled.

Cleared - Alarm enabled.

MinDurationACC DINT Indicates the elapsed time since the first
non-normal level excursion was detected.
When this value reaches MinDurationPRE
the pertinent alarm condition(s) become
active and notification(s) are sent to clients.

HHInAlarmTime LINT Timestamp of high-high condition detection.

HHAlarmCount DINT The number of times the high-high condition
has been activated. If the maximum value is
reached, the counter leaves the value at the
maximum count value.

HInAlarmTime LINT Timestamp of high condition detection.

HAlarmCount DINT The number of times the high condition has
been activated. If the maximum value is
reached, the counter leaves the value at the
maximum count value.

LInAlarmTime LINT Timestamp of low condition detection.

LAlarmCount DINT The number of times the low condition has
been activated. If the maximum value is
reached, the counter leaves the value at the
maximum count value.

LLInAlarmTime LINT Timestamp of low-low condition detection.

LLAlarmCount DINT The number of times the low-low condition
has been activated. If the maximum value is
reached, the counter leaves the value at the
maximum count value.

ROCPosInAlarmTime LINT Timestamp of positive rate-of-change
condition detection.

ROCPosInAlarmCount DINT The number of times the positive
rate-of-change condition has been
activated. If the maximum value is reached,
the counter leaves the value at the
maximum count value.

ROCNegInAlarmTime LINT Timestamp of negative rate-of-change
condition detection.

ROCNegAlarmCount DINT The number of times the negative
rate-of-change condition has been
activated. If the maximum value is reached,
the counter leaves the value at the
maximum count value.

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 59
AckTime LINT Timestamp of most recent condition
acknowledgement. If the alarm does not
require acknowledgement, this timestamp
is equal to most recent condition alarm
time.

RetToNormalTime LINT Timestamp of alarm returning to a normal
state.

AlarmCountResetTime LINT Timestamp indicating when the alarm count
was reset.

DeliveryER BOOL Indicates alarm notification message
delivery error:

Set – delivery error – either no alarm
subscriber was subscribed or at least one
subscriber did not receive the latest alarm
change state message.

Cleared – delivery successful or in progress.

DeliveryDN BOOL Indicates alarm notification message
delivery success:

Set – delivery success – at least one
subscriber was subscribed and all
subscribers received the latest alarm
change state message successfully.

Cleared – delivery not completed
successfully or in progress.

DeliveryEN BOOL Indicates alarm notification message
delivery in process:

Set – delivery in progress.

Cleared – delivery not in progress.

NoSubscriber BOOL Indicates that the alarm had no subscribers
when attempting to deliver the most recent
state change message:

Set – no subscribers.

Cleared – At least one subscriber.

NoConnection BOOL Indicates that all of the alarm’s subscribers
were disconnected when attempting to
deliver the most recent state change
message:

Set – all subscribers disconnected.

Cleared – at least one subscriber
connected.

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

60 Analog Alarm Instruction (ALMA)
CommError BOOL Indicates that there was a communication
error when delivering last alarm message to
at least one subscriber:

Set – communication errors – all retries
exhausted.

Cleared – all connected subscribers
successfully received alarm message.

This error means that a subscriber was
subscribed, and it had a connection opened,
but the message was not delivered
successfully.

AlarmBuffered BOOL Indicates that the alarm message was
buffered when not delivered to
subscriber(s), either due to a CommError or
a lost Connection:

Set – alarm message buffered for at least
one subscriber.

Cleared – alarm message is not buffered.

Subscribers DINT Indicates number of subscribers for this
alarm.

SubscNotified DINT Indicates number of subscribers
successfully notified about the most recent
alarm state change.

Status DINT Indicates the bit-mapped status of the
instruction execution.

InstructFault BOOL The instruction detected an execution error.
This is not a minor or major controller error.
Check the remaining status bits to
determine what occurred.

InFaulted BOOL User program has set InFault to indicate bad
quality input data.

SeverityInv BOOL Indicates invalid alarm severity
configuration. If severity <1, the instruction
uses Severity = 1. If severity >1000, the
instruction uses Severity = 1000.

AlarmLimitsInv BOOL Limits invalid (for example, LLimit<LLLimit).
When this condition is detected, the
instruction clears all level conditions active
bit(s). Until the fault is cleared, no new level
conditions can be detected.

DeadbandInv BOOL When this condition is detected, the
instruction uses Deadband = 0.0.

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 61
ROCPosLimitInv BOOL When this condition is detected, the
instruction uses ROCPosLimit = 0.0.

ROCNegLimitInv BOOL When this condition is detected, the
instruction uses ROCNegLimit = 0.0.

ROCPeriodInv BOOL When this condition is detected, the
instruction uses ROCPeriod = 0.0.

Output Parameter Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

62 Analog Alarm Instruction (ALMA)
Example This illustration shows the manner in which an analog alarm executes
in a typical system configuration.

Alarm execution is shown below. In these examples, level in a tank is
monitored, and an alarm is activated if the level surpasses a high or
high-high limit. A programmatic acknowledge is sometimes used to
acknowledge all the level alarms.

Ladder Logic

Structured Text

ALMA(Tank32Level,Tank32LT,Tank32LevelAck,0, 0);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 63
Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

64 Analog Alarm Instruction (ALMA)
Execution The tables below show execution action for Ladder Logic and
Function Block programming languages.

Ladder Logic

Function Block

Condition Action

prescan The rung-condition-out is set to false. All
operator requests, timestamps, and delivery
flags are cleared. All alarm conditions are
set to OutOfAlarm and Acknowledged.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan All operator requests, timestamps, and
delivery flags are cleared. All alarm
conditions are set to OutOfAlarm and
Acknowledged.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared The instruction does not execute. EnableOut
is cleared.

EnableIn is set The instruction executes. EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 65
Analog State Timing
Diagrams

These timing diagrams show the sequence of bit operations in a
typical system configuration.

Alarm Level Condition Acknowledge Required
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

66 Analog Alarm Instruction (ALMA)
Alarm Level Condition Acknowledge Not Required
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analog Alarm Instruction (ALMA) 67
Alarm Rate of Change Acknowledge Required
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

68 Analog Alarm Instruction (ALMA)
Alarm Rate of Change Acknowledge Not Required
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 3

Bit Instructions
(XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)

Introduction Use the bit (relay-type) instructions to monitor and control the status
of bits.

If You Want To Use This Instruction Available In These Languages See Page

enable outputs when a bit is set XIC relay ladder

structured text(1)

70

enable outputs when a bit is cleared XIO relay ladder

structured text(1)

72

set a bit OTE relay ladder

structured text(1)

74

set a bit (retentive) OTL relay ladder

structured text(1)

76

clear bit (retentive) OTU relay ladder

structured text(1)

78

enable outputs for one scan each time a
rung goes true

ONS relay ladder

structured text(1)

80

set a bit for one scan each time a rung
goes true

OSR relay ladder 83

set a bit for one scan each time the rung
goes false

OSF relay ladder 86

set a bit for one scan each time the input bit is
set in function block

OSRI structured text

function block

3-89

set a bit for one scan each time the input bit is
cleared in function block

OSFI structured text

function block

92

(1) There is no equivalent structured text instruction. Use other structured text programming to achieve the same result. See the description for the instruction.
69 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

70 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Examine If Closed (XIC) The XIC instruction examines the data bit to see if it is set.

Operands:

Relay Ladder

Structured Text

Structured text does not have an XIC instruction, but you can achieve
the same results using an IF...THEN construct.

IF data_bit THEN

<statement>;

END_IF;

See Appendix B for information on the syntax of constructs within
structured text.

Description: The XIC instruction examines the data bit to see if it is set.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

data bit BOOL tag bit to be tested

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

examine data bit
data bit = 0

data bit = 1

rung-condition-out is
set to false

rung-condition-out is set
to true

rung-condition-in is true

end
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 71
Example 1: If limit_switch_1 is set, this enables the next instruction (the
rung-condition-out is true).

Relay Ladder

Structured Text

IF limit_switch THEN

<statement>;

END_IF;

Example 2: If S:V is set (indicates that an overflow has occurred), this enables the
next instruction (the rung-condition-out is true).

Relay Ladder

Structured Text

IF S:V THEN

<statement>;

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

72 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Examine If Open (XIO) The XIO instruction examines the data bit to see if it is cleared.

Operands:

Relay Ladder

Structured Text

Structured text does not have an XIO instruction, but you can achieve
the same results using an IF...THEN construct.

IF NOT data_bit THEN

<statement>;

END_IF;

See Appendix B for information on the syntax of constructs within
structured text.

Description: The XIO instruction examines the data bit to see if it is cleared.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

data bit BOOL tag bit to be tested

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

examine data bit
data bit = 0

data bit = 1

rung-condition-out is
set to true

rung-condition-out is set
to false

rung-condition-in is true

end
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 73
Example 1: If limit_switch_2 is cleared, this enables the next instruction (the
rung-condition-out is true).

Relay Ladder

Structured Text

IF NOT limit_switch_2 THEN

<statement>;

END_IF;

Example 2: If S:V is cleared (indicates that no overflow has occurred), this enables
the next instruction (the rung-condition-out is true).

Relay Ladder

Structured Text

IF NOT S:V THEN

<statement>;

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

74 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Output Energize (OTE) The OTE instruction sets or clears the data bit.

Operands:

Relay Ladder

Structured Text

Structured text does not have an OTE instruction, but you can achieve
the same results using a non-retentive assignment.

data_bit [:=] BOOL_expression;

See Appendix B for information on the syntax of assignments and
expressions within structured text.

Description: When the OTE instruction is enabled, the controller sets the data bit.
When the OTE instruction is disabled, the controller clears the
data bit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

data bit BOOL tag bit to be set or cleared

Condition Relay Ladder Action

prescan The data bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is false The data bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true The data bit is set.

The rung-condition-out is set to true.

postscan The data bit is cleared.

The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 75
Example: When switch is set, the OTE instruction sets (turns on) light_1. When
switch is cleared, the OTE instruction clears (turns off) light_1.

Relay Ladder

Structured Text

light_1 [:=] switch;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

76 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Output Latch (OTL) The OTL instruction sets (latches) the data bit.

Operands:

Relay Ladder

Structured Text

Structured text does not have an OTL instruction, but you can achieve
the same results using an IF...THEN construct and an assignment.

IF BOOL_expression THEN

data_bit := 1;

END_IF;

See Appendix B for information on the syntax of constructs,
expressions, and assignments within structured text.

Description: When enabled, the OTL instruction sets the data bit. The data bit
remains set until it is cleared, typically by an OTU instruction. When
disabled, the OTL instruction does not change the status of the
data bit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

data bit BOOL tag bit to be set

Condition Relay Ladder Action

prescan The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is false The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is true The data bit is set.

The rung-condition-out is set to true.

postscan The data bit is not modified.

The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 77
Example: When enabled, the OTL instruction sets light_2. This bit remains set
until it is cleared, typically by an OTU instruction.

Relay Ladder

Structured Text

IF BOOL_expression THEN

light_2 := 1;

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

78 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Output Unlatch (OTU) The OTU instruction clears (unlatches) the data bit.

Operands:

Relay Ladder

Structured Text

Structured text does not have an OTU instruction, but you can achieve
the same results using an IF...THEN construct and an assignment.

IF BOOL_expression THEN

data_bit := 0;

END_IF;

See Appendix B for information on the syntax of constructs,
expressions, and assignments within structured text.

Description: When enabled, the OTU instruction clears the data bit. When
disabled, the OTU instruction does not change the status of the
data bit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

data bit BOOL tag bit to be cleared

Condition Relay Ladder Action

prescan The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is false The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is true The data bit is cleared.

The rung-condition-out is set to true.

postscan The data bit is not modified.

The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 79
Example: When enabled, the OTU instruction clears light_2.

Relay Ladder

Structured Text

IF BOOL_expression THEN

light_2 := 0;

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

80 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
One Shot (ONS) The ONS instruction enables or disables the remainder of the rung,
depending on the status of the storage bit.

Operands:

Relay Ladder

Structured Text

Structured text does not have an ONS instruction, but you can achieve
the same results using an IF...THEN construct.

IF BOOL_expression AND NOT storage_bit THEN

<statement>;

END_IF;

storage_bit := BOOL_expression;

See Appendix B for information on the syntax of constructs,
expressions, and expressions within structured text.

Description: When enabled and the storage bit is cleared, the ONS instruction
enables the remainder of the rung. When disabled or when the
storage bit is set, the ONS instruction disables the remainder of
the rung.

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

storage bit BOOL tag internal storage bit

stores the rung-condition-in from the last
time the instruction was executed
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 81
Execution:

Example: You typically precede the ONS instruction with an input instruction
because you scan the ONS instruction when it is enabled and when it
is disabled for it to operate correctly. Once the ONS instruction is
enabled, the rung-condition-in must go clear or the storage bit must
be cleared for the ONS instruction to be enabled again.

Condition Relay Ladder Action

prescan The storage bit is set to prevent an invalid trigger during the first scan.

The rung-condition-out is set to false.

rung-condition-in is false The storage bit is cleared.

The rung-condition-out is set to false.

postscan The storage bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true

end

examine storage bit
storage bit = 0

storage bit = 1

storage bit is set

rung-condition-out is

storage bit remains set

rung-condition-out is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

82 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
On any scan for which limit_switch_1 is cleared or storage_1 is set,
this rung has no affect. On any scan for which limit_switch_1 is set
and storage_1 is cleared, the ONS instruction sets storage_1 and the
ADD instruction increments sum by 1. As long as limit_switch_1 stays
set, sum stays the same value. The limit_switch_1 must go from
cleared to set again for sum to be incremented again.

Relay Ladder

Structured Text

IF limit_switch_1 AND NOT storage_1 THEN

sum := sum + 1;

END_IF;

storage_1 := limit_switch_1;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 83
One Shot Rising (OSR) The OSR instruction sets or clears the output bit, depending on the
status of the storage bit.

This instruction is available in structured text and function block as
OSRI, see page 3-89.

Operands:

Relay Ladder

Description: When enabled and the storage bit is cleared, the OSR instruction sets
the output bit. When enabled and the storage bit is set or when
disabled, the OSR instruction clears the output bit

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

storage bit BOOL tag internal storage bit

stores the rung-condition-in from the last
time the instruction was executed

output bit BOOL tag bit to be set

rung condition in

storage bit

output bit

instruction is
executed

instruction resets during
next scan execution
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

84 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Execution:

Example: Each time limit_switch_1 goes from cleared to set, the OSR instruction
sets output_bit_1 and the ADD instruction increments sum by 5. As
long as limit_switch_1 stays set, sum stays the same value. The
limit_switch_1 must go from cleared to set again for sum to be
incremented again. You can use output_bit_1 on multiple rungs to
trigger other operations

Condition Relay Ladder Action

prescan The storage bit is set to prevent an invalid trigger during the first scan.

The output bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is false The storage bit is cleared.

The output bit is not modified.

The rung-condition-out is set to false.

postscan The storage bit is cleared.

The output bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is true

end

examine storage bit
storage bit = 0

storage bit = 1

storage bit is set

output bit is set

storage bit remains set

output bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Note
Cleared for next scan

Manh Son
Note
rung-condition-in is true tuc la co nguon nang luong di

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 85
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

86 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
One Shot Falling (OSF) The OSF instruction sets or clears the output bit depending on the
status of the storage bit.

This instruction is available in structured text and function block as
OSFI, see page 3-92.

Operands:

Relay Ladder Operands

Description: When disabled and the storage bit is set, the OSF instruction sets the
output bit. When disabled and the storage bit is cleared, or when
enabled, the OSF instruction clears the output bit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

storage bit BOOL tag internal storage bit

stores the rung-condition-in from the last
time the instruction was executed

output bit BOOL tag bit to be set

rung condition in

storage bit

output bit

instruction is
executed

instruction resets during
next scan execution
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 87
Execution:

Example: Each time limit_switch_1 goes from set to cleared, the OSF instruction
sets output_bit_2 and the ADD instruction increments sum by 5. As
long as limit_switch_1 stays cleared, sum stays the same value. The
limit_switch_1 must go from set to cleared again for sum to be
incremented again. You can use output_bit_2 on multiple rungs to
trigger other operations.

Condition Relay Ladder Action

prescan The storage bit is cleared to prevent an invalid trigger during the first scan.

The output bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true The storage bit is set.

The output bit is cleared.

The rung-condition-out is set to true.

postscan See rung-condition-in is false above.

rung-condition-in is false

end

examine storage bit
storage bit = 0

storage bit = 1

storage bit remains cleared

output bit is cleared

storage bit is cleared

output bit is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

88 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 89
One Shot Rising with Input
(OSRI)

The OSRI instruction sets the output bit for one execution cycle when
the input bit toggles from cleared to set.

This instruction is available in relay ladder as OSR, see page 3-83.

Operands:

Structured Text

Function Block

FBD_ONESHOT Structure

Operand Type Format Description

OSRI tag FBD_ONESHOT structure OSRI structure

Operand Type Format Description

OSRI tag FBD_ONESHOT structure OSRI structure

OSRI(OSRI_tag);

Input Parameter Data Type Description

EnableIn BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

InputBit BOOL Input bit. This is equivalent to rung condition for the relay ladder OSR instruction.

Default is cleared.

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

OutputBit BOOL Output bit
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

90 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Description: When InputBit is set and InputBitn-1 is cleared, the OSRI instruction

sets OutputBit. When InputBitn-1 is set or when InputBit is cleared,

the OSRI instruction clears OutputBit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

InputBit

OutputBit

40048
instruction is

executed
instruction resets during
next scan execution

InputBitn-1

Condition Function Block Action Structured Text Action

prescan No action taken. No action taken.

instruction first scan InputBit n-1 is set. InputBit n-1 is set.

instruction first run InputBit n-1 is set. InputBit n-1 is set.

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set On a cleared to set transition of InputBit, the
instruction sets InputBit n-1.

The instruction executes.

EnableOut is set.

On a cleared to set transition of InputBit, the
instruction sets InputBit n-1.

EnableIn is always set.

The instruction executes.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 91
Example: When limit_switch1 goes from cleared to set, the OSRI instruction sets
OutputBit for one scan.

Structured Text

OSRI_01.InputBit := limit_switch1;

OSRI(OSRI_01);

State := OSRI_01.OutputBit;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

92 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
One Shot Falling with Input
(OSFI)

The OSFI instruction sets the OutputBit for one execution cycle when
the InputBit toggles from set to cleared.

This instruction is available in relay ladder as OSF, see page 3-86.

Operands:

Structured Text

Function Block

FBD_ONESHOT Structure

Operand Type Format Description

OSFI tag FBD_ONESHOT structure OSFI structure

Operand Type Format Description

OSFI tag FBD_ONESHOT structure OSFI structure

OSFI(OSFI_tag);

Input Parameter Data Type Description

EnableIn BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

InputBit BOOL Input bit. This is equivalent to rung condition for the relay ladder OSF instruction

Default is cleared.

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

OutputBit BOOL Output bit
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI) 93
Description: When the InputBit is cleared and the InputBit n-1 is set, the OSFI

instruction sets the OutputBit. When InputBit n-1 is cleared or when

InputBit is set, the OSFI instruction clears the OutputBit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

InputBit

OutputBit

instruction is
executed

instruction resets during
next scan execution

InputBit n-1

40047

Condition Function Block Action Structured Text Action

prescan No action taken. No action taken.

instruction first scan InputBit n-1 is cleared. InputBit n-1 is cleared.

instruction first run InputBit n-1 is cleared. InputBit n-1 is cleared.

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set On a cleared to set transition of InputBit, the
instruction clears InputBit n-1.

The instruction executes.

EnableOut is set.

On a cleared to set transition of InputBit, the
instruction clears InputBit n-1.

EnableIn is always set.

The instruction executes.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

94 Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
Example: When limit_switch1 goes from set to cleared, the OSFI instruction sets
OutputBit for one scan.

Structured Text

OSFI_01.InputBit := limit_switch1;

OSFI(OSFI_01);

Output_state := OSFI_01.OutputBit;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 4

Timer and Counter Instructions
(TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)

Introduction Timers and counters control operations based on time or the number
of events.

The time base for all timers is 1 msec.

If You Want To Use This Instruction Available In These Languages See Page

time how long a timer is enabled TON relay ladder 96

time how long a timer is disabled TOF relay ladder 100

accumulate time RTO relay ladder 105

time how long a timer is enabled with built-in
reset in function block

TONR structured text

function block

110

time how long a timer is disabled with built-in
reset in function block

TOFR structure text

function block

114

accumulate time with built-in reset in function
block

RTOR structured text

function block

118

count up CTU relay ladder 123

count down CTD relay ladder 127

count up and count down in function block CTUD structured text

function block

131

reset a timer or counter RES relay ladder 136
95 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

96 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Timer On Delay (TON) The TON instruction is a non-retentive timer that accumulates time
when the instruction is enabled (rung-condition-in is true).

This instruction is available in structured text and function block as
TONR, see page 4-110.

Operands:

Relay Ladder

TIMER Structure

Description: The TON instruction accumulates time until:

• the TON instruction is disabled

• the .ACC ≥ .PRE

The time base is always 1 msec. For example, for a 2-second timer,
enter 2000 for the .PRE value.

Operand Type Format Description

Timer TIMER tag timer structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate total msec the timer has counted

initial value is typically 0

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the TON instruction is enabled.

.TT BOOL The timing bit indicates that a timing operation is in process

.DN BOOL The done bit is set when .ACC ≥ .PRE.

.PRE DINT The preset value specifies the value (1 msec units) which the accumulated value must reach
before the instruction sets the .DN bit.

.ACC DINT The accumulated value specifies the number of milliseconds that have elapsed since the
TON instruction was enabled.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 97
When the TON instruction is disabled, the .ACC value is cleared.

How a timer runs

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned =
current_time. This gets the timer ready for the next scan.

Arithmetic Status Flags: not affected

Fault Conditions:

rung condition in

timer enable bit (.EN)

timer done bit (.DN)

timer accumulated value (.ACC)

timer timing bit (.TT)

preset

0 16649

timer did not reach
.PRE value

ON
delay

IMPORTANT Make sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value
won’t be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer’s calculation
rolls over if you don’t scan the timer within 69 minutes. The ACC value won’t be correct if this
happens.

While a timer runs, scan it within 69 minutes if you put it in a:

• subroutine

• section of code that is between JMP and LBL instructions

• sequential function chart (SFC)

• event or periodic task

• state routine of a phase

A Major Fault Will Occur If Fault Type Fault Code

.PRE < 0 4 34

.ACC < 0 4 34
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

98 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Execution:

Condition Relay Ladder Action

prescan The .EN, .TT, and .DN bits are cleared.

The .ACC value is cleared.

The rung-condition-out is set to false.

rung-condition-in is false The .EN, .TT, and .DN bits are cleared.

The .ACC value is cleared.

The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

examine .DN bit .DN bit = 1

.DN bit = 0

.EN bit is set

.TT bit is set

rung-condition-in is true

examine .ACC .ACC ≥ .PRE

.ACC < .PRE

.TT bit is set

.ACC = .ACC + (current_time - last_time)

.ACC value
rolls over

no

yes

.ACC = 2,147,483,647

examine .EN bit
.EN bit = 0

.EN bit = 1

rung-condition-out is set to
true

end

.DN is set

.TT bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 99
Example: When limit_switch_1 is set, light_2 is on for 180 msec (timer_1 is
timing). When timer_1.acc reaches 180, light_2 goes off and light_3
goes on. Light_3 remains on until the TON instruction is disabled. If
limit_switch_1 is cleared while timer_1 is timing, light_2 goes off.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

100 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Timer Off Delay (TOF) The TOF instruction is a non-retentive timer that accumulates time
when the instruction is enabled (rung-condition-in is false).

This instruction is available in structured text and function block as
TOFR, see page 114.

Operands:

Relay Ladder

TIMER Structure

Description: The TOF instruction accumulates time until:

• the TOF instruction is disabled

• the .ACC ≥ .PRE

The time base is always 1 msec. For example, for a 2-second timer,
enter 2000 for the .PRE value.

Operand Type Format Description

Timer TIMER tag timer structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate total msec the timer has counted

initial value is typically 0

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the TOF instruction is enabled.

.TT BOOL The timing bit indicates that a timing operation is in process

.DN BOOL The done bit is cleared when .ACC ≥ .PRE.

.PRE DINT The preset value specifies the value (1 msec units) which the accumulated value must reach
before the instruction clears the .DN bit.

.ACC DINT The accumulated value specifies the number of milliseconds that have elapsed since the TOF
instruction was enabled.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 101
When the TOF instruction is disabled, the .ACC value is cleared.

How a timer runs

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned =
current_time. This gets the timer ready for the next scan.

Arithmetic Status Flags: not affected

rung condition in

timer enable bit (.EN)

timer done bit (.DN)

timer accumulated value (.ACC)

timer timing bit (.TT)

0 16650

timer did not reach .PRE value

preset
OFF delay

IMPORTANT Make sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value
won’t be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer’s calculation
rolls over if you don’t scan the timer within 69 minutes. The ACC value won’t be correct if this
happens.

While a timer runs, scan it within 69 minutes if you put it in a:

• subroutine

• section of code that is between JMP and LBL instructions

• sequential function chart (SFC)

• event or periodic task

• state routine of a phase
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

102 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Fault Conditions:

Execution:

A Major Fault Will Occur If Fault Type Fault Code

.PRE < 0 4 34

.ACC < 0 4 34
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 103
Condition Relay Ladder Action

prescan The .EN, .TT, and .DN bits are cleared.

The .ACC value is set to equal the .PRE value.

The rung-condition-out is set to false.

rung-condition-in is true The .EN, .TT, and .DN bits are set.

The .ACC value is cleared.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

examine .DN bit .DN bit = 0

.DN bit = 1

.EN bit is cleared

.TT bit is set

rung-condition-in is false

examine .ACC .ACC ≥ .PRE

.ACC < .PRE

.TT bit is set

.ACC = .ACC + (current_time - last_time)

.ACC value
rolls over

no

yes

.ACC = 2,147,483,647

examine .EN bit .EN bit = 1

.EN bit = 0

rung-condition-out is set to
false

end

.DN is cleared

.TT bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

104 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Example: When limit_switch_2 is cleared, light_2 is on for 180 msec (timer_2 is
timing). When timer_2.acc reaches 180, light_2 goes off and light_3
goes on. Light_3 remains on until the TOF instruction is enabled. If
limit_switch_2 is set while timer_2 is timing, light_2 goes off.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 105
Retentive Timer On (RTO) The RTO instruction is a retentive timer that accumulates time when
the instruction is enabled.

This instruction is available in structured text and function block as
RTOR, see page 118.

Operands:

Relay Ladder

TIMER Structure

Description: The RTO instruction accumulates time until it is disabled. When the
RTO instruction is disabled, it retains its .ACC value. You must clear
the .ACC value, typically with a RES instruction referencing the same
TIMER structure.

Operand Type Format Description

Timer TIMER tag timer structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate number of msec the timer has counted

initial value is typically 0

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the RTO instruction is enabled.

.TT BOOL The timing bit indicates that a timing operation is in process

.DN BOOL The done bit indicates that .ACC ≥ .PRE.

.PRE DINT The preset value specifies the value (1 msec units) which the accumulated value must reach
before the instruction sets the .DN bit.

.ACC DINT The accumulated value specifies the number of milliseconds that have elapsed since the RTO
instruction was enabled.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

106 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
The time base is always 1 msec. For example, for a 2-second timer,
enter 2000 for the .PRE value.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned =
current_time. This gets the timer ready for the next scan.

Arithmetic Status Flags: not affected

rung condition in

timer enable bit (.EN)

timer done bit (.DN)

timer accumulated value (.ACC)

timer timing bit (.TT)

preset

0

16651

rung condition that controls RES instruction

timer did not reach .PRE value

IMPORTANT Make sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value
won’t be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer’s calculation
rolls over if you don’t scan the timer within 69 minutes. The ACC value won’t be correct if this
happens.

While a timer runs, scan it within 69 minutes if you put it in a:

• subroutine

• section of code that is between JMP and LBL instructions

• sequential function chart (SFC)

• event or periodic task

• state routine of a phase
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 107
Fault Conditions:
A Major Fault Will Occur If Fault Type Fault Code

.PRE < 0 4 34

.ACC < 0 4 34
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

108 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Execution:

Condition Relay Ladder Action

prescan The .EN, .TT, and .DN bits are cleared.

The .ACC value is not modified.

The rung-condition-out is set to false.

rung-condition-in is false The .EN and .TT bits are cleared.

The .DN bit is not modified.

The .ACC value is not modified.

The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

examine .DN bit
.DN bit = 1

.DN bit = 0

.EN bit is set

.TT bit is set

rung-condition-in is true

examine .ACC .ACC ≥ .PRE

.ACC < .PRE

.TT bit is set

.ACC = .ACC + (current_time - last_time)

.ACC value
rolls over

no

yes

.ACC = 2,147,483,647

examine .EN bit .EN bit = 0

.EN bit = 1

rung-condition-out is set to
true

end

.DN is set

.TT bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 109
Example: When limit_switch_1 is set, light_1 is on for 180 msec (timer_2 is
timing). When timer_3.acc reaches 180, light_1 goes off and light_2
goes on. Light_2 remains until timer_3 is reset. If limit_switch_2 is
cleared while timer_3 is timing, light_1 remains on. When
limit_switch_2 is set, the RES instruction resets timer_3 (clears status
bits and .ACC value).
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

110 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Timer On Delay with Reset
(TONR)

The TONR instruction is a non-retentive timer that accumulates time
when TimerEnable is set.

This instruction is available in relay ladder as two separate
instructions: TON (see page 4-96) and RES (see page 136).

Operands:

Structured Text

Function Block

FBD_TIMER Structure

Variable Type Format Description

TONR tag FBD_TIMER structure TONR structure

Operand Type Format Description

TONR tag FBD_TIMER structure TONR structure

TONR(TONR_tag);

Input Parameter Data Type Description

EnableIn BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

TimerEnable BOOL If set, this enables the timer to run and accumulate time.

Default is cleared.

PRE DINT Timer preset value. This is the value in 1msec units that ACC must reach before timing is
finished. If invalid, the instruction sets the appropriate bit in Status and the timer does
not execute.

Valid = 0 to maximum positive integer

Reset BOOL Request to reset the timer. When set, the timer resets.

Default is cleared.

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

ACC BOOL Accumulated time in milliseconds.

EN BOOL Timer enabled output. Indicates the timer instruction is enabled.

TT BOOL Timer timing output. When set, a timing operation is in progress.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 111
Description: The TONR instruction accumulates time until the:

• TONR instruction is disabled

• ACC ≥ PRE

The time base is always 1 msec. For example, for a 2-second timer,
enter 2000 for the PRE value.

Set the Reset input parameter to reset the instruction. If TimerEnable is
set when Reset is set, the TONR instruction begins timing again when
Reset is cleared.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

DN BOOL Timing done output. Indicates when the accumulated time is greater than or equal to the
preset value.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

PresetInv (Status.1) BOOL The preset value is invalid.

Input Parameter Data Type Description

TimerEnable

enable bit (EN)

timer done bit (DN)

timer accumulated value (ACC)

timer timing bit (TT)

preset

0

16649

ON
delay

timer did not
reach PRE value
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

112 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
After it updates the ACC, the timer sets last_time_scanned =
current_time. This gets the timer ready for the next scan.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

IMPORTANT Make sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value
won’t be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer’s calculation
rolls over if you don’t scan the timer within 69 minutes. The ACC value won’t be correct if this
happens.

While a timer runs, scan it within 69 minutes if you put it in a:

• subroutine

• section of code that is between JMP and LBL instructions

• sequential function chart (SFC)

• event or periodic task

• state routine of a phase

Condition Function Block Action Structured Text Action

prescan No action taken. No action taken.

instruction first scan EN, TT and DN are cleared.

ACC value is set to 0.

EN, TT and DN are cleared.

ACC value is set to 0.

instruction first run EN, TT and DN are cleared.

ACC value is set to 0.

EN, TT and DN are cleared.

ACC value is set to 0.

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set When EnableIn transitions from cleared to set, the
instruction initializes as described for instruction
first scan.

The instruction executes.

EnableOut is set.

EnableIn is always set.

The instruction executes.

reset When the Reset input parameter is set, the
instruction clears EN, TT and DN and sets
ACC = zero.

When the Reset input parameter is set, the
instruction clears EN, TT and DN and sets
ACC = zero.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 113
Example: Each scan that limit_switch1 is set, the TONR instruction increments
the ACC value by elapsed time until the ACC value reaches the PRE
value. When ACC ≥ PRE, the DN parameter is set, and timer_state
is set.

Structured Text

TONR_01.Preset := 500;

TONR_01.Reset : = reset;

TONR_O1.TimerEnable := limit_switch1;

TONR(TONR_01);

timer_state := TONR_01.DN;

Function Block Example
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

114 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Timer Off Delay with Reset
(TOFR)

The TOFR instruction is a non-retentive timer that accumulates time
when TimerEnable is cleared.

This instruction is available in relay ladder as two separate
instructions: TOF (see page 4-100) and RES (see page 136).

Operands:

Structured Text

Function Block Operands

FBD_TIMER Structure

Variable Type Format Description

TOFR tag FBD_TIMER structure TOFR structure

Operand Type Format Description

TOFR tag FBD_TIMER structure TOFR structure

TOFR(TOFR_tag);

Input Parameter Data Type Description

EnableIn BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

TimerEnable BOOL If cleared, this enables the timer to run and accumulate time.

Default is cleared.

PRE DINT Timer preset value. This is the value in 1msec units that ACC must reach before timing is
finished. If invalid, the instructions sets the appropriate bit in Status and the timer does
not execute.

Valid = 0 to maximum positive integer

Reset BOOL Request to reset the timer. When set, the timer resets.

Default is cleared.

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

ACC BOOL Accumulated time in milliseconds.

EN BOOL Timer enabled output. Indicates the timer instruction is enabled.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 115
Description: The TOFR instruction accumulates time until the:

• TOFR instruction is disabled

• ACC ≥ PRE

The time base is always 1 msec. For example, for a 2-second timer,
enter 2000 for the PRE value.

Set the Reset input parameter to reset the instruction. If TimerEnable is
cleared when Reset is set, the TOFR instruction does not begin timing
again when Reset is cleared.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

TT BOOL Timer timing output. When set, a timing operation is in progress.

DN BOOL Timing done output. Indicates when accumulated time is greater than or equal to preset.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

PresetInv (Status.1) BOOL The preset value is invalid.

Input Parameter Data Type Description

TimerEnable

enable bit (EN)

timer done bit (DN)

timer accumulated value (ACC)

timer timing bit (TT)

0

OFF delay

16650

timer did not reach PRE value

preset
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

116 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
After it updates the ACC, the timer sets last_time_scanned =
current_time. This gets the timer ready for the next scan.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

IMPORTANT Make sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value
won’t be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer’s calculation
rolls over if you don’t scan the timer within 69 minutes. The ACC value won’t be correct if this
happens.

While a timer runs, scan it within 69 minutes if you put it in a:

• subroutine

• section of code that is between JMP and LBL instructions

• sequential function chart (SFC)

• event or periodic task

• state routine of a phase

Condition Function Block Action Structured Text Action

prescan No action taken. No action taken.

instruction first scan EN, TT and DN are cleared.

ACC value is set to PRE.

EN, TT and DN are cleared.

ACC value is set to PRE.

instruction first run EN, TT and DN are cleared.

ACC value is set to PRE.

EN, TT and DN are cleared.

ACC value is set to PRE.

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set When EnableIn transitions from cleared to set, the
instruction initializes as described for instruction
first scan.

The instruction executes.

EnableOut is set.

EnableIn is always set.

The instruction executes.

reset When the Reset input parameter is set, the
instruction clears EN, TT and DN and sets
ACC = PRE. Note that this is different than using a
RES instruction on a TOF instruction.

When the Reset input parameter is set, the
instruction clears EN, TT and DN and sets
ACC = PRE. Note that this is different than using a
RES instruction on a TOF instruction.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 117
Example: Each scan after limit_switch1 is cleared, the TOFR instruction
increments the ACC value by elapsed time until the ACC value reaches
the PRE value. When ACC ≥ PRE, the DN parameter is cleared, and
timer_state2 is set.

Structured Text

TOFR_01.Preset := 500

TOFR_01.Reset := reset;

TOFR_O1.TimerEnable := limit_switch1;

TOFR(TOFR_01);

timer_state2 := TOFR_01.DN;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

118 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Retentive Timer On with
Reset (RTOR)

The RTOR instruction is a retentive timer that accumulates time when
TimerEnable is set.

This instruction is available in relay ladder as two separate
instructions: RTO (see page 4-105) and RES (see page 136).

Operands:

Structured Text

Function Block Operands

FBD_TIMER Structure

Variable Type Format Description

RTOR tag FBD_TIMER structure RTOR structure

Operand Type Format Description

RTOR tag FBD_TIMER structure RTOR structure

RTOR(RTOR_tag);

Input Parameter Data Type Description

EnableIn BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

TimerEnable BOOL If set, this enables the timer to run and accumulate time.

Default is cleared.

PRE DINT Timer preset value. This is the value in 1msec units that ACC must reach before timing is
finished. If invalid, the instruction sets the appropriate bit in Status and the timer does
not execute.

Valid = 0 to maximum positive integer

Reset BOOL Request to reset the timer. When set, the timer resets.

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

ACC DINT Accumulated time in milliseconds. This value is retained even while the TimerEnable input is
cleared. This makes the behavior of this block different than the TONR block.

EN BOOL Timer enabled output. Indicates the timer instruction is enabled.

TT BOOL Timer timing output. When set, a timing operation is in progress.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 119
Description: The RTOR instruction accumulates time until it is disabled. When the
RTOR instruction is disabled, it retains its ACC value. You must clear
the .ACC value using the Reset input.

The time base is always 1 msec. For example, for a 2-second timer,
enter 2000 for the PRE value.

Set the Reset input parameter to reset the instruction. If TimerEnable is
set when Reset is set, the RTOR instruction begins timing again when
Reset is cleared.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

DN BOOL Timing done output. Indicates when accumulated time is greater than or equal to preset.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

PresetInv (Status.1) BOOL The preset value is invalid.

Input Parameter Data Type Description

TimerEnable

enable bit (EN)

timer done bit (DN)

timer accumulated value (ACC)

timer timing bit (TT)

preset

0

16651

Reset

timer did not reach PRE value
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

120 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
After it updates the ACC, the timer sets last_time_scanned =
current_time. This gets the timer ready for the next scan.

Arithmetic Status Flags: not affected

Fault Conditions: none

IMPORTANT Make sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value
won’t be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer’s calculation
rolls over if you don’t scan the timer within 69 minutes. The ACC value won’t be correct if this
happens.

While a timer runs, scan it within 69 minutes if you put it in a:

• subroutine

• section of code that is between JMP and LBL instructions

• sequential function chart (SFC)

• event or periodic task

• state routine of a phase
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 121
Execution:

Condition Function Block Action Structured Text Action

prescan No action taken. No action taken.

instruction first scan EN, TT and DN are cleared

ACC value is not modified

EN, TT and DN are cleared

ACC value is not modified

instruction first run EN, TT and DN are cleared

ACC value is not modified

EN, TT and DN are cleared

ACC value is not modified

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set Function Block:

When EnableIn transitions from cleared to set, the
instruction initializes as described for instruction
first scan.

The instruction executes.

EnableOut is set.

EnableIn is always set.

The instruction executes.

reset When the Reset input parameter is set, the
instruction clears EN, TT and DN and sets
ACC = zero.

When the Reset input parameter is set, the
instruction clears EN, TT and DN and sets
ACC = zero.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

122 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Example: Each scan that limit_switch1 is set, the RTOR instruction increments
the ACC value by elapsed time until the ACC value reaches the PRE
value. When ACC ≥ PRE, the DN parameter is set, and timer_state3
is set.

Structured Text

RTOR_01.Preset := 500

RTOR_01.Reset := reset;

RTOR_O1.TimerEnable := limit_switch1;

RTOR(RTOR_01);

timer_state3 := RTOR_01.DN;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 123
Count Up (CTU) The CTU instruction counts upward.

This instruction is available in structured text and function block as
CTUD, see page 131.

Operands:

Relay Ladder

COUNTER Structure

Operand Type Format Description

Counter COUNTER tag counter structure

Preset DINT immediate how high to count

Accum DINT immediate number of times the counter has counted

initial value is typically 0

Mnemonic Data Type Description

.CU BOOL The count up enable bit indicates that the CTU instruction is enabled.

.DN BOOL The done bit indicates that .ACC ≥ .PRE.

.OV BOOL The overflow bit indicates that the counter exceeded the upper limit of 2,147,483,647. The
counter then rolls over to -2,147,483,648 and begins counting up again.

.UN BOOL The underflow bit indicates that the counter exceeded the lower limit of -2,147,483,648. The
counter then rolls over to 2,147,483,647 and begins counting down again.

.PRE DINT The preset value specifies the value which the accumulated value must reach before the
instruction sets the .DN bit.

.ACC DINT The accumulated value specifies the number of transitions the instruction has counted.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

124 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Description: When enabled and the .CU bit is cleared, the CTU instruction
increments the counter by one. When enabled and the .CU bit is set,
or when disabled, the CTU instruction retains its .ACC value.

The accumulated value continues incrementing, even after the .DN bit
is set. To clear the accumulated value, use a RES instruction that
references the counter structure or write 0 to the accumulated value.

Arithmetic Status Flags: not affected

Fault Conditions: none

rung condition in

count-up enable bit (.CU)

count-up done bit (.DN)

counter accumulated value (.ACC)

preset

16636
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 125
Execution:

Condition Relay Ladder Action

prescan The .CU bit is set to prevent invalid increments during the first program scan.

The rung-condition-out is set to false.

rung-condition-in is false The .CU bit is cleared.

The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

examine .CU bit
.CU bit = 0

.CU bit = 1

rung-condition-in is true

.ACC value
rolls over

yes

no

examine .UN bit .UN bit = 0

.UN bit = 1

.CU bit is set

.ACC = .ACC + 1

examine .OV bit
.OV bit = 0

examine .UN bit
.UN bit = 1

.UN bit = 0

.UN bit is cleared

.DN bit is cleared

.OV bit is set

examine .ACC .ACC ≥ .PRE

.ACC < .PRE

.DN bit is set

rung-condition-out is set to
true

end

.OV bit = 1

.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

126 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Example: After limit_switch_1 goes from disabled to enabled 10 times, the .DN
bit is set and light_1 turns on. If limit_switch_1 continues to go from
disabled to enabled, counter_1 continues to increment its count and
the .DN bit remains set. When limit_switch_2 is enabled, the RES
instruction resets counter_1 (clears the status bits and the .ACC value)
and light_1 turns off.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 127
Count Down (CTD) The CTD instruction counts downward.

This instruction is available in structured text and function block as
CTUD, see page 131.

Operands:

Relay Ladder

COUNTER Structure

Operand Type Format Description

Counter COUNTER tag counter structure

Preset DINT immediate how low to count

Accum DINT immediate number of times the counter has counted

initial value is typically 0

Mnemonic Data Type Description

.CD BOOL The count down enable bit indicates that the CTD instruction is enabled.

.DN BOOL The done bit indicates that .ACC ≥ .PRE.

.OV BOOL The overflow bit indicates that the counter exceeded the upper limit of 2,147,483,647. The
counter then rolls over to -2,147,483,648 and begins counting up again.

.UN BOOL The underflow bit indicates that the counter exceeded the lower limit of -2,147,483,648. The
counter then rolls over to 2,147,483,647 and begins counting down again.

.PRE DINT The preset value specifies the value which the accumulated value must reach before the
instruction sets the .DN bit.

.ACC DINT The accumulated value specifies the number of transitions the instruction has counted.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

128 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Description: The CTD instruction is typically used with a CTU instruction that
references the same counter structure.

When enabled and the .CD bit is cleared, the CTD instruction
decrements the counter by one. When enabled and the .CD bit is set,
or when disabled, the CTD instruction retains its .ACC value.

The accumulated value continues decrementing, even after the .DN
bit is set. To clear the accumulated value, use a RES instruction that
references the counter structure or write 0 to the accumulated value.

Arithmetic Status Flags: not affected

Fault Conditions: none

rung condition in

count-down enable bit (.CD)

count-down done bit (.DN)

counter accumulated value (.ACC)

preset

16637
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 129
Execution:

Condition Relay Ladder Action

prescan The .CD bit is set to prevent invalid decrements during the first program scan.

The rung-condition-out is set to false.

rung-condition-in is false The .CD bit is cleared.

The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

examine .CD bit
.CD bit = 0

.CD bit = 1

rung-condition-in is true

.ACC value
rolls over

yes

no

examine .UN bit .UN bit = 0

.UN bit = 1

.CD bit is set

.ACC = .ACC - 1

examine .OV bit .OV bit = 0

examine .OV bit
.OV bit = 1

.OV bit = 0

.OV bit is cleared

.DN bit is cleared

.UN bit is set

examine .ACC .ACC ≥ .PRE

.DN bit is set

rung-condition-out is set to
true

end

.OV bit = 1

.ACC < .PRE

.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

130 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Example: A conveyor brings parts into a buffer zone. Each time a part enters,
limit_switch_1 is enabled and counter_1 increments by 1. Each time a
part leaves, limit_switch_2 is enabled and counter_1 decrements by 1.
If there are 100 parts in the buffer zone (counter_1.dn is set),
conveyor_a turns on and stops the conveyor from bringing in any
more parts until the buffer has room for more parts.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 131
Count Up/Down (CTUD) The CTUD instruction counts up by one when CUEnable transitions
from clear to set. The instruction counts down by one when CDEnable
transitions from clear to set.

This instruction is available in relay ladder as three separate
instructions: CTU (see page 4-123), CTD (see page 4-127), and RES
(see page 136).

Operands:

Structured Text

Function Block

FBD_COUNTER Structure

Variable Type Format Description

CTUD tag FBD_COUNTER structure CTUD structure

Operand Type Format Description

CTUD tag FBD_COUNTER structure CTUD structure

CTUD(CTUD_tag);

Input Parameter Data Type Description

EnableIn BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

CUEnable BOOL Enable up count. When input toggles from clear to set, accumulator counts up by one.

Default is cleared.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

132 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Description When enabled and CUEnable is set, the CTUD instructions increments
the counter by one. When enabled and CDEnable is set, the CTUD
instruction decrements the counter by one.

Both the CUEnable and CDEnable input parameters can both be
toggled during the same scan. The instruction executes the count up
prior to the count down.

CDEnable BOOL Enable down count. When input toggles from clear to set, accumulator counts down by one.

Default is cleared.

PRE DINT Counter preset value. This is the value the accumulated value must reach before DN is set.

Valid = any integer

Default is 0.

Reset BOOL Request to reset the timer. When set, the counter resets.

Default is cleared.

Input Parameter Data Type Description

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

ACC DINT Accumulated value.

CU BOOL Count up enabled.

CD BOOL Count down enabled.

DN BOOL Counting done. Set when accumulated value is greater than or equal to preset.

OV BOOL Counter overflow. Indicates the counter exceeded the upper limit of 2,147,483,647.

The counter then rolls over to −2,147,483,648 and begins counting down again.

UN BOOL Counter underflow. Indicates the counter exceeded the lower limit of −2,147,483,648.

The counter then rolls over to 2,147,483,647 and begins counting down again.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 133
Counting Up

Counting Down

When disabled, the CTUD instruction retains its accumulated value.
Set the Reset input parameter of the FBD_COUNTER structure to reset
the instruction.

Arithmetic Status Flags: not affected

Fault Conditions: none

CUEnable

count-up enable bit (CU)

count-up done bit (DN)

counter accumulated value (ACC)

preset

16636

CDEnable

count-down enable bit (CD)

count-down done bit (DN)

counter accumulated value (ACC)

preset

16637
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

134 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Execution:

Example: When limit_switch1 goes from cleared to set, CUEnable is set for one
scan and the CTUD instruction increments the ACC value by 1. When
ACC ≥ PRE, the DN parameter is set, which enables the function block
instruction following the CTUD instruction.

Structured Text

CTUD_01.Preset := 500;

CTUD_01.Reset := Restart;

CTUD_O1.CUEnable := limit_switch1;

CTUD(CTUD_01);

counter_state := CTUD_01.DN;

Function Block

Condition Function Block Action Structured Text Action

prescan No initialization required. No initialization required.

instruction first scan CUEnablen-1 and CDEnablen-1 are set. CUEnablen-1 and CDEnablen-1 are set.

instruction first run CUEnablen-1 and CDEnablen-1 are set. CUEnablen-1 and CDEnablen-1 are set.

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set The instruction sets CUEnablen-1 and CDEnablen-1.

On a cleared to set transition of EnableIn:

• The instruction executes.

• EnableOut is set.

The instruction sets CUEnablen-1 and CDEnablen-1.

EnableIn is always set.

The instruction executes.

reset When set, the instruction clears CUEnablen-1,
CDEnablen-1, CU, CD, DN, OV, and UN and sets
ACC = zero.

When set, the instruction clears CUEnablen-1,
CDEnablen-1, CU, CD, DN, OV, and UN and sets
ACC = zero.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 135
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

136 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Reset (RES) The RES instruction resets a TIMER, COUNTER, or
CONTROL structure.

Operands:

Relay Ladder

Description: When enabled the RES instruction clears these elements:

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

structure TIMER

CONTROL

COUNTER

tag structure to reset

When Using a Res
Instruction For a

The Instruction Clears

TIMER .ACC value

control status bits

COUNTER .ACC value

control status bits

CONTROL .POS value

control status bits

ATTENTION Because the RES instruction clears the .ACC value, .DN bit, and
.TT bit, do not use the RES instruction to reset a TOF timer.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES) 137
Execution:

Examples:

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The RES instruction resets the specified structure.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Example Description

When enabled, reset timer_3.

When enabled, reset counter_1.

When enabled, reset control_1.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

138 Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 5

Input/Output Instructions
(MSG, GSV, SSV, IOT)

Introduction The input/output instructions read or write data to or from the
controller or a block of data to or from another module on
another network.

If You Want To Use This Instruction Available In These Languages See Page

send data to or from another module MSG relay ladder

structured text

140

get controller status information GSV relay ladder

structured text

173

set controller status information SSV relay ladder

structured text

173

• send output values to an I/O module or
consuming controller at a specific point in
your logic

IOT relay ladder

structured text

200

• trigger an event task in another controller
139 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

140 Input/Output Instructions (MSG, GSV, SSV, IOT)
Message (MSG) The MSG instruction asynchronously reads or writes a block of data to
another module on a network.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
MSG instruction.

MESSAGE Structure

Operand Type Format Description

Message
control

MESSAGE tag message structure

MSG(MessageControl);

ATTENTION If you check the status bits more than once

The controller changes the DN, ER, EW, and ST bits asynchronous to the scan of your logic.
Use a copy of the bits if you check them in more than one place in your logic. Otherwise, the
bits may change during the scan and your logic won’t work as you expect it.

One way to make a copy is to use the FLAGS word. Copy the FLAGS word to another tag and
check the bits in the copy.

IMPORTANT Do not change the following status bits of a MSG instruction:

• DN

• EN

• ER

• EW

• ST

Do not change those bits either by themselves or as part of the FLAGS word. If you do, the
controller may have a non-recoverable fault. The controller clears the project from its
memory when it has a non-recoverable fault.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 141
Mnemonic Data
Type

Description

.FLAGS INT The FLAGS member provides access to the status members (bits) in one 16-bit word.

This bit: Is this member:

2 .EW

4 .ER

5 .DN

6 .ST

7 .EN

8 .TO

9 .EN_CC

Important: Do not change the EW, ER, DN, or ST bits of the FLAGS member. For example, do not
clear the entire FLAGS word. The controller ignores the change and uses the internally-stored values
of the bits.

.ERR INT If the .ER bit is set, the error code word identifies error codes for the MSG instruction.

.EXERR INT The extended error code word specifies additional error code information for some error codes.

.REQ_LEN INT The requested length specifies how many words the message instruction will attempt to transfer.

.DN_LEN INT The done length identifies how many words actually transferred.

.EW BOOL The enable waiting bit is set when the controller detects that a message request has entered the
queue. The controller resets the.EW bit when the .ST bit is set.

Important: Do not change the EW bit. The controller ignores the change and uses the
internally-stored value of the bit.

.ER BOOL The error bit is set when the controller detects that a transfer failed. The .ER bit is reset the next
time the rung-condition-in goes from false to true.

Important: Do not change the ER bit.

.DN BOOL The done bit is set when the last packet of the message is successfully transferred. The .DN bit is
reset the next time the rung-condition-in goes from false to true.

Important: Do not change the DN bit.

.ST BOOL The start bit is set when the controller begins executing the MSG instruction. The .ST bit is reset
when the .DN bit or the .ER bit is set.

Important: Do not change the ST bit. The controller ignores the change and uses the
internally-stored value of the bit.

.EN BOOL The enable bit is set when the rung-condition-in goes true and remains set until either the .DN bit or
the .ER bit is set and the rung-condition-in is false. If the rung-condition-in goes false, but the .DN
bit and the .ER bit are cleared, the .EN bit remains set.

Important: Do not change the EN bit.

.TO BOOL If you manually set the .TO bit, the controller stops processing the message and sets the .ER bit.

.EN_CC BOOL The enable cache bit determines how to manage the MSG connection. Refer to "Choose a cache
option" on page 5-170 Connections for MSG instructions going out the serial port are not cached,
even if the .EN_CC bit is set.

.ERR_SRC SINT Used by RSLogix 5000 software to show the error path on the Message Configuration dialog box

.DestinationLink INT To change the Destination Link of a DH+ or CIP with Source ID message, set this member to the
required value.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

142 Input/Output Instructions (MSG, GSV, SSV, IOT)
.DestinationNode INT To change the Destination Node of a DH+ or CIP with Source ID message, set this member to the
required value.

.SourceLink INT To change the Source Link of a DH+ or CIP with Source ID message, set this member to the required
value.

.Class INT To change the Class parameter of a CIP Generic message, set this member to the required value.

.Attribute INT To change the Attribute parameter of a CIP Generic message, set this member to the required value.

.Instance DINT To change the Instance parameter of a CIP Generic message, set this member to the required value.

.LocalIndex DINT If you use an asterisk [*] to designate the element number of the local array, the LocalIndex provides
the element number. To change the element number, set this member to the required value.

If the message: Then the local array is the:

reads data Destination element

writes data Source element

.Channel SINT To send the message out a different channel of the 1756-DHRIO module, set this member to the
required value. Use either the ASCII character A or B.

.Rack SINT To change the rack number for a block transfer message, set this member to the required rack
number (octal).

.Group SINT To change the group number for a block transfer message, set this member to the required group
number (octal).

.Slot SINT To change the slot number for a block transfer message, set this member to the required slot number.

If the message
goes over this
network:

Then specify the slot number in:

universal remote I/O octal

ControlNet decimal (0-15)

.Path STRING To send the message to a different controller, set this member to the new path.

• Enter the path as hexadecimal values.

• Omit commas [,]

For example, for a path of 1, 0, 2, 42, 1, 3, enter $01$00$02$2A$01$03.

To browse to a device and automatically create a portion or all of the new string, right-click a string
tag and choose Go to Message Path Editor.

.RemoteIndex DINT If you use an asterisk [*] to designate the element number of the remote array, the RemoteIndex
provides the element number. To change the element number, set this member to the required value.

If the message: Then the remote array is the:

reads data Source element

writes data Destination element

.RemoteElement STRING To specify a different tag or address in the controller to which the message is sent, set this member
to the required value. Enter the tag or address as ASCII characters.

If the message: Then the remote array is the:

reads data Source element

writes data Destination element

Mnemonic Data
Type

Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 143
Description The MSG instruction transfers elements of data.

This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition. See Appendix B.

.UnconnnectedTimeout DINT Time out for an unconnected message or for making a connection. The default value is 30 seconds.

If the message is Then

unconnected The ER bit turns on if the controller doesn’t get a response within the
UnconnectedTimeout time.

connected The ER bit turns on if the controller doesn’t get a response for making the
connection within the UnconnectedTimeout time.

.ConnectionRate DINT Time out for a connected message once it has a connection. This time out is for the response from
the other device about the sending of the data.

• This time out applies only after the connection is made.

• The time out = ConnectionRate x TimeoutMultiplier.

• The default ConnectionRate is 7.5 seconds.

• The default TimeoutMultiplier is 0 (which is a multiplication factor of 4).

• The default time out for connected messages is 30 seconds (7.5 seconds x 4 = 30 seconds).

• To change the time out, change the ConnectionRate and leave the TimeoutMultiplier at the
default value.

.TimeoutMultiplier SINT

Mnemonic Data
Type

Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

144 Input/Output Instructions (MSG, GSV, SSV, IOT)
The size of each element depends on the data types you specify and
the type of message command you use.

connection with .EN_CC = 1

rung-condition -in

.EW bit

connection with .EN_CC = 0

41382

.ST bit

.DN bit or .ER bit

.EN bit

1 2 3 4 5 6 7
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 145
Execution:

Where Description Where Description

1 rung-condition-in is true

.EN is set

.EW is set

connection is opened*

5 message is sent

.ST is set

.EW is cleared

2 message is sent

.ST is set

.EW is cleared

6 message is done or errored

rung-condition-in is still true

.DN or .ER is set

.ST is cleared

connection is closed (if .EN_CC = 0)

3 message is done or errored

rung-condition-in is false

.DN or .ER is set

.ST is cleared

connection is closed (if .EN_CC = 0)

.EN is cleared (rung-condition-in is false)

7 rung-condition-in goes false and .DN or .ER is set

.EN is cleared

4 rung-condition-in is true

.DN or .ER was previously set

.EN is set

.EW is set

connection is opened*

.DN or .ER is cleared

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

146 Input/Output Instructions (MSG, GSV, SSV, IOT)
rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

Condition Relay Ladder Action Structured Text Action

rung-condition-in is false

end

rung-condition-out is set
to false

examine .EN bit
.EN bit = 1

.EN bit = 0

examine .EW bit
.EW bit = 1

.EW bit = 0

examine .ST bit
.ST bit = 1

.ST bit = 0

examine .DN bit
.DN bit =

.DN bit = 0

examine .DN bit
.DN bit = 1

.DN bit = 0

examine .ER bit
.ER bit = 1

.ER bit = 0

.EN bit is cleared

examine .ER bit
.ER bit = 1 .ER bit = 0 block-transfer

command module path valid
yes no

no

execute message request

.EW bit is set

module
connection

running

no

yes

yes

.ER bit is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 147
Condition Relay Ladder Action Structured Text Action

EnableIn is set na EnableIn is always set.

The instruction executes.

postscan The rung-condition-out is set to false. No action taken.

instruction execution

end

rung-condition-out is set
to false

.EN bit = 0

examine .EW bit
.EW bit = 1

.EW bit = 0

examine .ST bit
.ST bit = 1

.ST bit = 0

examine .DN bit
.DN bit = 1

.DN bit = 0

examine .ER bit
.ER bit = 1 .ER bit = 0 block-transfer

command module path valid
yes no

no

.EW, .ST, .TO, .DN, and .ER bits are cleared

.EN bit is set

module
connection

running

no

yes

yes

.ER bit is set

examine .EN bit
.EN bit = 1

examine .EW bit

.EW bit = 0

examine .ST bit

.ST bit = 0

.EW, .ST, .TO, .DN, and .ER bits are
cleared

.EN bit is set

.EW bit = 1

.ST bit = 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

148 Input/Output Instructions (MSG, GSV, SSV, IOT)
Arithmetic Status Flags: not affected

Fault Conditions: none

MSG Error Codes The error codes depend on the type of MSG instruction.

Error Codes

RSLogix 5000 software does not always display the full description.

Error Code
(Hex)

Description Display In Software

0001 Connection failure (see extended error codes) same as description

0002 Insufficient resource same as description

0003 Invalid value same as description

0004 IOI syntax error (see extended error codes) same as description

0005 Destination unknown, class unsupported, instance undefined
or structure element undefined (see extended error codes)

same as description

0006 Insufficient packet space same as description

0007 Connection lost same as description

0008 Service unsupported same as description

0009 Error in data segment or invalid attribute value same as description

000A Attribute list error same as description

000B State already exists same as description

000C Object model conflict same as description

000D Object already exists same as description

000E Attribute not settable same as description

000F Permission denied same as description

0010 Device state conflict same as description

0011 Reply will not fit same as description

0012 Fragment primitive same as description

0013 Insufficient command data same as description

0014 Attribute not supported same as description

0015 Too much data same as description

001A Bridge request too large same as description

001B Bridge response too large same as description

001C Attribute list shortage same as description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 149
001D Invalid attribute list same as description

001E Embedded service error same as description

001F Connection related failure (see extended error codes) same as description

0022 Invalid reply received same as description

0025 Key segment error same as description

0026 Invalid IOI error same as description

0027 Unexpected attribute in list same as description

0028 DeviceNet error - invalid member ID same as description

0029 DeviceNet error - member not settable same as description

00D1 Module not in run state unknown error

00FB Message port not supported unknown error

00FC Message unsupported data type unknown error

00FD Message uninitialized unknown error

00FE Message timeout unknown error

00FF General error (see extended error codes) unknown error

Error Code
(Hex)

Description Display In Software
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

150 Input/Output Instructions (MSG, GSV, SSV, IOT)
Extended Error Codes

RSLogix 5000 software does not display any text for the extended
error codes.

These are the extended error codes for error code 0001.

These are the extended error codes for error code 001F.

These are the extended error codes for error code 0004 and 0005.

Extended
Error Code
(Hex)

Description

0100 Connection in use

0103 Transport not supported

0106 Ownership conflict

0107 Connection not found

0108 Invalid connection type

0109 Invalid connection size

0110 Module not configured

0111 EPR not supported

0114 Wrong module

0115 Wrong device type

0116 Wrong revision

0118 Invalid configuration format

011A Application out of connections

0203 Connection timeout

0204 Unconnected message timeout

0205 Unconnected send parameter error

0206 Message too large

0301 No buffer memory

0302 Bandwidth not available

0303 No screeners available

0305 Signature match

0311 Port not available

0312 Link address not available

0315 Invalid segment type

0317 Connection not scheduled

Extended
Error Code
(Hex)

Description

Extended Error
Code (Hex)

Description

0203 Connection timeout

Extended Error
Code (Hex)

Description

0000 extended status out of memory

0001 extended status out of instances
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 151
These are the extended error codes for error code 00FF.

Extended
Error Code
(Hex)

Description

2001 Excessive IOI

2002 Bad parameter value

2018 Semaphore reject

201B Size too small

201C Invalid size

2100 Privilege failure

2101 Invalid keyswitch position

2102 Password invalid

2103 No password issued

2104 Address out of range

2105 Address and how many out of range

2106 Data in use

2107 Type is invalid or not supported

2108 Controller in upload or download mode

2109 Attempt to change number of array dimensions

210A Invalid symbol name

210B Symbol does not exist

210E Search failed

210F Task cannot start

2110 Unable to write

2111 Unable to read

2112 Shared routine not editable

2113 Controller in faulted mode

2114 Run mode inhibited

Extended
Error Code
(Hex)

Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

152 Input/Output Instructions (MSG, GSV, SSV, IOT)
PLC and SLC Error Codes (.ERR)

Logix firmware revision 10.x and later provides new error codes for
errors that are associated with PLC and SLC message types (PCCC
messages).

• This change lets RSLogix 5000 software display a more
meaningful description for many of the errors. Previously the
software did not give a description for any of the errors
associated with the 00F0 error code.

• The change also makes the error codes more consistent with
errors returned by other controllers, such as PLC-5 controllers.

The following table shows the change in the error codes from R9.x
and earlier to R10.x and later. As a result of the change, the .ERR
member returns a unique value for each PCCC error. The .EXERR is no
longer required for these errors.

PLC and SLC Error Codes (hex)

R9.x And Earlier R10.x And Later Description

.ERR .EXERR .ERR .EXERR

0010 1000 Illegal command or format from local processor

0020 2000 Communication module not working

0030 3000 Remote node is missing, disconnected, or shut down

0040 4000 Processor connected but faulted (hardware)

0050 5000 Wrong station number

0060 6000 Requested function is not available

0070 7000 Processor is in Program mode

0080 8000 Processor’s compatibility file does not exist

0090 9000 Remote node cannot buffer command

00B0 B000 Processor is downloading so it is not accessible

00F0 0001 F001 Processor incorrectly converted the address

00F0 0002 F002 Incomplete address

00F0 0003 F003 Incorrect address

00F0 0004 F004 Illegal address format - symbol not found

00F0 0005 F005 Illegal address format - symbol has 0 or greater than the maximum number of
characters supported by the device

00F0 0006 F006 Address file does not exist in target processor

00F0 0007 F007 Destination file is too small for the number of words requested

00F0 0008 F008 Cannot complete request

Situation changed during multipacket operation
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 153
00F0 0009 F009 Data or file is too large

Memory unavailable

00F0 000A F00A Target processor cannot put requested information in packets

00F0 000B F00B Privilege error; access denied

00F0 000C F00C Requested function is not available

00F0 000D F00D Request is redundant

00F0 000E F00E Command cannot be executed

00F0 000F F00F Overflow; histogram overflow

00F0 0010 F010 No access

00F0 0011 F011 Data type requested does not match data available

00F0 0012 F012 Incorrect command parameters

00F0 0013 F013 Address reference exists to deleted area

00F0 0014 F014 Command execution failure for unknown reason

PLC-3 histogram overflow

00F0 0015 F015 Data conversion error

00F0 0016 F016 The scanner is not available to communicate with a 1771 rack adapter

00F0 0017 F017 The adapter is no available to communicate with the module

00F0 0018 F018 The 1771 module response was not valid

00F0 0019 F019 Duplicate label

00F0 001A F01A File owner active - the file is being used

00F0 001B F01B Program owner active - someone is downloading or editing online

00F0 001C F01C Disk file is write protected or otherwise not accessible (offline only)

00F0 001D F01D Disk file is being used by another application

Update not performed (offline only)

PLC and SLC Error Codes (hex) (Continued)

R9.x And Earlier R10.x And Later Description

.ERR .EXERR .ERR .EXERR
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

154 Input/Output Instructions (MSG, GSV, SSV, IOT)
Block-Transfer Error Codes

These are the Logix5000 block-transfer specific error codes.

Error Code
(Hex)

Description Display In Software

00D0 The scanner did not receive a block-transfer response from the block-transfer module
within 3.5 seconds of the request

unknown error

00D1 The checksum from the read response did not match the checksum of the data stream unknown error

00D2 The scanner requested either a read or write but the block-transfer module responded with
the opposite

unknown error

00D3 The scanner requested a length and the block-transfer module responded with a
different length

unknown error

00D6 The scanner received a response from the block-transfer module indicating the write
request failed

unknown error

00EA The scanner was not configured to communicate with the rack that would contain this
block-transfer module

unknown error

00EB The logical slot specified is not available for the given rack size unknown error

00EC There is currently a block-transfer request in progress and a response is required before
another request can begin

unknown error

00ED The size of the block-transfer request is not consistent with valid block-transfer
size requests

unknown error

00EE The type of block-transfer request is not consistent with the expected BT_READ
or BT_WRITE

unknown error

00EF The scanner was unable to find an available slot in the block-transfer table to
accommodate the block-transfer request

unknown error

00F0 The scanner received a request to reset the remote I/O channels while there were
outstanding block-transfers

unknown error

00F3 Queues for remote block-transfers are full unknown error

00F5 No communication channels are configured for the requested rack or slot unknown error

00F6 No communication channels are configured for remote I/O unknown error

00F7 The block-transfer timeout, set in the instruction, timed out before completion unknown error

00F8 Error in block-transfer protocol - unsolicited block-transfer unknown error

00F9 Block-transfer data was lost due to a bad communication channel unknown error

00FA The block-transfer module requested a different length than the associated
block-transfer instruction

unknown error

00FB The checksum of the block-transfer read data was wrong unknown error

00FC There was an invalid transfer of block-transfer write data between the adapter and the
block-transfer module

unknown error

00FD The size of the block-transfer plus the size of the index in the block-transfer data table was
greater than the size of the block-transfer data table file

unknown error
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 155
Specify the Configuration
Details

After you enter the MSG instruction and specify the MESSAGE
structure, use the Message Configuration dialog box to specify the
details of the message.

The details you configure depend on the message type you select.

Click here to configure the MSG instruction

42976

If The Target Device Is a Select One Of These Message Types See Page

Logix5000 controller CIP Data Table Read 156

CIP Data Table Write

I/O module that you configure using
RSLogix 5000 software

Module Reconfigure 157

CIP Generic 158

PLC-5 controller PLC5 Typed Read 159

PLC5 Typed Write

PLC5 Word Range Read

PLC5 Word Range Write

SLC controller

MicroLogix controller

SLC Typed Read 161

SLC Typed Write

Block-transfer module Block-Transfer Read 161

Block-Transfer Write

PLC-3 processor PLC3 typed read 162

PLC3 typed write

PLC3 word range read

PLC3 word range write

PLC-2 processor PLC2 unprotected read 163

PLC2 unprotected write
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

156 Input/Output Instructions (MSG, GSV, SSV, IOT)
You must specify this configuration information.

Specify CIP Data Table Read and Write messages

The CIP Data Table Read and Write message types transfer data
between Logix5000 controllers.

For This Property Specify

Source Element • If you select a read message type, the Source Element is the address of the data you want to read in the
target device. Use the addressing syntax of the target device.

• If you select a write message type, the Source Tag is the first element of the tag that you want to send to
the target device.

Number of Elements The number of elements you read/write depends on the type of data you are using. An element refers to one
“chunk” of related data. For example, tag timer1 is one element that consists of one timer control structure.

Destination Element • If you select a read message type, the Destination Element is the first element of the tag in the Logix5000
controller where you want to store the data you read from the target device.

• If you select a write message type, the Destination Element is the address of the location in the target
device where you want to write the data.

Select This Command If You Want To

CIP Data Table Read read data from another controller.

The Source and Destination types must match.

CIP Data Table Write write data to another controller.

The Source and Destination types must match.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 157
Reconfigure an I/O module

Use the Module Reconfigure message to send new configuration
information to an I/O module. During the reconfiguration:

• Input modules continue to send input data to the controller.

• Output modules continue to control their output devices.

A Module Reconfigure message requires this configuration properties.

Example: To reconfigure an I/O module:

1. Set the required member of the configuration tag of the module
to the new value.

2. Send a Module Reconfigure message to the module.

When reconfigure[5] is set, set the high alarm to 60 for the local
module in slot 4. The Module Reconfigure message then sends the
new alarm value to the module. The one shot instruction prevents the
rung from sending multiple messages to the module while the
reconfigure[5] is on.

Relay Ladder

Structured Text

IF reconfigure[5] AND NOT reconfigure[6]THEN

Local:4:C.Ch0Config.HAlarmLimit := 60;

IF NOT change_Halarm.EN THEN

MSG(change_Halarm);

END_IF;

END_IF;

reconfigure[6] := reconfigure[5];

In This Property Select

Message Type Module Reconfigure
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

158 Input/Output Instructions (MSG, GSV, SSV, IOT)
Specify CIP Generic messages

A CIP Generic message performs a specific action on an I/O module.

If You Want To In This Property Type Or Select

Perform a pulse test on a digital output
module

Message Type CIP Generic

Service Type Pulse Test

Source tag_name of type INT [5]

This array contains:

tag_name[0] bit mask of points to test (test only one point
at a time)

tag_name[1] reserved, leave 0

tag_name[2] pulse width (hundreds of μsecs, usually 20)

tag_name[3] zero cross delay for ControlLogix I/O
(hundreds of μsecs, usually 40)

tag_name[4] verify delay

Destination leave blank

Reset electronic fuses on a digital
output module

Message Type CIP Generic

Service Type Reset Electronic Fuse

Source tag name of type DINT

This tag represents a bit mask of the points to reset fuses on.

Destination leave blank

Reset latched diagnostics on a digital
input module

Message Type CIP Generic

Service Type Reset Latched Diagnostics (I)

Source tag_name of type DINT

This tag represents a bit mask of the points to reset diagnostics on.

Reset latched diagnostics on a digital
output module

Message Type CIP Generic

Service Type Reset Latched Diagnostics (O)

Source tag_name of type DINT

This tag represents a bit mask of the points to reset diagnostics on.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 159
Specify PLC-5 messages

Use the PLC-5 message types to communicate with PLC-5 controllers.

Unlatch the alarm of an analog input
module

Message Type CIP Generic

Service Type Select which alarm that you want to unlatch:

• Unlatch All Alarms (I)

• Unlatch Analog High Alarm (I)

• Unlatch Analog High High Alarm (I)

• Unlatch Analog Low Alarm (I)

• Unlatch Analog Low Low Alarm (I)

• Unlatch Rate Alarm (I)

Instance Channel of the alarm that you want to unlatch

Unlatch the alarm of an analog output
module

Message Type CIP Generic

Service Type Select which alarm that you want to unlatch:

• Unlatch All Alarms (O)

• Unlatch High Alarm (O)

• Unlatch Low Alarm (O)

• Unlatch Ramp Alarm (O)

Instance Channel of the alarm that you want to unlatch

If You Want To In This Property Type Or Select

Select This Command If You Want To

PLC5 Typed Read Read 16-bit integer, floating-point, or string type data and maintain data integrity.
See Data types for PLC5 Typed Read and Typed Write messages on page 160.

PLC5 Typed Write Write 16-bit integer, floating-point, or string type data and maintain data integrity.
See Data types for PLC5 Typed Read and Typed Write messages on page 160

PLC5 Word Range Read Read a contiguous range of 16-bit words in PLC-5 memory regardless of data type.

This command starts at the address specified as the Source Element and reads
sequentially the number of 16-bit words requested.

The data from the Source Element is stored, starting at the address specified as the
Destination Tag.

PLC5 Word Range Write Write a contiguous range of 16-bit words from Logix5000 memory regardless of data
type to PLC-5 memory.

This command starts at the address specified as the Source Tag and reads sequentially
the number of 16-bit words requested.

The data from the Source Tag is stored, starting at the address specified as the
Destination Element in the PLC-5 processor.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

160 Input/Output Instructions (MSG, GSV, SSV, IOT)
The following table shows the data types to use with PLC5 Typed
Read and PLC5 Typed Write messages.

The Typed Read and Typed Write commands also work with SLC 5/03
processors (OS303 and above), SLC 5/04 processors (OS402 and
above), and SLC 5/05 processors.

The following diagrams show how the typed and word-range
commands differ. The example uses read commands from a PLC-5
processor to a Logix5000 controller.

Data types for PLC5 Typed Read and Typed Write messages

For this PLC-5 data type Use this Logix5000 data type

B INT

F REAL

N INT

DINT (Only write DINT values to a PLC-5 controller if the
value is ≥ −32,768 and ≤ 32,767.)

S INT

ST STRING

16-bit words in
PLC-5 processor

32-bit words in
Logix5000 controller

The typed commands maintain data structure and value.

1

2

3

4

Typed read command

1

2

3

4

16-bit words in
PLC-5 processor

32-bit words in
Logix5000 controller

The word-range commands fill the destination tag
contiguously. Data structure and value change depending on
the destination data type.

1

2

3

4

Word-range read command

1

3

2

4

Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 161
Specify SLC messages

Use the SLC message types to communicate with SLC and MicroLogix
controllers. The following table shows which data types that the
instruction lets you access. The table also shows the corresponding
Logix5000 data type.

Specify block-transfer messages

The block-transfer message types are used to communicate with
block-transfer modules over a Universal Remote I/O network.

To configure a block-transfer message, follow these guidelines:

• The source (for BTW) and destination (for BTR) tags must be
large enough to accept the requested data, except for MESSAGE,
AXIS, and MODULE structures.

• Specify how many 16-bit integers (INT) to send or receive. You
can specify from 0 to 64 integers.

For this SLC or MicroLogix Data Type Use This Logix5000 Data Type

F REAL

L (MicroLogix 1200 and 1500 controllers) DINT

N INT

If You Want To Select This Command

read data from a block-transfer module.

This message type replaces the BTR instruction.

Block-Transfer Read

write data to a block-transfer module.

This message type replaces the BTW instruction.

Block-Transfer Write

If You Want The Then Specify

Block-transfer module to determine how many
16-bit integers to send (BTR).

0 for the number of elements

Controller to send 64 integers (BTW).
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

162 Input/Output Instructions (MSG, GSV, SSV, IOT)
Specify PLC-3 messages

The PLC-3 message types are designed for PLC-3 processors.

Select this command If you want to

PLC3 Typed Read read integer or REAL type data.

For integers, this command reads 16-bit integers from the PLC-3 processor and stores
them in SINT, INT, or DINT data arrays in the Logix5000 controller and maintains data
integrity.

This command also reads floating-point data from the PLC-3 and stores it in a REAL data
type tag in the Logix5000 controller.

PLC3 Typed Write write integer or REAL type data.

This command writes SINT or INT data, to the PLC-3 integer file and maintains data
integrity. You can write DINT data as long as it fits within an INT data type (−32,768 ≥
data ≤ 32,767).

This command also writes REAL type data from the Logix5000 controller to a PLC-3
floating-point file.

PLC3 Word Range Read read a contiguous range of 16-bit words in PLC-3 memory regardless of data type.

This command starts at the address specified as the Source Element and reads
sequentially the number of 16-bit words requested.

The data from the Source Element is stored, starting at the address specified as the
Destination Tag.

PLC3 Word Range Write write a contiguous range of 16-bit words from Logix5000 memory regardless of data
type to PLC-3 memory.

This command starts at the address specified as the Source Tag and reads sequentially
the number of 16-bit words requested.

The data from the Source Tag is stored, starting at the address specified as the
Destination Element in the PLC-3 processor.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 163
The following diagrams show how the typed and word-range
commands differ. The example uses read commands from a PLC-3
processor to a Logix5000 controller.

Specify PLC-2 messages

The PLC-2 message types are designed for PLC-2 processors.

The message transfer uses 16-bit words, so make sure the Logix5000
tag appropriately stores the transferred data (typically as an
INT array).

16-bit words in
PLC-3 processor

32-bit words in
Logix5000 controller

The typed commands maintain data structure and value.

1

2

3

4

Typed read command

1

2

3

4

16-bit words in
PLC-3 processor

32-bit words in
Logix5000 controller

The word-range commands fill the destination tag
contiguously. Data structure and value change depending on
the destination data type.

1

2

3

4

Word-range read command

1

3

2

4

Select this command If you want to

PLC2 Unprotected Read read 16-bit words from any area of the PLC-2 data table or the PLC-2 compatibility file of
another processor.

PLC2 Unprotected Write write 16-bit words to any area of the PLC-2 data table or the PLC-2 compatibility file of
another processor.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

164 Input/Output Instructions (MSG, GSV, SSV, IOT)
MSG Configuration
Examples

The following examples show source and destination tags and
elements for different controller combinations.

For MSG instructions originating from a Logix5000 controller and
writing to another controller:

For MSG instructions originating from a Logix5000 controller and
reading from another controller:

Message Path Example Source and Destination

Logix5000 → Logix5000 source tag array_1[0]

destination tag array_2[0]

You can use an alias tag for the source tag (in originating Logix5000 controller).

You cannot use an alias for the destination tag. The destination must be a base tag.

Logix5000 → PLC-5

Logix5000 → SLC

source tag array_1[0]

destination element N7:10

You can use an alias tag for the source tag (in originating Logix5000 controller).

Logix5000 → PLC-2 source tag array_1[0]

destination element 010

Message Path Example Source and Destination

Logix5000 → Logix5000 source tag array_1[0]

destination tag array_2[0]

You cannot use an alias tag for the source tag. The source must be a base tag.

You can use an alias tag for the destination tag (in originating Logix5000 controller).

Logix5000 → PLC-5

Logix5000 → SLC

source element N7:10

destination tag array_1[0]

You can use an alias tag for the destination tag (in originating Logix5000 controller).

Logix5000 → PLC-2 source element 010

destination tag array_1[0]
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 165
Specify the
Communication Details

To configure a MSG instruction, you specify these details on the
Communication tab.

Specify a path

The path shows the route that the message takes to get to the
destination. It uses either names from the I/O configuration of the
controller, numbers that you type, or both.

Specify a path

Specify a Communication Method Or
Module Address

Choose a cache option

If Then

The I/O configuration of the controller has
the module that gets the message.

Use the Browse button to select the module.

The I/O configuration of the controller has
only the local communication module.

1. Use the Browse button to select the local communication module.

2. Type the rest of the path.

The I/O configuration of the controller
doesn’t have any of the modules that you
need for the message.

Type the path.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

166 Input/Output Instructions (MSG, GSV, SSV, IOT)
To type a path, use this format:

port, next_address, port, next_address, …

Example

The I/O configuration of the controller has
the module that gets the message.

The I/O configuration of the controller has
only the local communication module.

The I/O configuration of the controller
doesn’t have any of the modules that you
need for the message.

Click the Browse button and select the module.

Go to the local communication module.

Go out the EtherNet/IP port….

to the address of 10.10.10.10.

Go across the backplane…

to the module in slot 0.

to the local communication module on slot 1

Go out the ControlNet port….

to node 4

Go across the backplane…

to the module in slot 0.

Go across the backplane…
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 167
Where Is

For this network Type

port backplane 1

DF1 (serial, serial
channel 0)

2

ControlNet

EtherNet/IP

DH+ channel A

DH+ channel B 3

DF1 channel 1
(serial channel 1)

next_address backplane slot number of the module

DF1 (serial) station address (0-254)

ControlNet node number (1-99 decimal)

DH+ 8# followed by the node number (1-77 octal)

For example, to specify the octal node address of 37, type 8#37.

EtherNet/IP You can specify a module on an EtherNet/IP network using any of these formats:

IP address (for example, 10.10.10.10)

IP address:Port (for example, 10.10.10.10:24)

DNS name (for example, tanks)

DNS name:Port (for example, tanks:24)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

168 Input/Output Instructions (MSG, GSV, SSV, IOT)
For Block Transfers

For block transfer messages, add the following modules to the I/O
configuration of the controller:

For Block-transfers Over
This Network

Add These Modules To The I/O Configuration

ControlNet • local communication module (for example, 1756-CNB module)

• remote adapter module (for example, 1771-ACN module)

universal remote I/O • local communication module (for example, 1756-DHRIO module)

• one emote adapter module (for example, 1771-ASB module) for each rack, or portion of a rack, in
the chassis

• block-transfer module (optional)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 169
Specify a Communication Method Or Module Address

Use the following table to select a communication method or module
address for the message.

If The Destination Device Is a Then Select And Specify

Logix5000 controller CIP no other specifications required

PLC-5 controller over an
EtherNet/IP network

PLC-5 controller over a
ControlNet network

SLC 5/05 controller

PLC-5 controller over a DH+
network

DH+ Channel: Channel A or B of the 1756-DHRIO module that
is connected to the DH+ network

SLC controller over a DH+
network

Source Link: Link ID assigned to the backplane of the
controller in the routing table of the 1756-DHRIO
module. (The source node in the routing table is
automatically the slot number of the controller.)

PLC-3 processor Destination Link Link ID of the remote DH+ link where the target
device resides

PLC-2 processor Destination Node: Station address of the target device, in octal

If there is only one DH+ link and you did not use the RSLinx software to
configure the DH/RIO module for remote links, specify 0 for both the
Source Link and the Destination Link.

Application on a workstation
that is receiving an unsolicited
message routed over an
EtherNet/IP or ControlNet
network through RSLinx

CIP with Source ID

(This lets the application
receive data from a
controller.)

Source Link: Remote ID of the topic in RSLinx software

Destination Link: Virtual Link ID set up in RSLinx (0-65535)

Destination Node: Destination ID (0-77 octal) provided by the
application to RSLinx. For a DDE topic in RSLinx,
use 77.

The slot number of the ControlLogix controller is used as the Source
Node.

block transfer module over a
universal remote I/O network

RIO Channel: Channel A or B of the 1756-DHRIO module that
is connected to the RIO network

Rack Rack number (octal) of the module

Group Group number of the module

Slot Slot number that the module is in

block transfer module over a
ControlNet network

ControlNet Slot Slot number that the module is in
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

170 Input/Output Instructions (MSG, GSV, SSV, IOT)
Choose a cache option

Depending on how you configure a MSG instruction, it may use a
connection to send or receive data.

If a MSG instruction uses a connection, you have the option to leave
the connection open (cache) or close the connection when the
message is done transmitting.

The controller has the following limits on the number of connections
that you can cache:

This Type Of Message And This Communication Method Uses A Connection

CIP data table read or write 3

PLC2, PLC3, PLC5, or SLC (all types) CIP

CIP with Source ID

DH+ 3

CIP generic your option (1)

block-transfer read or write 3

(1) You can connect CIP generic messages. But for most applications we recommend you leave CIP generic
messages unconnected.

If You Then

Cache the connection The connection stays open after the MSG instruction is done.
This optimizes execution time. Opening a connection each time
the message executes increases execution time.

Do not cache the
connection

The connection closes after the MSG instruction is done. This
frees up that connection for other uses.

If You Have This Software
And Firmware Revision

Then You Can Cache

11.x or earlier • block transfer messages for up to 16 connections

• other types of messages for up to 16 connections

12.x or later up to 32 connections
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 171
If several messages go to the same device, the messages may be able
to share a connection.

IF THE MSG Instructions Are To And They Are Then

different devices Each MSG instruction uses 1 connection.

same device enabled at the same time Each MSG instruction uses 1 connection.

NOT enabled at the same time The MSG instructions share the connection.
(that is, Together they count as 1
connection.)

EXAMPLE Share a Connection

If the controller alternates between sending a block-transfer
read message and a block-transfer write message to the same
module, then together both messages count as 1 connection.
Caching both messages counts as 1 on the cache list.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

172 Input/Output Instructions (MSG, GSV, SSV, IOT)
Guidelines

As you plan and program your MSG instructions, follow these
guidelines:

Guideline Details

1. For each MSG instruction, create a control
tag.

Each MSG instruction requires its own control tag.

• Data type = MESSAGE

• Scope = controller

• The tag cannot be part of an array or a user-defined data type.

2. Keep the source and/or destination data at
the controller scope.

A MSG instruction can access only tags that are in the Controller Tags folder (controller
scope).

3. If your MSG is to a device that uses 16-bit
integers, use a buffer of INTs in the MSG
and DINTs throughout the project.

If your message is to a device that uses 16-bit integers, such as a PLC-5® or SLC 500™
controller, and it transfers integers (not REALs), use a buffer of INTs in the message and
DINTs throughout the project.

This increases the efficiency of your project because Logix controllers execute more
efficiently and use less memory when working with 32-bit integers (DINTs).

To convert between INTs and DINTs, see Logix5000 Controllers Common Procedures,
publication 1756-PM001.

4. Cache the connected MSGs that execute
most frequently.

Cache the connection for those MSG instructions that execute most frequently, up to
the maximum number permissible for your controller revision.

This optimizes execution time because the controller does not have to open a
connection each time the message executes.

5. If you want to enable more than 16 MSGs at
one time, use some type of management
strategy.

If you enable more than 16 MSGs at one time, some MSG instructions may experience
delays in entering the queue. To guarantee the execution of each message, use one of
these options:

• Enable each message in sequence.

• Enable the messages in groups.

• Program a message to communicate with multiple devices. For more information,
see Logix5000 Controllers Common Procedures, publication 1756-PM001.

• Program logic to coordinate the execution of messages. For more information, see
Logix5000 Controllers Common Procedures, publication 1756-PM001.

6. Keep the number of unconnected and
uncached MSGs less than the number of
unconnected buffers.

The controller can have 10 - 40 unconnected buffers. The default number is 10.

• If all the unconnected buffers are in use when an instruction leaves the message
queue, the instruction errors and does not transfer the data.

• You can increase the number of unconnected buffers (40 max.), but continue to
follow guideline 5.

• To increase the number of unconnected buffers, see Logix5000 Controllers Common
Procedures, publication 1756-PM001.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 173
Get System Value (GSV) and
Set System Value (SSV)

The GSV/SSV instructions get and set controller system data that is
stored in objects.

Operands:

Relay Ladder

Structured Text

The operands for are the same as those for the relay ladder GSV and
SSV instructions.

Operand Type Format Description

Class name name name of object

Instance name name name of specific object, when object requires name

Attribute Name name attribute of object

data type depends on the attribute you select

Destination (GSV) SINT

INT

DINT

REAL

structure

tag destination for attribute data

Source (SSV) SINT

INT

DINT

REAL

structure

tag tag that contains data you want to copy to the attribute

GSV(ClassName,InstanceName,AttributeName,Dest);

SSV(ClassName,InstanceName,AttributeName,Source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

174 Input/Output Instructions (MSG, GSV, SSV, IOT)
Description: The GSV/SSV instructions get and set controller system data that is
stored in objects. The controller stores system data in objects. There is
no status file, as in the PLC-5 processor.

When enabled, the GSV instruction retrieves the specified information
and places it in the destination. When enabled, the SSV instruction
sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software
displays the valid object classes, object names, and attribute names for
each instruction. For the GSV instruction, you can get values for all the
available attributes. For the SSV instruction, the software displays only
those attributes are allowed to set (SSV).

ATTENTION Use the GSV and SSV instructions carefully. Making changes to objects may cause
unexpected controller operation or injury to personnel.

You must test and confirm that the instructions don’t change data that you don’t
want them to change.

The GSV and SSV instructions write or read past a member into other members of a
tag. If the tag is too small, the instructions don’t write or read the data. They log a
minor fault instead.

Example 1

Member_A is too small for the attribute. So the GSV instruction writes the last
value to Member_B.

Example 2

My_Tag is too small for the attribute. So the GSV instruction stops and logs a minor
fault.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 175
The GSV/SSV Objects section shows each object’s attributes and their associated
data types. For example, the MajorFaultRecord attribute of the Program object
needs a DINT[11] data type.

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

A Minor Fault Will Occur If Fault Type Fault Code

invalid object address 4 5

specified an object that does not support
GSV/SSV

4 6

invalid attribute 4 6

did not supply enough information for an SSV
instruction

4 6

the GSV destination was not large enough to hold
the requested data

4 7

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction executes Get or set the specified value. Get or set the specified value.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

176 Input/Output Instructions (MSG, GSV, SSV, IOT)
GSV/SSV Objects When you enter a GSV/SSV instruction, you specify the object and its
attribute that you want to access. In some cases, there will be more
than one instance of the same type of object, so you might also have
to specify the object name. For example, there can be several tasks in
your application. Each task has its own TASK object that you access
by the task name.

You can access these objects:

ATTENTION For the GSV instruction, only the specified size of data is copied
to the destination. For example, if the attribute is specified as a
SINT and the destination is a DINT, only the lower 8 bits of the
DINT destination are updated, leaving the remaining 24 bits
unchanged.

For Information About This Object See This Page Or Publication

AXIS ControlLogix Motion Module Setup and
Configuration Manual, publication
1756-UM006

CONTROLLER 5-177

CONTROLLERDEVICE 5-177

CST 5-181

DF1 5-182

FAULTLOG 5-185

MESSAGE 5-186

MODULE 5-188

MOTIONGROUP 5-189

PROGRAM 5-190

ROUTINE 5-192

SERIALPORT 5-192

TASK 5-194

WALLCLOCKTIME 5-196
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 177
Access the CONTROLLER object

The CONTROLLER object provides status information about a
controller’s execution.

Access the CONTROLLERDEVICE object

The CONTROLLERDEVICE object identifies the physical hardware of
the controller.

Attribute Data Type Instruction Description

TimeSlice INT GSV

SSV

Percentage of available CPU that is assigned to
communications.

Valid values are 10-90. This value cannot be changed when the
controller keyswitch is in the run position.

Attribute Data Type Instruction Description

DeviceName SINT[33] GSV ASCII string that identifies the catalog number of the controller
and memory board.

The first byte contains a count of the number of ASCII
characters returned in the array string.

ProductCode INT GSV Identifies the type of controller

Logix Controller Product Code

CompactLogix5320 43

CompactLogix5330 44

CompactLogix5335E 65

ControlLogix5550 3

ControlLogix5553 50

ControlLogix5555 51

ControlLogix5561 54

ControlLogix5562 55

ControlLogix5563 56

DriveLogix5720 48

FlexLogix5433 41

FlexLogix5434 42

SoftLogix5860 15
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

178 Input/Output Instructions (MSG, GSV, SSV, IOT)
ProductRev INT GSV Identifies the current product revision. Display should be
hexadecimal.

The low byte contains the major revision; the high byte
contains the minor revision.

SerialNumber DINT GSV Serial number of the device.

The serial number is assigned when the device is built.

Attribute Data Type Instruction Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 179
Status INT GSV Bits identify status:

Bits 3-0 are reserved

Device Status Bits

Bits 7-4: Meaning:
0000 reserved

0001 flash update in progress

0010 reserved

0011 reserved

0100 flash is bad

0101 faulted

0110 run

0111 program

Fault Status Bits

Bits 11-8: Meaning:
0001 recoverable minor fault

0010 unrecoverable minor fault

0100 recoverable major fault

1000 unrecoverable major fault

Logix5000 Specific Status Bits

Bits 13-12: Meaning:
01 keyswitch in run

10 keyswitch in program

11 keyswitch in remote

Bits 15-14 Meaning

01 controller is changing modes

10 debug mode if controller is in run mode

Attribute Data Type Instruction Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

180 Input/Output Instructions (MSG, GSV, SSV, IOT)
Type INT GSV Identifies the device as a controller.

Controller = 14

Vendor INT GSV Identifies the vendor of the device.

Allen-Bradley = 0001

Attribute Data Type Instruction Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 181
Access the CST object

The CST (coordinated system time) object provides coordinated
system time for the devices in one chassis.

Attribute Data Type Instruction Description

CurrentStatus INT GSV Current status of the coordinated system time. Bits identify:

Bit: Meaning

0 timer hardware faulted: the device’s internal timer
hardware is in a faulted state

1 ramping enabled: the current value of the timer’s lower
16+ bits ramp up to the requested value, rather than snap
to the lower value. These bits are manipulated by the
network specific tick synchronization method.

2 system time master: the CST object is a master time
source in the ControlLogix system

3 synchronized: the CST object’s 64-bit CurrentValue is
synchronized by a master CST object via a system time
update

4 local network master: the CST object is the local network
master time source

5 in relay mode: the CST object is acting in a time relay
mode

6 duplicate master detected: a duplicate local network time
master has been detected. This bit is always 0 for
time-dependent nodes.

7 unused

8-9 00 = time dependent node
01 = time master node
10 = time relay node
11 = unused

10-15 unused

CurrentValue DINT[2] GSV Current value of the timer. DINT[0] contains the lower 32; DINT[1]
contains the upper 32 bits.

The timer source is adjusted to match the value supplied in update
services and from local communication network synchronization. The
adjustment is either a ramping to the requested value or an
immediate setting to the request value, as reported in the
CurrentStatus attribute.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

182 Input/Output Instructions (MSG, GSV, SSV, IOT)
Access the DF1 object

The DF1 object provides an interface to the DF1 communication
driver that you can configure for the serial port.

Attribute Data Type Instruction Description

ACKTimeout DINT GSV The amount of time to wait for an acknowledgment to a message
transmission (point-to-point and master only).

Valid value 0-32,767. Delay in counts of 20 msec periods. Default
is 50 (1 second).

DiagnosticCounters INT[19] GSV Array of diagnostic counters for the DF1 communication driver.

word offset DF1 point-to-point DF1 slave master
0 signature (0x0043) signature (0x0042) signature (0x0044)
1 modem bits modem bits modem bits
2 packets sent packets sent packets sent
3 packets received packets received packets received
4 undelivered packets undelivered packets undelivered packets
5 unused messages retried messages retried
6 NAKs received NAKs received unused
7 ENQs received poll packets received unused
8 bad packets NAKed bad packets not ACKed bad packets not ACKed
9 no memory sent NAK no memory not ACKed unused
10 duplicate packets received duplicate packets received duplicate packets received
11 bad characters received unused unused
12 DCD recoveries count DCD recoveries count DCD recoveries count
13 lost modem count lost modem count lost modem count
14 unused unused priority scan time maximum
15 unused unused priority scan time last
16 unused unused normal scan time maximum
17 unused unused normal scant time last
18 ENQs sent unused unused

DuplicateDetection SINT GSV Enables duplicate message detection.

Value: Meaning:
0 duplicate message detection disabled
non zero duplicate message detection disabled

EmbeddedResponseEnable SINT GSV Enables embedded response functionality (point-to-point only).

Value: Meaning:
0 initiated only after one is received (default)
1 enabled unconditionally

ENQTransmitLimit SINT GSV The number of inquiries (ENQs) to send after an ACK timeout
(point-to-point only).

Valid value 0-127. Default setting is 3.

EOTSuppression SINT GSV Enable suppressing EOT transmissions in response to poll packets
(slave only).

Value: Meaning:
0 EOT suppression disabled (disabled)
non zero EOT suppression enabled
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 183
ErrorDetection SINT GSV Specifies the error-detection scheme.

Value: Meaning:
0 BCC (default)
1 CRC

MasterMessageTransmit SINT GSV Current value of the master message transmission (master only).

Value: Meaning:
0 between station polls
1 in poll sequence (in place of master’s station

number)

Default is 0.

NAKReceiveLimit SINT GSV The number of NAKs received in response to a message before
stopping transmission (point-to-point communication only).

Valid value 0-127. Default is 3.

NormalPollGroupSize INT GSV Number of stations to poll in the normal poll node array after
polling all the stations in the priority poll node array (master only).

Valid value 0-255. Default is 0.

PollingMode SINT GSV Current polling mode (master only).

Value: Meaning:
0 message-based, but don’t allow slaves

to initiate messages
1 message-based, but allow slaves to

initiate messages (default)
2 standard, single-message transfer per node scan
3 standard, multiple-message transfer per node scan

Default setting is 1.

ReplyMessageWait DINT GSV The time (acting as a master) to wait after receiving an ACK
before polling the slave for a response (master only).

Valid value 0-65,535. Delay in counts of 20 msec periods. The
default is 5 periods (100 msec).

StationAddress INT GSV Current station address of the serial port.

Valid value 0-254. Default is 0.

SlavePollTimeout DINT GSV The amount of time in msecs that the slave waits for the master to
poll before the slave declares that it is unable to transmit because
the master is inactive (slave only).

Valid value 0-32,767. Delay in counts of 20 msec periods. The
default is 3000 periods (1 minute).

TransmitRetries SINT GSV Number of times to resend a message without getting an
acknowledgment (master and slave only).

Valid value 0-127. Default is 3.

PendingACKTimeout DINT SSV Pending value for the ACKTimeout attribute.

Attribute Data Type Instruction Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

184 Input/Output Instructions (MSG, GSV, SSV, IOT)
To apply values for any of the DF1 pending attributes:

1. Use an SSV instruction to set the value for the pending attribute.

You can set as many pending attributes as you want, using an
SSV instruction for each pending attribute.

2. Use a MSG instruction to apply the value. The MSG instruction
applies every pending attribute you set. Configure the MSG
instruction as:

PendingDuplicateDetection SINT SSV Pending value for the DuplicateDetection attribute.

PendingEmbeddedResponse
Enable

SINT SSV Pending value for the EmbeddedResponse attribute.

PendingENQTransmitLimit SINT SSV Pending value for the ENQTransmitLimit attribute.

PendingEOTSuppression SINT SSV Pending value for the EOTSuppression attribute.

PendingErrorDetection SINT SSV Pending value for the ErrorDetection attribute.

PendingNormalPollGroupSize INT SSV Pending value for the NormalPollGroupSize attribute.

PendingMasterMessage
Transmit

SINT SSV Pending value for the MasterMessageTransmit attribute.

PendingNAKReceiveLimit SINT SSV Pending value for the NAKReceiveLimit attribute.

PendingPollingMode SINT SSV Pending value for the PollingMode attribute.

PendingReplyMessageWait DINT SSV Pending value for the ReplyMessageWait attribute.

PendingStationAddress INT SSV Pending value for the StationAddress attribute.

PendingSlavePollTimeout DINT SSV Pending value for the SlavePollTimeout attribute.

PendingTransmitRetries SINT SSV Pending value for the TransmitRetries attribute.

Attribute Data Type Instruction Description

MSG Configuration Tab Field Value

Configuration Message Type CIP Generic

Service Code 0d hex

Object Type a2

Object ID 1

Object Attribute leave blank

Source leave blank

Number of Elements 0

Destination leave blank

Communication Path communication path to self
(1,s where s = slot number
of controller)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 185
Access the FAULTLOG object

The FAULTLOG object provides fault information about the controller.

Attribute Data Type Instruction Description

MajorEvents INT GSV

SSV

How many major faults have occurred since the last time this
counter was reset.

MinorEvents INT GSV

SSV

How many minor faults have occurred since the last time this
counter was reset.

MajorFaultBits DINT GSV

SSV

Individual bits indicate the reason for the current major fault.

Bit: Meaning:
1 power loss
3 I/O
4 instruction execution (program)
5 fault handler
6 watchdog
7 stack
8 mode change
11 motion

MinorFaultBits DINT GSV

SSV

Individual bits indicate the reason for the current minor fault.

Bit: Meaning:
4 instruction execution (program)
6 watchdog
9 serial port
10 battery
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

186 Input/Output Instructions (MSG, GSV, SSV, IOT)
Access The MESSAGE Object

You can access the MESSAGE object through the GSV/SSV
instructions. Specify the message tag name to determine which
MESSAGE object you want. The MESSAGE object provides an
interface to setup and trigger peer-to-peer communications. This
object replaces the MG data type of the PLC-5 processor.

To change a MESSAGE attribute, follow these steps:

1. Use a GSV instruction to get the MessageType attribute and save
it in a tag.

2. Use a SSV instruction to set the MessageType to 0.

3. Use a SSV instruction to set the MESSAGE attribute that you want
to change.

4. Use a SSV instruction to set the MessageType attribute back to
the original value you obtained in step 1.

Attribute Data Type Instruction Description

ConnectionPath SINT[130] GSV

SSV

Data to setup the connection path. The first two bytes (low byte
and high byte) are the length in bytes of the connection path.

ConnectionRate DINT GSV

SSV

Requested packet rate of the connection.

MessageType SINT GSV

SSV

Specifies the type of message.

Value: Meaning:
0 not initialized

Port SINT GSV

SSV

Indicates which port the message should be sent on.

Value: Meaning:
1 backplane
2 serial port

TimeoutMultiplier SINT GSV

SSV

Determines when a connection should be considered timed out
and closed.

Value: Meaning:
0 connection will timeout in 4 times the update rate

(default)
1 connection will timeout in 8 times the update rate
2 connection will timeout in 16 times the update rate

UnconnectedTimeout DINT GSV

SSV

Timeout period in microseconds for all unconnected messages. The
default is 30,000,000 microseconds (30 seconds).
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 187
Example: The following example changes the ConnectionPath attribute, so that
the message goes to a different controller. When msg_path is on, sets
the path of the msg_1 message to the value of msg_1_path. This send
the message to a different controller.

Relay Ladder

Structured Text

IF msg_path THEN

GSV(MESSAGE,msg_1,MessageType,msg_1_type);

SSV(MESSAGE,msg_1,MessageType,tag_a);

SSV(MESSAGE,msg_1,ConnectionPath,msg_1_path[0]);

SSV(MESSAGE,msg_1,MessageType,msg_1_type);

END_IF;

IF NOT msg_1.EN THEN

MSG(msg_1);

END_IF;

Where Is

msg_1 message whose attribute you want to change

msg_1_type tag that stores the value of the MessageType attribute

tag_a tag that stores a 0.

msg_1_path array tag that stores the new connection path for the message

0
msg_path

Get System Value
Class name MESSAGE
Instance name msg_1
Attribute Name MessageType
Dest msg_1_type
 2

GSV
Set System Value
Class name MESSAGE
Instance name msg_1
Attribute Name MessageType
Source tag_a
 0

SSV

Set System Value
Class name MESSAGE
Instance name msg_1
Attribute Name ConnectionPath
Source msg_1_path[0]
 6

SSV
Set System Value
Class name MESSAGE
Instance name msg_1
Attribute Name MessageType
Source msg_1_type
 2

SSV

1 /
msg_1.EN

EN
DN
ER

Type - CIP Data Table Write
Message Control msg_1 ...

MSG
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

188 Input/Output Instructions (MSG, GSV, SSV, IOT)
Access The MODULE Object

The MODULE object provides status information about a module. To
select a particular MODULE object, set the Object Name operand of
the GSV/SSV instruction to the module name, The specified module
must be present in the I/O Configuration section of the controller
organizer and must have a device name.

Attribute Data Type Instruction Description

EntryStatus INT GSV Specifies the current state of the specified map entry. The lower 12 bits
should be masked when performing a comparison operation. Only bits
12-15 are valid.

Value: Meaning:
16#0000 Standby: the controller is powering up.

16#1000 Faulted: any of the MODULE object’s connections to
the associated module fail. This value should not be
used to determine if the module failed because the
MODULE object leaves this state periodically when
trying to reconnect to the module. Instead, test for
Running state (16#4000). Check for FaultCode
not equal to 0 to determine if a module is faulted.
When Faulted, the FaultCode and FaultInfo attributes
are valid until the fault condition is corrected.

16#2000 Validating: the MODULE object is verifying MODULE
object integrity prior to establishing connections
to the module.

16#3000 Connecting: the MODULE object is initiating
connections to the module.

16#4000 Running: all connections to the module are
established and data is successfully transferring.

16#5000 Shutting down: the MODULE object is in the
process
of shutting down all connections to the module.

16#6000 Inhibited: the MODULE object is inhibited (the
inhibit bit in the Mode attribute is set).

16#7000 Waiting: the parent MODULE object upon which
this MODULE object depends is not running.

FaultCode INT GSV A number which identifies a module fault, if one occurs.

FaultInfo DINT GSV Provides specific information about the MODULE object fault code.

ForceStatus INT GSV Specifies the status of forces.

Bit: Meaning:
0 forces installed (1=yes, 0-no)
1 forces enabled (1=yes, 0=no)
2-15 not used
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 189
Access The MOTIONGROUP Object

The MOTIONGROUP object provides status information about a
group of axes for the servo module. Specify the motion-group tag
name to determine which MOTIONGROUP object you want.

Instance DINT GSV Provides the instance number of this MODULE object.

LEDStatus INT GSV Specifies the current state of the I/O LED on the front of the controller.

Value: Meaning:
0 LED off: No MODULE objects are configured for the

controller (there are no modules in the I/O Configuration
section of the controller organizer).

1 Flashing red: None of the MODULE objects are Running.

2 Flashing green: At least one MODULE object is
not Running.

3 Solid green: All the Module objects are Running.

Note: You do not enter an object name with this attribute because this
attribute applies to the entire collection of modules.

Mode INT GSV

SSV

Specifies the current mode of the MODULE object.

Bit: Meaning:
0 If set, causes a major fault to be generated if any of the

MODULE object connections fault while the controller
is in Run mode.

2 If set, causes the MODULE object to enter Inhibited state
after shutting down all the connections to the module.

Attribute Data Type Instruction Description

Attribute Data Type Instruction Description

Instance DINT GSV Provides the instance number of this MOTION_GROUP object.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

190 Input/Output Instructions (MSG, GSV, SSV, IOT)
Access The PROGRAM Object

The PROGRAM object provides status information about a program.
Specify the program name to determine which PROGRAM object
you want.

Attribute Data Type Instruction Description

DisableFlag SINT GSV

SSV

Controls this program’s execution.

Value: Meaning:
0 execution enabled
1 execution disabled

Instance DINT GSV Provides the instance number of this PROGRAM object.

LastScanTime DINT GSV

SSV

Time it took to execute this program the last time it was executed.
Time is in microseconds.

MajorFaultRecord DINT[11] GSV

SSV

Records major faults for this program

We recommend that you create a user-defined structure to
simplify access to the MajorFaultRecord attribute:

Name: Data Type: Style: Description:

TimeLow DINT Decimal lower 32 bits of fault timestamp value

TimeHigh DINT Decimal upper 32 bits of fault timestamp value

Type INT Decimal fault type (program, I/O, etc.)

Code INT Decimal unique code for the fault (depends on fault type)

Info DINT[8] Hexadecimal fault specific information (depends on fault type and code)

MaxScanTime DINT GSV

SSV

Maximum recorded execution time for this program. Time is in
microseconds.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 191
MinorFaultRecord DINT[11] GSV

SSV

Records minor faults for this program

We recommend that you create a user-defined structure to
simplify access to the MinorFaultRecord attribute:

Name: Data Type: Style: Description:

TimeLow DINT Decimal lower 32 bits of fault timestamp value

TimeHigh DINT Decimal upper 32 bits of fault timestamp value

Type INT Decimal fault type (program, I/O, etc.)

Code INT Decimal unique code for the fault (depends on fault type)

Info DINT[8] Hexadecimal fault specific information (depends on fault type and code)

SFCRestart INT GSV

SSV

unused - reserved for future use

Attribute Data Type Instruction Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

192 Input/Output Instructions (MSG, GSV, SSV, IOT)
Access The Routine object

The ROUTINE object provides status information about a routine.
Specify the routine name to determine which ROUTINE object
you want.

Access The SERIALPORT Object

The SERIALPORT object provides an interface to the serial
communication port.

Attribute Data Type Instruction Description

Instance DINT GSV Provides the instance number of this ROUTINE object.

Valid values are 0-65,535.

Attribute Data Type Instruction Description

BaudRate DINT GSV Specifies the baud rate.

Valid values are 110, 300, 600, 1200, 2400, 4800, 9600, and
19200 (default).

DataBits SINT GSV Specifies the number of bits of data per character.

Value: Meaning:
7 7 data bits (ASCII only)
8 8 data bits (default)

Parity SINT GSV Specifies the parity.

Value: Meaning:
0 no parity (no default)
1 odd parity (ASCII only)
2 even parity

RTSOffDelay INT GSV Amount of time to delay turning off the RTS line after the last
character has been transmitted.

Valid value 0-32,767. Delay in counts of 20 msec periods. The
default is 0 msec.

RTSSendDelay INT GSV Amount of time to delay transmitting the first character of a
message after turning on the RTS line.

Valid value 0-32,767. Delay in counts of 20 msec periods. The
default is 0 msec.

StopBits SINT GSV Specifies the number of stop bits.

Value: Meaning:
1 1 stop bit (default)
2 2 stop bits (ASCII only)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 193
To apply values for any of the SERIALPORT pending attributes:

1. Use an SSV instruction to set the value for the pending attribute.

You can set as many pending attributes as you want, using an
SSV instruction for each pending attribute.

2. Use a MSG instruction to apply the value. The MSG instruction
applies every pending attribute you set. Configure the MSG
instructions as:

PendingBaudRate DINT SSV Pending value for the BaudRate attribute.

PendingDataBits SINT SSV Pending value for the DataBits attribute.

PendingParity SINT SSV Pending value for the Parity attribute.

PendingRTSOffDelay INT SSV Pending value for the RTSOffDelay attribute.

PendingRTSSendDelay INT SSV Pending value for the RTSSendDelay attribute.

PendingStopBits SINT SSV Pending value for the StopBits attribute.

Attribute Data Type Instruction Description

MSG Configuration Tab Field Value

Configuration Message Type CIP Generic

Service Code 0d hex

Object Type 6f hex

Object ID 1

Object Attribute leave blank

Source leave blank

Number of Elements 0

Destination leave blank

Communication Path communication path to self
(1,s where s = slot number of
controller)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

194 Input/Output Instructions (MSG, GSV, SSV, IOT)
Access The TASK Object

The TASK object provides status information about a task. Specify the
task name to determine which TASK object you want.

Attribute Data Type Instruction Description

DisableUpdateOutputs DINT GSV

SSV

Enables or disables the processing of outputs at the end of a task

To: Set the attribute to:

enable the processing of outputs
at the end of the task

0

disable the processing of
outputs at the end of the task

1 (or any non-zero value)

EnableTimeOut DINT GSV

SSV

Enables or disables the timeout function of an event task.

To: Set the attribute to:

disable the timeout function 0

enable the timeout function 1 (or any non-zero value)

InhibitTask DINT GSV

SSV

Prevents the task from executing. If a task is inhibited, the controller
still prescans the task when the controller transitions from program
to run or test mode.

To: Set the attribute to:

enable the task 0 (default)

inhibit (disable) the task 1 (or any non-zero value)

Instance DINT GSV Provides the instance number of this TASK object.

Valid values are 0-31.

LastScanTime DINT GSV

SSV

Time it took to execute this task the last time it was executed. Time
is in microseconds.

MaxInterval DINT[2] GSV

SSV

The maximum time interval between successive executions of
the task. DINT[0] contains the lower 32 bits of the value; DINT[1]
contains the upper 32 bits of the value.

A value of 0 indicates 1 or less executions of the task.

MaxScanTime DINT GSV

SSV

Maximum recorded execution time for this program. Time is
in microseconds.

MinInterval DINT[2] GSV

SSV

The minimum time interval between successive executions of the
task. DINT[0] contains the lower 32 bits of the value; DINT[1]
contains the upper 32 bits of the value.

A value of 0 indicates 1 or less executions of the task.

OverlapCount DINT GSV

SSV

Number of times that the task was triggered while it was still
executing. Valid for an event or a periodic task.

To clear the count, set the attribute to 0.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 195
Priority INT GSV

SSV

Relative priority of this task as compared to the other tasks.

Valid values 0-15.

Rate DINT GSV

SSV

If the task type is: Then the Rate attribute
specifies the:

periodic Period for the task. Time is
in microseconds.

event The timeout value for the task.
Time is in microseconds.

StartTime DINT[2] GSV

SSV

Value of WALLCLOCKTIME when the last execution of the task
was started. DINT[0] contains the lower 32 bits of the value;
DINT[1] contains the upper 32 bits of the value.

Status DINT GSV

SSV

Provides status information about the task. Once the controller sets
one of these bits, you must manually clear the bit.

To determine if: Examine this bit:

An EVNT instruction triggered
the task (event task only).

0

A timeout triggered the task
(event task only).

1

An overlap occurred for this
task.

2

Watchdog DINT GSV

SSV

Time limit for execution of all programs associated with this task.
Time is in microseconds.

If you enter 0, these values are assigned:

Time: Task Type:

0.5 sec periodic or event

5.0 sec continuous

Attribute Data Type Instruction Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

196 Input/Output Instructions (MSG, GSV, SSV, IOT)
Access The WALLCLOCKTIME Object

The WALLCLOCKTIME object provides a timestamp the controller can
use for scheduling.

Attribute Data Type Instruction Description

CSTOffset DINT[2] GSV

SSV

Positive offset from the CurrentValue of the CST object
(coordinated system time, see page 5-181). DINT[0] contains the
lower 32 bits of the value; DINT[1] contains the upper 32 bits of
the value.

Value in μsecs. The default is 0.

CurrentValue DINT[2] GSV

SSV

Current value of the wall clock time. DINT[0] contains the lower
32 bits of the value; DINT[1] contains the upper 32 bits of the
value.

The value is the number of microseconds that have elapsed since
0000 hrs 1 January 1972.

The CST and WALLCLOCKTIME objects are mathematically related
in the controller. For example, if you add the CST CurrentValue and
the WALLCLOCKTIME CTSOffset, the result is the
WALLCLOCKTIME CurrentValue.

DateTime DINT[7] GSV

SSV

The date and time in a readable format.

DINT[0] year

DINT[1] integer representation of month (1-12)

DINT[2] integer representation of day (1-31)

DINT[3] hour (0-23)

DINT[4] minute (0-59)

DINT[5] seconds (0-59)

DINT[6] microseconds (0-999,999)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 197
GSV/SSV Programming
Example

Get Fault Information

The following examples use GSV instructions to get fault information.

Example 1: This example gets fault information from the I/O module disc_in_2
and places the data in a user-defined structure disc_in_2_info.

Relay Ladder

Structured Text

GSV(MODULE,disc_in_2,FaultCode,disc_in_2_info.FaultCode);

GSV(MODULE,disc_in_2,FaultInfo,disc_in_2_info.FaultInfo);

GSV(MODULE,disc_in_2,Mode,disc_in_2info.Mode);

Example 2: This example gets status information about program discrete and
places the data in a user-defined structure discrete_info.

Relay Ladder

Structured Text

GSV(PROGRAM,DISCRETE,LASTSCANTIME,
discrete_info.LastScanTime);

GSV(PROGRAM,DISCRETE,MAXSCANTIME,discrete_info.MaxScanTime);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

198 Input/Output Instructions (MSG, GSV, SSV, IOT)
Example 3: This example gets status information about task IO_test and places the
data in a user-defined structure io_test_info.

Relay Ladder

Structured Text

GSV(TASK,IO_TEST,LASTSCANTIME,io_test_info.LastScanTime);

GSV(TASK,IO_TEST,MAXSCANTIME,io_test_info.MaxScanTime);

GSV(TASK,IO_TEST,WATCHDOG,io_test_info.WatchDog);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 199
Set Enable And Disable Flags

The following example uses the SSV instruction to enable or disable a
program. You could also use this method to enable or disable an I/O
module, which is a similar to using inhibit bits with a PLC-5 processor.

Example: Based on the status of SW.1, place the appropriate value in the
disableflag attribute of program discrete.

Relay Ladder

Structured Text

IF SW.1 THEN

discrete_prog_flag := enable_prog;

ELSE

discrete_prog_flag := disable_prog;

END_IF;

SSV(PROGRAM,DISCRETE,DISABLEFLAG,discrete_prog_flag);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

200 Input/Output Instructions (MSG, GSV, SSV, IOT)
Immediate Output (IOT) The IOT instruction immediately updates the specified output data
(output tag or produced tag).

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
IOT instruction.

Description: The IOT instruction overrides the requested packet interval (RPI) of
an output connection and sends fresh data over the connection.

• An output connection is a connection that is associated with the
output tag of an I/O module or with a produced tag.

• If the connection is for a produced tag, the IOT instruction also
sends the event trigger to the consuming controller. This lets the
IOT instruction trigger an event task in the consuming controller.

To use an IOT instruction and a produced tag to trigger an event task
in a consumer controller, configure the produced tag as follows:

Operand Type Format Description

Update Tag tag tag that you want to update, either:

• output tag of an I/O module

• produced tag

Do not choose a member or element of a tag.
For example, Local:5:0 is OK but
Local:5:0.Data is not OK.

IOT(output_tag);

Check this box.

This configures the tag to update its event trigger only via
an IOT instruction.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 201
The type of network between the controllers determines when the
consuming controller receives the new data and event trigger via the
IOT instruction.

The following diagrams compare the receipt of data via an IOT
instruction over EtherNet/IP and ControlNet networks.

Arithmetic Status Flags: not affected

Fault Conditions: none

With This Controller Over This Network The Consuming Device Receives The
Data And Event Trigger

ControlLogix backplane immediately

EtherNet/IP network immediately

ControlNet network within the actual packet interval (API) of the
consumed tag (connection)

SoftLogix5800 You can produce and consume tags only over
a ControlNet network.

within the actual packet interval (API) of the
consumed tag (connection)

EtherNet/IP network ControlNet network

event task in the
consuming controller

values loaded into
produced tag

IOT instruction in the
producing controller

event task in the
consuming controller

values loaded into
produced tag

IOT instruction in the
producing controller

RPI of the produced tag
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

202 Input/Output Instructions (MSG, GSV, SSV, IOT)
Execution:

Example 1: When the IOT instruction executes, it immediately sends the values of
the Local:5:0 tag to the output module.

Relay Ladder

Structured Text

IOT (Local:5:O);

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes. na

The rung-condition-out is set to true.

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction:

• updates the connection of the specified tag.

• resets the RPI timer of the connection

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Input/Output Instructions (MSG, GSV, SSV, IOT) 203
Example 2: This controller controls station 24 and produces data for the next
station (station 25). To use an IOT instruction to signal the
transmission of new data, the produced tag is configured as follows:

Relay Ladder

Structured Text

Produced_Tag is configured to update its event trigger via
an IOT instruction.

If New_Data = on, then the following occurs for one scan:

The CPS instruction sets Produced_Tag = Source_Tag.

The IOT instruction updates Produced_Tag and sends this update to the consuming controller (station 25). When the
consuming controller receives this update, it triggers the associated event task in that controller.

IF New_Data AND NOT Trigger_Consumer THEN

CPS (Source_Tag,Produced_Tag,1);

IOT (Produced_Tag);

END_IF;

Trigger_Consumer := New_Data;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

204 Input/Output Instructions (MSG, GSV, SSV, IOT)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 6

Compare Instructions
(CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)

Introduction The compare instructions let you compare values by using an
expression or a specific compare instruction.

If You Want To Use This Instruction Available In These Languages See Page

compare values based on an expression CMP relay ladder

structured text(1)

207

test whether two values are equal EQU relay ladder

structured text(2)

function block

212

test whether one value is greater than or equal
to a second value

GEQ relay ladder

structured text(1)

function block

216

test whether one value is greater than a
second value

GRT relay ladder

structured text(1)

function block

220

test whether one value is less than or equal to
a second value

LEQ relay ladder

structured text(1)

function block

224

test whether one value is less than a
second value

LES relay ladder

structured text(1)

function block

228
205 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

206 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
You can compare values of different data types, such as floating point
and integer.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

test whether one value is between two
other values

LIM relay ladder

structured text(1)

function block

232

pass two values through a mask and test
whether they are equal

MEQ relay ladder

structured text(1)

function block

238

test whether one value is not equal to a
second value

NEQ relay ladder

structured text(1)

function block

243

(1) There is no equivalent structured text instruction. Use other structured text programming to achieve the same result. See the description for the instruction.

(2) There is no equivalent structured text instruction. Use the operator in an expression.

If You Want To Use This Instruction Available In These Languages See Page
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 207
Compare (CMP) The CMP instruction performs a comparison on the arithmetic
operations you specify in the expression.

Operands:

Relay Ladder

Structured Text

Structured text does not have a CMP instruction, but you can achieve
the same results using an IF...THEN construct and expression.

IF BOOL_expression THEN

<statement>;

END_IF;

See Appendix for information on the syntax of constructs and
expressions within structured text.

Description: Define the CMP expression using operators, tags, and immediate
values. Use parentheses () to define sections of more
complex expressions.

The execution of a CMP instruction is slightly slower and uses more
memory than the execution of the other comparison instructions. The
advantage of the CMP instruction is that it allows you to enter
complex expressions in one instruction.

Arithmetic Status Flags: The CMP instruction only affects the arithmetic status flags if the
expression contains an operator (for example, +, −, *, /) that affects
the arithmetic status flags.

Fault Conditions: none

Operand Type Format Description

Expression SINT

INT

DINT

REAL

string

immediate

tag

an expression consisting of tags and/or
immediate values separated by operators

A SINT or INT tag converts to a DINT value by sign-extension.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

Manh Son
Highlight

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

208 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Execution:

Examples: If the CMP instruction finds the expression true, the
rung-condition-out is set to true.

If you enter an expression without a comparison operator, such as
value_1 + value_2, or value_1, the instruction evaluates the
expression as:

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

end

evaluate expression
expression is true

expression is false

rung-condition-out is set
to true

rung-condition-out is set
to false

rung-condition-in is true

If The Expression The Rung-condition-out Is Set To

non zero true

zero false
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 209
CMP expressions

You program expressions in CMP instructions the same as expressions
in FSC instructions. Use the following sections for information on valid
operators, format, and order of operation, which are common to
both instructions.

Valid operators

Operator: Description Optimal

+ add DINT, REAL

- subtract/negate DINT, REAL

* multiply DINT, REAL

/ divide DINT, REAL

= equal DINT, REAL

< less than DINT, REAL

<= less than or equal DINT, REAL

> greater than DINT, REAL

>= greater than or equal DINT, REAL

<> not equal DINT, REAL

** exponent (x to y) DINT, REAL

ABS absolute value DINT, REAL

ACS arc cosine REAL

AND bitwise AND DINT

ASN arc sine REAL

ATN arc tangent REAL

COS cosine REAL

DEG radians to degrees DINT, REAL

FRD BCD to integer DINT

LN natural log REAL

LOG log base 10 REAL

MOD modulo-divide DINT, REAL

NOT bitwise complement DINT

OR bitwise OR DINT

RAD degrees to radians DINT, REAL

SIN sine REAL

SQR square root DINT, REAL

TAN tangent REAL

TOD integer to BCD DINT

TRN truncate DINT, REAL

XOR bitwise exclusive OR DINT

Operator: Description Optimal
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

210 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Format Expressions

For each operator that you use in an expression, you have to provide
one or two operands (tags or immediate values). Use the following
table to format operators and operands within an expression:

Determine The Order of Operation

The operations you write into the expression are performed by the
instruction in a prescribed order, not necessarily the order you write
them. You can override the order of operation by grouping terms
within parentheses, forcing the instruction to perform an operation
within the parentheses ahead of other operations.

Operations of equal order are performed from left to right.

For Operators That
Operate On

Use This Format Examples

one operand operator(operand) ABS(tag_a)

two operands operand_a operator operand_b • tag_b + 5

• tag_c AND tag_d

• (tag_e ** 2) MOD (tag_f /
tag_g)

Order Operation

1. ()

2. ABS, ACS, ASN, ATN, COS, DEG, FRD, LN, LOG,
RAD, SIN, SQR, TAN, TOD, TRN

3. **

4. − (negate), NOT

5. *, /, MOD

6. <, <=, >, >=, =

7. − (subtract), +

8. AND

9. XOR

10. OR
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 211
Use Strings In an Expression

Use a relay ladder or structured text expression to compare string data
types. To use strings in an expression, follow these guidelines:

• An expression lets you compare two string tags.

• You cannot enter ASCII characters directly into the expression.

• Only the following operators are permitted

• Strings are equal if their characters match.

• ASCII characters are case sensitive. Upper case “A” ($41) is not
equal to lower case “a” ($61).

• The hexadecimal values of the characters determine if one string
is less than or greater than another string. For the hex code of a
character, see the back cover of this manual.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

Operator Description

= equal

< less than

<= less than or equal

> greater than

>= greater than or equal

<> not equal

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

212 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Equal to (EQU) The EQU instruction tests whether Source A is equal to Source B.

Operands:

Relay Ladder

• If you enter a SINT or INT tag, the value converts to a DINT
value by sign-extension.

• REAL values are rarely absolutely equal. If you need to
determine the equality of two REAL values, use the LIM
instruction.

• String data types are:

– default STRING data type

– any new string data type that you create

• To test the characters of a string, enter a string tag for both
Source A and Source B.

Structured Text

Use the equal sign “=” as an operator within an expression. This
expression evaluates whether sourceA is equal to sourceB.

See Appendix for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source A SINT

INT

DINT

REAL

string

immediate

tag

value to test against
Source B

Source B SINT

INT

DINT

REAL

string

immediate

tag

value to test against
Source A

IF sourceA = sourceB THEN

<statements>;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 213
Function Block

FBD_COMPARE Structure

Description: Use the EQU instruction to compare two numbers or two strings of
ASCII characters. When you compare strings:

• Strings are equal if their characters match.

• ASCII characters are case sensitive. Upper case “A” ($41) is not
equal to lower case “a” ($61).

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

EQU tag FBD_COMPARE structure EQU structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value to test against SourceB.

Valid = any float

SourceB REAL Value to test against SourceA.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out of the relay ladder
EQU instruction.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

214 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

Source A = Source B
yes

no

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 215
Example: If value_1 is equal to value_2, set light_a. If value_1 is not equal to
value_2, clear light_a.

Relay Ladder

Structured Text

light_a := (value_1 = value_2);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

216 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Greater than or Equal to
(GEQ)

The GEQ instruction tests whether Source A is greater than or equal to
Source B.

Operands:

Relay Ladder

• If you enter a SINT or INT tag, the value converts to a DINT
value by sign-extension.

• String data types are:

– default STRING data type

– any new string data type that you create

• To test the characters of a string, enter a string tag for both
Source A and Source B.

Structured Text

Use adjacent greater than and equal signs “>=” as an operator within
an expression. This expression evaluates whether sourceA is greater
than or equal to sourceB.

See Appendix for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source A SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source B

Source B SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source A

IF sourceA >= sourceB THEN

<statements>;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 217
Function Block

FBD_COMPARE Structure

Description: The GEQ instruction tests whether Source A is greater than or equal to
Source B.

When you compare strings:

• The hexadecimal values of the characters determine if one string
is less than or greater than another string. For the hex code of a
character, see the back cover of this manual.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

Operand Type Format Description

GEQ tag FBD_COMPARE structure GEQ structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value to test against SourceB.

Valid = any float

SourceB REAL Value to test against SourceA.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out for the relay ladder
GEQ instruction.

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

218 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

Source A ≥ Source B
yes

no

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 219
Example: If value_1 is greater than or equal to value_2, set light_b. If value_1 is
less than value_2, clear light_b.

Relay Ladder

Structured Text

light_b := (value_1 >= value_2);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

220 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Greater Than (GRT) The GRT instruction tests whether Source A is greater than Source B.

Operands:

Relay Ladder

• If you enter a SINT or INT tag, the value converts to a DINT
value by sign-extension.

• String data types are:

– default STRING data type

– any new string data type that you create

• To test the characters of a string, enter a string tag for both
Source A and Source B.

Structured Text

Use the greater than sign “>” as an operator within an expression. This
expression evaluates whether sourceA is greater than sourceB.

See Appendix for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source A SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source B

Source B SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source A

Operand Type Format Description

GRT tag FBD_COMPARE structure GRT structure

IF sourceA > sourceB THEN

<statements>;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 221
FBD_COMPARE Structure

Description: The GRT instruction tests whether Source A is greater than Source B.

When you compare strings:

• The hexadecimal values of the characters determine if one string
is less than or greater than another string. For the hex code of a
character, see the back cover of this manual.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

Arithmetic Status Flags: not affected

Fault Conditions: none

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value to test against SourceB.

Valid = any float

SourceB REAL Value to test against SourceA.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out for the relay ladder
GRT instruction.

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

222 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

Source A > Source B
yes

no

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 223
Example: If value_1 is greater than value_2, set light_1. If value_1 is less than or
equal to value_2, clear light_1.

Relay Ladder

Structured Text

light_1 := (value_1 > value_2);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

224 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Less Than or Equal to (LEQ) The LEQ instruction tests whether Source A is less than or equal to
Source B.

Operands:

Relay Ladder

• If you enter a SINT or INT tag, the value converts to a DINT
value by sign-extension.

• String data types are:

– default STRING data type

– any new string data type that you create

• To test the characters of a string, enter a string tag for both
Source A and Source B.

Structured Text

Use adjacent less than and equal signs “<=“as an operator within an
expression. This expression evaluates whether sourceA is less than or
equal to sourceB.

See Appendix for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source A SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source B

Source B SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source A

IF sourceA <= sourceB THEN

<statements>;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 225
Function Block

FBD_COMPARE Structure

Description: The LEQ instruction tests whether Source A is less than or equal to
Source B.

When you compare strings:

• The hexadecimal values of the characters determine if one string
is less than or greater than another string. For the hex code of a
character, see the back cover of this manual.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

Operand Type Format Description

LEQ tag FBD_COMPARE structure LEQ structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value to test against SourceB.

Valid = any float

SourceB REAL Value to test against SourceA.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out for the relay ladder
LEQ instruction.

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

226 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

Source A ≤ Source B
yes

no

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 227
Example: If value_1 is less than or equal to value_2, set light_2. If value_1 is
greater than value_2, clear light_2.

Relay Ladder

Structured Text

light_2 := (value_1 <= value_2);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

228 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Less Than (LES) The LES instruction tests whether Source A is less than Source B.

Operands:

Relay Ladder

• If you enter a SINT or INT tag, the value converts to a DINT
value by sign-extension.

• String data types are:

– default STRING data type

• any new string data type that you create

• To test the characters of a string, enter a string tag for both
Source A and Source B.

Structured Text

Use the less than sign “<“as an operator within an expression. This
expression evaluates whether sourceA is less than sourceB.

See Appendix for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source A SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source B

Source B SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source A

Operand Type Format Description

LES tag FBD_COMPARE structure LES structure

IF sourceA < sourceB THEN

<statements>;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 229
FBD_COMPARE Structure

Description: The LES instruction tests whether Source A is less than Source B.

When you compare strings:

• The hexadecimal values of the characters determine if one string
is less than or greater than another string. For the hex code of a
character, see the back cover of this manual.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

Arithmetic Status Flags: not affected

Fault Conditions: none

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value to test against SourceB.

Valid = any float

SourceB REAL Value to test against SourceA.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out for the relay ladder
LES instruction.

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

230 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

Source A < Source B
yes

no

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition: Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is false EnableOut is cleared.

EnableIn is true The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 231
Example: If value_1 is less than value_2, set light_3. If value_1 is greater than or
equal to value_2, clear light_3.

Relay Ladder

Structured Text

light_3 := (value_1 < value_2);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

232 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Limit (LIM) The LIM instruction tests whether the Test value is within the range of
the Low Limit to the High Limit.

Operands:

Relay Ladder

Structured Text

Structured text does not have a LIM instruction, but you can achieve
the same results using structured text.

IF (LowLimit <= HighLimit AND
(Test >= LowLimit AND Test <= HighLimit)) OR
(LowLimit >= HighLimit AND
(Test <= LowLimit OR Test >= HighLimit)) THEN

<statement>;

END_IF;

Operand Type Format Description

Low limit SINT

INT

DINT

REAL

immediate

tag

value of lower limit

A SINT or INT tag converts to a DINT value by sign-extension.

Test SINT

INT

DINT

REAL

immediate

tag

value to test

A SINT or INT tag converts to a DINT value by sign-extension.

High limit SINT

INT

DINT

REAL

immediate

tag

value of upper limit

A SINT or INT tag converts to a DINT value by sign-extension.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 233
Function Block

FBD_LIMIT Structure

Description: The LIM instruction tests whether the Test value is within the range of
the Low Limit to the High Limit.

Operand Type Format Description

LIM tag FBD_LIMIT structure LIM structure

Input Parameter Data Type Description

EnableIn BOOL If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes as described under Execution.

Default is set.

LowLimit REAL Value of lower limit.

Valid = any float

Test REAL Value to test against limits.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out for the relay ladder
LIM instruction.

HighLimit REAL Value of upper limit.

Valid = any float

If Low Limit And Test Value Is The Rung-condition-out Is

≤ High Limit equal to or between limits true

not equal to or outside limits false

≥ High Limit equal to or outside limits true

not equal to or inside limits false
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

234 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Signed integers “roll over” from the maximum positive number to the
maximum negative number when the most significant bit is set. For
example, in 16-bit integers (INT type), the maximum positive integer
is 32,767, which is represented in hexadecimal as 16#7FFF
(bits 0 through 14 are all set). If you increment that number by one,
the result is 16#8000 (bit 15 is set). For signed integers,
hexadecimal 16#8000 is equal to -32,768 decimal. Incrementing from
this point on until all 16 bits are set ends up at 16#FFFF, which is
equal to -1 decimal.

This can be shown as a circular number line (see the following
diagrams). The LIM instruction starts at the Low Limit and increments
clockwise until it reaches the High Limit. Any Test value in the
clockwise range from the Low Limit to the High Limit sets the
rung-condition-out to true. Any Test value in the clockwise range from
the High Limit to the Low Limit sets the rung-condition-out to false.

Arithmetic Status Flags: not affected

Fault Conditions: none

−1

0

+1

low limit

high limit

+n−(n+1)

n = maximum value

Low Limit ≤ High Limit

The instruction is true if the test value is equal to or between the low and high limit

Low Limit ≥ High Limit

The instruction is true if the test value is equal to or outside the low and
high limit

−1

0

+1

high limit

low limit

+n−(n+1)
n = maximum value
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 235
Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

evaluate limit
comparison is true

comparison is false

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared, the instruction does nothing, and the outputs are not updated.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

236 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Example 1: Low Limit ≤ High Limit:
When 0 ≤ value ≥ 100, set light_1. If value < 0 or value >100,
clear light_1.

Relay Ladder

Structured Text

IF (value <= 100 AND(value >= 0 AND value <= 100)) OR
(value >= 100 AND value <= 0 OR value >= 100)) THEN

light_1 := 1;

ELSE

light_1 := 0;

END_IF;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 237
Example 2: Low Limit ≥ High Limit:
When value ≥ 0 or value ≤ −100, set light_1. If value < 0 or
value >−100, clear light_1.

Relay Ladder

Structured Text

IF (0 <= -100 AND value >= 0 AND value <= -100)) OR
(0 >= -100 AND(value <= 0 OR value >= -100)) THEN

light_1 := 1;

ELSE

light_1 := 0;

END_IF;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

238 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Mask Equal to (MEQ) The MEQ instruction passes the Source and Compare values through a
Mask and compares the results.

Operands:

Relay Ladder

Structured Text

Structured text does not have an MEQ instruction, but you can
achieve the same results using structured text.

IF (Source AND Mask) = (Compare AND Mask) THEN

<statement>;

END_IF;

Function Block

Operand Type Format Description

Source SINT

INT

DINT

immediate

tag

value to test against Compare

A SINT or INT tag converts to a DINT value by zero-fill.

Mask SINT

INT

DINT

immediate

tag

defines which bits to block or pass

A SINT or INT tag converts to a DINT value by zero-fill.

Compare SINT

INT

DINT

immediate

tag

value to test against Source

A SINT or INT tag converts to a DINT value by zero-fill.

Operand Type Format Description

MEQ tag FBD_MASK_EQUAL structure MEQ structure
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 239
FBD_MASK_EQUAL Structure

Description: A “1” in the mask means the data bit is passed. A “0” in the mask
means the data bit is blocked. Typically, the Source, Mask, and
Compare values are all the same data type.

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Entering an Immediate Mask Value

When you enter a mask, the programming software defaults to
decimal values. If you want to enter a mask using another format,
precede the value with the correct prefix.

Input Parameter Data Type Description

EnableIn BOOL If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes as described under Execution.

Default is set.

Source DINT Value to test against Compare.

Valid = any integer

Mask DINT Defines which bits to block (mask).

Valid = any integer

Compare DINT Compare value.

Valid = any integer

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out for the relay ladder
MEQ instruction.

Prefix Description

16# hexadecimal

for example; 16#0F0F

8# octal

for example; 8#16

2# binary

for example; 2#00110011
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

240 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

masked source =
masked compare

yes

no

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared, the instruction does nothing, and the outputs are not updated.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 241
Example 1: If the masked value_1 is equal to the masked value_2, set light_1. If
the masked value_1 is not equal to the masked value_2, clear light_1.
This example shows that the masked values are equal. A 0 in the
mask restrains the instruction from comparing that bit (shown by x in
the example).

Relay Ladder

Structured Text

light_1 := ((value_1 AND mask_1)=(value_2 AND mask_2));

Function Block

value_1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 value_2 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0

mask_1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 mask_1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Masked value_1 0 1 0 1 0 1 0 1 1 1 1 1 x x x x Masked value_2 0 1 0 1 0 1 0 1 1 1 1 1 x x x x
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

242 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Example 2: If the masked value_1 is equal to the masked value_2, set light_1. If
the masked value_1 is not equal to the masked value_2, clear light_1.
This example shows that the masked values are not equal. A 0 in the
mask restrains the instruction from comparing that bit (shown by x in
the example).

Relay Ladder

Structured Text

light_1 := ((value_1 AND mask_1)=(value_2 AND mask_2));

Function Block

value_1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 value_2 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0

mask_1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 mask_1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Masked value_1 x x x x x x x x x x x x 1 1 1 1 Masked value_2 x x x x x x x x x x x x 0 0 0 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 243
Not Equal to (NEQ) The NEQ instruction tests whether Source A is not equal to Source B.

Operands:

Relay Ladder

• If you enter a SINT or INT tag, the value converts to a DINT
value by sign-extension.

• String data types are:

– default STRING data type

– any new string data type that you create

• To test the characters of a string, enter a string tag for both
Source A and Source B.

Structured Text

Use the less than and greater than signs “<>“ together as an operator
within an expression. This expression evaluates whether sourceA is
not equal to sourceB.

See Appendix for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source A SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source B

Source B SINT

INT

DINT

REAL

string

immediate

tag

value to test against Source A

IF sourceA <> sourceB THEN

<statements>;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

244 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Function Block

FBD_COMPARE Structure

Description: The NEQ instruction tests whether Source A is not equal to Source B.

When you compare strings:

• Strings are not equal if any of their characters do not match.

• ASCII characters are case sensitive. Upper case “A” ($41) is not
equal to lower case “a” ($61).

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

NEQ tag FBD_COMPARE structure NEQ structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value to test against SourceB.

Valid = any float

SourceB REAL Value to test against SourceA.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest BOOL Result of the instruction. This is equivalent to rung-condition-out for the relay ladder
NEQ instruction.

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ) 245
Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

Source A = Source B
yes

no

rung-condition-out is set
to true

rung-condition-out is set
to false

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

246 Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
Example: If value_1 is not equal to value_2, set light_4. If value_1 is equal to
value_2, clear light_4.

Relay Ladder

Structured Text

light_4 := (value_1 <> value_2);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 7

Compute/Math Instructions
(CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)

Introduction The compute/math instructions evaluate arithmetic operations using
an expression or a specific arithmetic instruction.

If You Want To Use This Instruction Available In These Languages See Page

evaluate an expression CPT relay ladder

structured text(1)

249

add two values ADD relay ladder

structured text(2)

function block

253

subtract two values SUB relay ladder

structured text(2)

function block

257

multiply two values MUL relay ladder

structured text(2)

function block

260

divide two values DIV relay ladder

structured text(2)

function block

263

determine the remainder after one value is
divided by another

MOD relay ladder

structured text(2)

function block

268
247 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

248 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
You can mix data types, but loss of accuracy and rounding error
might occur and the instruction takes more time to execute. Check the
S:V bit to see whether the result was truncated.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

calculate the square root of a value SQR

SQRT(3)

relay ladder

structured text

function block

272

take the opposite sign of a value NEG relay ladder

structured text(2)

function block

276

take the absolute value of a value ABS relay ladder

structured text

function block

279

(1) There is no equivalent structured text instruction. Use other structured text programming to achieve the same result. See the description for the instruction.

(2) There is no equivalent structured text instruction. Use the operator in an expression.

(3) Structured text only.

If You Want To Use This Instruction Available In These Languages See Page
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 249
Compute (CPT) The CPT instruction performs the arithmetic operations you define in
the expression.

Operands:

Relay Ladder

Structured Text

Structured text does not have a CPT instruction, but you can achieve
the same results using an assignment and expression.

destination := numeric_expresion;

See Appendix for information on the syntax of assignments and
expressions within structured text.

Description: The CPT instruction performs the arithmetic operations you define in
the expression. When enabled, the CPT instruction evaluates the
expression and places the result in the Destination.

The execution of a CPT instruction is slightly slower and uses more
memory than the execution of the other compute/math instructions.
The advantage of the CPT instruction is that it allows you to enter
complex expressions in one instruction.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Operand Type Format: Description

Destination SINT

INT

DINT

REAL

tag tag to store the result

Expression SINT

INT

DINT

REAL

immediate

tag

an expression consisting of tags and/or
immediate values separated by operators

A SINT or INT tag converts to a DINT value by sign-extension.

TIP There is no limit to the length of an expression.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

250 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Execution:

Example 1: When enabled, the CPT instruction evaluates value_1 multiplied by 5
and divides that result by the result of value_2 divided by 7 and
places the final result in result_1.

Example 2: When enabled, the CPT instruction truncates float_value_1 and
float_value_2, raises the truncated float_value_2 to the power of two
and divides the truncated float_value_1 by that result, and stores the
remainder after the division in float_value_result_cpt.

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction evaluates the Expression and places the result in the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 251
Valid operators

Format Expressions

For each operator that you use in an expression, you have to provide
one or two operands (tags or immediate values). Use the following
table to format operators and operands within an expression:

Operator Description Optimal

+ add DINT, REAL

- subtract/negate DINT, REAL

* multiply DINT, REAL

/ divide DINT, REAL

** exponent (x to y) DINT, REAL

ABS absolute value DINT, REAL

ACS arc cosine REAL

AND bitwise AND DINT

ASN arc sine REAL

ATN arc tangent REAL

COS cosine REAL

DEG radians to degrees DINT, REAL

FRD BCD to integer DINT

LN natural log REAL

LOG log base 10 REAL

MOD modulo-divide DINT, REAL

NOT bitwise complement DINT

OR bitwise OR DINT

RAD degrees to radians DINT, REAL

SIN sine REAL

SQR square root DINT, REAL

TAN tangent REAL

TOD integer to BCD DINT

TRN truncate DINT, REAL

XOR bitwise exclusive OR DINT

Operator Description Optimal

For Operators That
Operate On:

Use This Format: Examples:

one operand operator(operand) ABS(tag_a)

two operands operand_a operator operand_b • tag_b + 5

• tag_c AND tag_d

• (tag_e ** 2) MOD (tag_f /
tag_g)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

252 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Determine the order of operation

The operations you write into the expression are performed by the
instruction in a prescribed order, not necessarily the order you write
them. You can override the order of operation by grouping terms
within parentheses, forcing the instruction to perform an operation
within the parentheses ahead of other operations.

Operations of equal order are performed from left to right.

Order: Operation:

1. ()

2. ABS, ACS, ASN, ATN, COS, DEG, FRD, LN, LOG,
RAD, SIN, SQR, TAN, TOD, TRN

3. **

4. − (negate), NOT

5. *, /, MOD

6. − (subtract), +

7. AND

8. XOR

9. OR
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 253
Add (ADD) The ADD instruction adds Source A to Source B and places the result
in the Destination.

Operands:

Relay Ladder

Structured Text

Use the plus sign “+” as an operator within an expression. This
expression adds sourceA to sourceB and stores the result in dest.

See Appendix for information on the syntax of expressions within
structured text.

Function Block

Operand: Type: Format: Description:

Source A SINT

INT

DINT

REAL

immediate

tag

value to add to Source B

A SINT or INT tag converts to a DINT value by sign-extension.

Source B SINT

INT

DINT

REAL

immediate

tag

value to add to Source A

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand: Type: Format: Description:

ADD tag FBD_MATH structure ADD structure

dest := sourceA + sourceB;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

254 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
FBD_MATH Structure

Description: The ADD instruction adds Source A to Source B and places the result
in the Destination.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Input Parameter: Data Type: Description:

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value to add to SourceB.

Valid = any float

SourceB REAL Value to add to SourceA.

Valid = any float

Output Parameter: Data Type: Description:

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition: Action:

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Destination = Source A + Source B

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 255
Function Block

Condition: Action:

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

256 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Example: Add float_value_1 to float_value_2 and place the result in add_result.

Relay Ladder

Structured Text

add_result := float_value_1 + float_value_2;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 257
Subtract (SUB) The SUB instruction subtracts Source B from Source A and places the
result in the Destination.

Operands:

Relay Ladder

Structured Text

Use the minus sign “−” as an operator in an expression. This
expression subtracts sourceB from sourceA and stores the result
in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand: Type: Format: Description:

Source A SINT

INT

DINT

REAL

immediate

tag

value from which to subtract Source B

A SINT or INT tag converts to a DINT value by sign-extension.

Source B SINT

INT

DINT

REAL

immediate

tag

value to subtract from Source A

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand: Type: Format: Description:

SUB tag FBD_MATH structure SUB structure

dest := sourceA - sourceB;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

258 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
FBD_MATH Structure

Description: The SUB instruction subtracts Source B from Source A and places the
result in the Destination.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Input Parameter: Data Type: Description:

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA REAL Value from which to subtract SourceB.

Valid = any float

SourceB REAL Value to subtract from SourceA.

Valid = any float

Output Parameter: Data Type: Description:

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition: Action:

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Destination = Source B - Source A

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 259
Function Block

Example: Subtract float_value_2 from float_value_1 and place the result in
subtract_result.

Relay Ladder

Structured Text

subtract_result := float_value_1 - float_value_2;

Function Block

Condition: Action:

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

260 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Multiply (MUL) The MUL instruction multiplies Source A with Source B and places the
result in the Destination.

Operands:

Relay Ladder

Structured Text

Use the multiply sign “∗” as an operator in an expression. This
expression multiplies sourceA by sourceB and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source A SINT

INT

DINT

REAL

immediate

tag

value of the multiplicand

A SINT or INT tag converts to a DINT value by sign-extension.

Source B SINT

INT

DINT

REAL

immediate

tag

value of the multiplier

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

MUL tag FBD_MATH structure MUL structure

dest := sourceA * sourceB;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 261
FBD_MATH Structure

Description: The MUL instruction multiplies Source A with Source B and places the
result in the Destination.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source A REAL Value of the multiplicand.

Valid = any float

Source B REAL Value of the multiplier.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Destination = Source B x Source A

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

262 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Function Block

Example: Multiply float_value_1 by float_value_2 and place the result in
multiply_result.

Relay Ladder

Structured Text

multiply_result := float_value_1 ∗ float_value_2;

Function Block

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 263
Divide (DIV) The DIV instruction divides Source A by Source B and places the
result in the Destination.

Operands:

Relay Ladder

Structured Text

Use the divide sign “/” as an operator in an expression. This
expression divides sourceA by sourceB and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source A SINT

INT

DINT

REAL

immediate

tag

value of the dividend

A SINT or INT tag converts to a DINT value by sign-extension.

Source B SINT

INT

DINT

REAL

immediate

tag

value of the divisor

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

dest := sourceA / sourceB;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

264 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Function Block

FBD_MATH Structure

Description: If the Destination is not a REAL, the instruction handles the fractional
portion of the result as follows:

Operand Type Format Description

DIV tag FBD_MATH structure DIV structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source A REAL Value of the dividend.

Valid = any float

Source B REAL Value of the divisor.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

If Source A Then The Fractional
Portion Of The Result

Example

and Source B are not
REALs

truncates Source A DINT 5

Source B DINT 3

Destination DINT 1

or Source B is a REAL rounds Source A REAL 5.0

Source B DINT 3

Destination DINT 2
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 265
If Source B (the divisor) is zero:

• a minor fault occurs:

– Type 4: program fault

– Code 4: arithmetic overflow

• the destination is set as follows:

To detect a possible divide-by-zero, examine the minor fault bit
(S:MINOR). See Logix5000 Controllers Common Procedures,
publication 1756-PM001.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Execution:

Relay Ladder

Function Block

If Source B Is Zero And: And The Destination Is a: And The Result Is: Then The Destination Is Set To:

all operands are integers (SINT, INT,
or DINT)

Source A

at least one operand is a REAL SINT, INT, or DINT positive -1

negative 0

REAL positive 1.$ (positive infinity)

negative -1.$ (negative infinity)

A Minor Fault Occurs If Fault Type Fault Code

the divisor is zero 4 4

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Destination = Source A / Source B

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

266 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 267
Example 1: Divide float_value_1 by float_value_2 and place the result in
divide_result.

Relay Ladder

Structured Text

divide_result := float_value_1 / float_value_2;

Function Block

Example 2: The DIV and MOV instructions work together to divide two integers,
round the result, and place the result in an integer tag:

• The DIV instruction divides dint_a by dint_b.

• To round the result, the Destination is a REAL tag. (If the
destination was an integer tag (SINT, INT, or DINT), the
instruction would truncate the result.)

• The MOV instruction moves the rounded result (real_temp) from
the DIV to divide_result_rounded.

• Since divide_result_rounded is a DINT tag the value from
real_temp is rounded and placed in the DINT destination.

Relay Ladder

43009
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

268 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Modulo (MOD) The MOD instruction divides Source A by Source B and places the
remainder in the Destination.

Operands:

Relay Ladder

Structured Text

Use MOD as an operator in an expression. This expression divides
sourceA by sourceB and stores the remainder in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source A SINT

INT

DINT

REAL

immediate

tag

value of the dividend

A SINT or INT tag converts to a DINT value by sign-extension.

Source B SINT

INT

DINT

REAL

immediate

tag

value of the divisor

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

MOD tag FBD_MATH structure MOD structure

dest := sourceA MOD sourceB;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 269
FBD_MATH Structure

Description: If Source B (the divisor) is zero:

• a minor fault occurs:

– Type 4: program fault

– Code 4: arithmetic overflow

• the destination is set as follows:

To detect a possible divide-by-zero, examine the minor fault bit
(S:MINOR). See Logix5000 Controllers Common Procedures,
publication 1756-PM001.

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source A REAL Value of the dividend.

Valid = any float

Source B REAL Value of the divisor.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

If Source B Is Zero And And The Destination Is a And The Result Is Then The Destination Is Set To

all operands are integers (SINT, INT,
or DINT)

Source A

at least one operand is a REAL SINT, INT, or DINT positive -1

negative 0

REAL positive 1.$ (positive infinity)

negative -1.$ (negative infinity)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

270 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Execution:

Relay Ladder

Function Block

A Minor Fault Occurs If Fault Type Fault Code

the divisor is zero 4 4

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Destination = Source A – (TRN (Source A / Source B) * Source B)

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 271
Example: Divide dividend by divisor and place the remainder in remainder. In
this example, three goes into 10 three times, with a remainder of one.

Relay Ladder

Structured Text

remainder := dividend MOD divisor;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

272 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Square Root (SQR) The SQR instruction computes the square root of the Source and
places the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use SQRT as a function. This expression computes the square root of
source and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the square root of this value

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

dest := SQRT(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 273
Function Block

FBD_MATH_ADVANCED Structure

Description: If the Destination is not a REAL, the instruction handles the fractional
portion of the result as follows:

If the Source is negative, the instruction takes the absolute value of
the Source before calculating the square root.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Operand Type Format Description

SQR tag FBD_MATH_ADVANCED structure SQR structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Find the square root of this value.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

If The Source Is Then The Fractional
Portion Of The Result

Example

not a REAL truncates Source DINT 3

Destination DINT 1

a REAL rounds Source REAL 3.0

Destination DINT 2
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

274 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Destination Source=

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 275
Example: Calculate the square root of value_1 and place the result in sqr_result.

Relay Ladder

Structured Text

sqr_result := SQRT(value_1);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

276 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Negate (NEG) The NEG instruction changes the sign of the Source and places the
result in the Destination.

Operands:

Relay Ladder

Structured Text

Use the minus sign “−” as an operator in an expression. This
expression changes the sign of source and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

value to negate

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

NEG tag FBD_MATH_ADVANCED structure NEG structure

dest := -source;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 277
FBD_MATH Structure

Description: If you negate a negative value, the result is positive. If you negate a
positive value, the result is negative.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

default is set

Source REAL Value to negate.

valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Destination = 0 − Source

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

278 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Example: Change the sign of value_1 and place the result in negate_result.

Relay Ladder

Structured Text

negate_result := -value_1;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 279
Absolute Value (ABS) The ABS instruction takes the absolute value of the Source and places
the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use ABS as a function. This expression computes the absolute value
of source and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

value of which to take the absolute value

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

ABS tag FBD_MATH_ADVANCED structure ABS structure

dest := ABS(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

280 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
FBD_MATH_ADVANCED Structure

Description: The ABS instruction takes the absolute value of the Source and places
the result in the Destination.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Value of which to take the absolute value.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Destination = | Source |

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS) 281
Example: Place the absolute value of value_1 into value_1_absolute. In this
example, the absolute value of negative four is positive four.

Relay Ladder

Structured Text

value_1_absolute := ABS(value_1);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

282 Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 8

Move/Logical Instructions
(MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT,
BAND, BOR, BXOR, BNOT)

Introduction You can mix data types, but loss of accuracy and rounding error
might occur and the instruction takes more time to execute. Check the
S:V bit to see whether the result was truncated.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

The move instructions modify and move bits.

If you want to Use this instruction Available in these languages See page

copy a value MOV relay ladder

structured text(1)

285

copy a specific part of an integer MVM relay ladder 287

copy a specific part of an integer in
function block

MVMT structured text

function block

290

move bits within an integer or
between integers

BTD relay ladder 293

move bits within an integer or
between integers in function block

BTDT structured text

function block

296

clear a value CLR structured text(1)

relay ladder

299

rearrange the bytes of a INT, DINT, or REAL tag SWPB relay ladder

structured text

301

(1) There is no equivalent structured text instruction. Use other structured text programming to achieve the same result. See the description for the instruction.
283 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

284 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
The logical instructions perform operations on bits.

If you want to: Use this instruction: Available in these languages See page

bitwise AND operation Bitwise AND

&(1)

relay ladder

structured text(2)

function block

305

bitwise OR operation Bitwise OR relay ladder

structured text(2)

function block

308

bitwise, exclusive OR operation Bitwise XOR relay ladder

structured text(2)

function block

311

bitwise NOT operation Bitwise NOT relay ladder

structured text(2)

function block

315

logically AND as many as eight boolean inputs. Boolean AND (BAND) structured text(2)

function block

319

logically OR as many as eight boolean inputs. Boolean OR (BOR) structured text(2)

function block

322

perform an exclusive OR on two boolean inputs. Boolean Exclusive OR
(BXOR)

structured text(2)

function block

325

complement a boolean input. Boolean NOT (BNOT) structured text(2)

function block

328

(1) Structured text only.

(2) In structured text, the AND, OR, XOR, and NOT operations can be bitwise or logical.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 285
Move (MOV) The MOV instruction copies the Source to the Destination. The Source
remains unchanged.

Operands:

Relay Ladder

Structured Text

Use an assignment “:=” with an expression. This assignment moves
the value in source to dest.

See Structured Text Programming for information on the syntax of
expressions and assignments within structured text.

Description: The MOV instruction copies the Source to the Destination. The Source
remains unchanged.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Operand: Type: Format Description:

Source SINT

INT

DINT

REAL

immediate

tag

value to move (copy)

A SINT or INT tag converts to a DINT value by sign-extension.

Destination SINT

INT

DINT

REAL

tag tag to store the result

dest := source;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

286 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Execution:

Example: Move the data in value_1 to value_2.

Relay Ladder

Structured Text

value_2 := value _1;

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction copies the Source into the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 287
Masked Move (MVM) The MVM instruction copies the Source to a Destination and allows
portions of the data to be masked.

This instruction is available in structured text and function block as
MVMT, see page 290.

Operands:

Relay Ladder

Structured Text

This instruction is available in structured text as MVMT. Or you can
combine bitwise logic within an expression and assign the result to
the destination. This expression performs a masked move on Source.

See Structured Text Programming for information on the syntax of
expressions and assignments within structured text.

Description: The MVM instruction uses a Mask to either pass or block Source data
bits. A “1” in the mask means the data bit is passed. A “0” in the mask
means the data bit is blocked.

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Operand Type Format Description

Source SINT

INT

DINT

immediate

tag

value to move

A SINT or INT tag converts to a DINT value by zero-fill.

Mask SINT

INT

DINT

immediate

tag

which bits to block or pass

A SINT or INT tag converts to a DINT value by zero-fill.

Destination SINT

INT

DINT

tag tag to store the result

dest := (Dest AND NOT (Mask))
OR (Source AND Mask);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

288 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Enter an immediate mask value

When you enter a mask, the programming software defaults to
decimal values. If you want to enter a mask using another format,
precede the value with the correct prefix.

Arithmetic Status Flags Arithmetic status flags are affected.

Fault Conditions none

Execution:

Prefix Description

16# hexadecimal

for example; 16#0F0F

8# octal

for example; 8#16

2# binary

for example; 2#00110011

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction passes the Source through the Mask and copies the result into
the Destination. Unmasked bits in the Destination remain unchanged.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 289
Example: Copy data from value_a to value_b, while allowing data to be masked
(a 0 masks the data in value_a).

Relay Ladder

Structured Text

value_b := (value_b AND NOT (mask_2)) OR
(value_a AND mask_2);

1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1

The shaded boxes show the bits that changed in value_b.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

290 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Masked Move with Target
(MVMT)

The MVMT instruction first copies the Target to the Destination. Then
the instruction compares the masked Source to the Destination and
makes any required changes to the Destination. The Target and the
Source remain unchanged.

This instruction is available in relay ladder as MVM, see page 13-287.

Operands:

Structured Text

Function Block

FBD_MASKED_MOVE Structure

Variable Type Format Description:

MVMT tag FBD_MASKED_MOVE structure MVMT structure

Operand Type Format Description

MVMT tag FBD_MASKED_MOVE structure MVMT structure

MVMT(MVMT_tag);

Input Parameter Data Type Description

EnableIn BOOL Function Block

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text

No effect. The instruction executes.

Source DINT Input value to move to Destination based on value of Mask.

Valid = any integer

Mask DINT Mask of bits to move from Source to Dest. All bits set to one cause the corresponding bits to
move from Source to Dest. All bits that are set to zero cause the corresponding bits not to
move from Source to Dest.

Valid = any integer

Target DINT Input value to move to Dest prior to moving Source bits through the Mask.

Valid = any integer
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 291
Description: When enabled, the MVMT instruction uses a Mask to either pass or
block Source data bits. A “1” in the mask means the data bit is passed.
A “0” in the mask means the data bit is blocked.

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Enter an Immediate Mask Value Using an Input Reference

When you enter a mask, the programming software defaults to
decimal values. If you want to enter a mask using another format,
precede the value with the correct prefix.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of masked move instruction. Arithmetic status flags are set for this output.

Prefix Description

16# hexadecimal

for example; 16#0F0F

8# octal

for example; 8#16

2# binary

for example; 2#00110011

Condition Function Block Action Structured Text Action

prescan No action taken. No action taken.

instruction first scan No action taken. No action taken.

instruction first run No action taken. No action taken.

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set The instruction executes.

EnableOut is set.

EnableIn is always set.

The instruction executes.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

292 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Example: 1. Copy Target into Dest.

2. Mask Source and compare it to Dest. Any required changes are
made in Dest. Source and Target remain unchanged. A 0 in the
mask restrains the instruction from comparing that bit (shown by
x in the example).

Structured Text

MVMT_01.Source := value_1;

MVMT_01.Mask := mask1;

MVMT_01.Target := target;

MVMT(MVMT_01);

value_masked := MVMT_01.Dest;

Function Block

Target 1

Dest 1

Source 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Mask1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

Dest 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1

The shaded boxes show the bits that changed.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 293
Bit Field Distribute (BTD) The BTD instruction copies the specified bits from the Source, shifts
the bits to the appropriate position, and writes the bits into the
Destination.

This instruction is available in structured text and function block as
BTDT, see page 296.

Operands:

Relay Ladder

Description: When enabled, the BTD instruction copies a group of bits from the
Source to the Destination. The group of bits is identified by the Source
bit (lowest bit number of the group) and the Length (number of bits to
copy). The Destination bit identifies the lowest bit number bit to start
with in the Destination. The Source remains unchanged.

If the length of the bit field extends beyond the Destination, the
instruction does not save the extra bits. Any extra bits do not wrap to
the next word.

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Operand Type Format Description

Source SINT

INT

DINT

immediate

tag

tag that contains the bits to move

A SINT or INT tag converts to a DINT value by zero-fill.

Source bit DINT immediate

(0-31 DINT)
(0-15 INT)
(0-7 SINT)

number of the bit (lowest bit number) from
where to start the move

must be within the valid range for the Source
data type

Destination SINT

INT

DINT

tag tag where to move the bits

Destination
bit

DINT immediate

(0-31 DINT)
(0-15 INT)
(0-7 SINT)

the number of the bit (lowest bit number)
where to start copying bits from the Source

must be within the valid range for the
Destination data type

Length DINT immediate
(1-32)

number of bits to move
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

294 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Example 1: When enabled, the BTD instruction moves bits within value_1.

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction copies and shifts the Source bits to the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

value_1
before BTD instruction

1 0 0 0 0 0 0 0 0 0 0 0

value_1
after BTD instruction

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The shaded boxes show the bits that changed in value_1.

source bitdestination bit
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 295
Example 2: When enabled, the BTD instruction moves 10 bits from value_1
to value_2.

value_1 1

value_2
before BTD instruction

0 0

value_2
after BTD instruction

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

The shaded boxes show the bits that changed in value_2.

source bit

destination bit
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

296 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Bit Field Distribute with
Target (BTDT)

The BTDT instruction first copies the Target to the Destination. Then
the instruction copies the specified bits from the Source, shifts the bits
to the appropriate position, and writes the bits into the Destination.
The Target and Source remain unchanged.

This instruction is available in relay ladder as BTD, see page 13-293.

Operands:

Structured Text

Function Block

FBD_BIT_FIELD_DISTRIBUTE Structure

Variable Type Format Description

BTDT tag FBD_BIT_FIELD_DISTRIBUTE structure BTDT structure

Operand Type Format Description

BTDT tag FBD_BIT_FIELD_DISTRIBUTE structure BTDT structure

BTDT(BTDT_tag);

Input Parameter Data Type Description:

EnableIn BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

Source DINT Input value containing the bits to move to Destination.

Valid = any integer

SourceBit DINT The bit position in Source (lowest bit number from where to start the move).

Valid = 0-31

Length DINT Number of bits to move

Valid = 1-32
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 297
Description: When enabled, the BTD instruction copies a group of bits from the
Source to the Destination. The group of bits is identified by the Source
bit (lowest bit number of the group) and the Length (number of bits to
copy). The Destination bit identifies the lowest bit number bit to start
with in the Destination. The Source remains unchanged.

If the length of the bit field extends beyond the Destination, the
instruction does not save the extra bits. Any extra bits do not wrap to
the next word.

Arithmetic Status Flags: Arithmetic status flags are affected

Fault Conditions: none

Execution:

DestBit DINT The bit position in Dest (lowest bit number to start copying bits into).

Valid = 0-31

Target DINT Input value to move to Dest prior to moving bits from the Source.

Valid = any integer

Output Parameter: Data Type: Description:

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the bit move operation. Arithmetic status flags are set for this output.

Input Parameter Data Type Description:

Condition Function Block Action Structured Text Action

prescan No action taken. No action taken.

instruction first scan No action taken. No action taken.

instruction first run No action taken. No action taken.

EnableIn is cleared EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

EnableIn is set The instruction executes.

EnableOut is set.

EnableIn is always set.

The instruction executes.

postscan No action taken. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

298 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Example: 1. The controller copies Target into Dest.

2. The SourceBit and the Length specify which bits in Source to
copy into Dest, starting at DestBit. Source and Target remain
unchanged.

Structured Text

BTDT_01.Source := source;

BTDT_01.SourceBit := source_bit;

BTDT_01.Length := length;

BTDT_01.DestBit := dest_bit;

BTDT_01.Target := target;

BTDT(BTDT_01);

distributed_value := BTDT_01.Dest;

Function Block

Target 1 0 0 0 0 0 0 0 0 0 0 0

Dest 1 0 0 0 0 0 0 0 0 0 0 0

Source 1 0 0 0 0 0 0 0 0 0 0 0

Dest 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SourceBitDestBit
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 299
Clear (CLR) The CLR instruction clears all the bits of the Destination.

Operands:

Relay Ladder

Structured Text

Structured text does not have a CLR instruction. Instead, assign 0 to
the tag you want to clear. This assignment statement clears dest.

See Structured Text Programming for information on the syntax of
expressions and assignment statements within structured text.

Description: The CLR instruction clears all the bits of the Destination.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Operand Type Format Description

Destination SINT

INT

DINT

REAL

tag tag to clear

dest := 0;

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction clears the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

300 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Example: Clear all the bits of value to 0.

Relay Ladder

Structured Text

value := 0;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 301
Swap Byte (SWPB) The SWPB instruction rearranges the bytes of a value.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
SWPB instruction. If you select the HIGH/LOW order mode, enter it as
HIGHLOW or HIGH_LOW (without the slash).

Operand Type Format Enter

Source INT

DINT

REAL

tag tag that contains the bytes that you want to rearrange

Order Mode If the Source
Is an

And You Want To Change the Bytes To
This Pattern (Each Letter Represents a
Different Byte)

Then Select

INT n/a any of the options

DINT

REAL

ABCD ⇒ DCBA REVERSE (or enter 0)

ABCD ⇒ CDAB WORD (or enter 1)

ABCD ⇒ BADC HIGH/LOW (or enter 2)

Destination INT

DINT

REAL

tag tag to store the bytes in the new order

If the Source
Is an

Then the Destination Must Be an

INT INT

DINT

DINT DINT

REAL REAL

SWPB(Source,OrderMode,Dest);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

302 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Description: The SWPB instruction rearranges the order of the bytes of the Source.
It places the result in the Destination.

When you read or write ASCII characters, you typically do not need to
swap characters. The ASCII read and write instructions (ARD, ARL,
AWA, AWT) automatically swap characters, as shown below.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

42969

42968

B A Tag Name Value Style Type

bar_code[0] AB ASCII INT

A B

bar code reader

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The rung-condition-out is set to true. na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction rearranges the specified bytes. The instruction rearranges the specified bytes.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 303
Example 1: The three SWPB instructions each reorder the bytes of DINT_1
according to a different order mode. The display style is ASCII, and
each character represents one byte. Each instruction places the bytes,
in the new order, in a different Destination.

Relay Ladder

Structured Text

SWPB(DINT_1,REVERSE,DINT_1_reverse);

SWPB(DINT_1,WORD,DINT_1_swap_word);

SWPB(DINT_1,HIGHLOW,DINT_1_swap_high_low);

Example 2: The following example reverses the bytes in each element of an array.
For an RSLogix 5000 project that contains this example, open the
RSLogix 5000\Projects\Samples folder, Swap_Bytes_in_Array.ACD file.

1. Initialize the tags. The SIZE instruction finds the number of
elements in array and stores that value in array_length. A
subsequent instruction uses this value to determine when the
routine has acted on all the elements in the array.

2. Reverse the bytes in one element of array.

• The SWPB instruction reverses the bytes of the element number
that is indicated by the value of index. For example, when index
equals 0, the SWPB instruction acts on array[0].

• The ADD instruction increments index. The next time the
instruction executes, the SWPB instruction acts on the next
element in array.

3. Determine when the SWPB instruction has acted on all the
elements in the array.

• If index is less then the number of elements in the array
(array_length), then continue with the next element in the array.

• If index equals array_length, then the SWPB has acted on all the
elements in the array.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

304 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Relay Ladder

Structured Text

index := 0;

SIZE (array[0],0,array_length);

REPEAT

SWPB(array[index],REVERSE,array_bytes_reverse[index]);

index := index + 1;

UNTIL(index >= array_length)END_REPEAT;

Initialize the tags.

Reverse the bytes.

Determine whether the SWPB instruction has acted on all the elements in the array.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 305
Bitwise AND (AND) The AND instruction performs a bitwise AND operation using the bits
in Source A and Source B and places the result in the Destination.

To perform a logical AND, see page 319.

Operands:

Relay Ladder

Structured Text

Use AND or the ampersand sign “&” as an operator within an
expression. This expression evaluates sourceA AND sourceB.

See Structured Text Programming for information on the syntax of
expressions within structured text.

Function Block

Operand Type Format Description

Source A SINT

INT

DINT

immediate

tag

value to AND with Source B

A SINT or INT tag converts to a DINT value by zero-fill.

Source B SINT

INT

DINT

immediate

tag

value to AND with Source A

A SINT or INT tag converts to a DINT value by zero-fill.

Destination SINT

INT

DINT

tag stores the result

Operand Type Format Description

AND tag FBD_LOGICAL structure AND structure

dest := sourceA AND sourceB
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

306 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
FBD_LOGICAL Structure

Description: When enabled, the instruction evaluates the AND operation:

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Input Parameter Data Type: Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA DINT Value to AND with SourceB.

Valid = any integer

SourceB DINT Value to AND with SourceA.

Valid = any integer

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the instruction. Arithmetic status flags are set for this output.

If the Bit In
Source A Is

And the Bit In
Source B Is:

The Bit In the
Destination Is

0 0 0

0 1 0

1 0 0

1 1 1

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction performs a bitwise AND operation.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 307
Function Block

Example: When enabled, the AND instruction performs a bitwise AND
operation on SourceA and SourceB and places the result in the Dest.

Relay Ladder

Structured Text

value_result_and := value_1 AND value_2;

Function Block

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

SourceA 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

SourceB 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Dest 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

308 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Bitwise OR (OR) The OR instruction performs a bitwise OR operation using the bits in
Source A and Source B and places the result in the Destination.

To perform a logical OR, see page 13-322.

Operands:

Relay Ladder

Structured Text

Use OR as an operator within an expression. This expression
evaluates sourceA OR sourceB.

See Structured Text Programming for information on the syntax of
expressions within structured text.

Function Block

Operand Type Format Description

Source A SINT

INT

DINT

immediate

tag

value to OR with Source B

A SINT or INT tag converts to a DINT value by zero-fill.

Source B SINT

INT

DINT

immediate

tag

value to OR with Source A

A SINT or INT tag converts to a DINT value by zero-fill.

Destination SINT

INT

DINT

tag stores the result

Operand Type Format: Description

OR tag FBD_LOGICAL structure OR structure

dest := sourceA OR sourceB
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 309
FBD_LOGICAL Structure

Description: When enabled, the instruction evaluates the OR operation:

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Arithmetic Status Flags Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA DINT Value to OR with SourceB.

Valid = any integer

SourceB DINT Value to OR with SourceA.

Valid = any integer

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the instruction. Arithmetic status flags are set for this output.

If the Bit In
Source A Is

And the Bit In
Source B Is

The Bit In the
Destination Is

0 0 0

0 1 1

1 0 1

1 1 1

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction performs a bitwise OR operation.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

310 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Function Block

Example: When enabled, the OR instruction performs a bitwise OR operation on
SourceA and SourceB and places the result in Dest.

Relay Ladder

Structured Text

value_result_or := value_1 OR value_2;

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

SourceA 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

SourceB 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Dest 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 311
Function Block

Bitwise Exclusive OR (XOR) The XOR instruction performs a bitwise XOR operation using the bits
in Source A and Source B and places the result in the Destination.

To perform a logical XOR, see page 13-325.

Operands:

Relay Ladder

Structured Text

Use XOR as an operator within an expression. This expression
evaluates sourceA XOR sourceB.

See Structured Text Programming for information on the syntax of
expressions within structured text.

Operand Type Format Description

Source A SINT

INT

DINT

immediate

tag

value to XOR with Source B

A SINT or INT tag converts to a DINT value by zero-fill.

Source B SINT

INT

DINT

immediate

tag

value to XOR with Source A

A SINT or INT tag converts to a DINT value by zero-fill.

Destination SINT

INT

DINT

tag stores the result

dest := sourceA XOR sourceB
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

312 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Function Block

FBD_LOGICAL Structure

Description: When enabled, the instruction evaluates the XOR operation:

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Arithmetic Status Flags Arithmetic status flags are affected.

Fault Conditions: none

Operand Type Format Description

XOR tag FBD_LOGICAL structure XOR structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

SourceA DINT Value to XOR with SourceB.

Valid = any integer

SourceB DINT Value to XOR with SourceA.

Valid = any integer

Output Parameter: Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the instruction. Arithmetic status flags are set for this output.

If the Bit In
Source A Is

And the Bit In
Source B Is

The Bit In the
Destination Is

0 0 0

0 1 1

1 0 1

1 1 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 313
Execution:

Relay Ladder

Function Block

Example: When enabled, the XOR instruction performs a bitwise XOR operation
on SourceA and SourceB and places the result in the destination tag.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction performs a bitwise OR operation.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

value_1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

value_2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

value_result_xor 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

314 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Relay Ladder

Structured Text

value_result_xor := value_1 XOR value_2;

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 315
Bitwise NOT (NOT) The NOT instruction performs a bitwise NOT operation using the bits
in the Source and places the result in the Destination.

To perform a logical NOT, see page 13-328.

Operands:

Relay Ladder

Structured Text

Use NOT as an operator within an expression. This expression
evaluates NOT source.

See Structured Text Programming for information on the syntax of
expressions within structured text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

immediate

tag

value to NOT

A SINT or INT tag converts to a DINT value by zero-fill.

Destination SINT

INT

DINT

tag stores the result

Operand Type Format Description

NOT tag FBD_LOGICAL structure NOT structure

dest := NOT source
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

316 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
FBD_LOGICAL Structure

Description: When enabled, the instruction evaluates the NOT operation:

If you mix integer data types, the instruction fills the upper bits of the
smaller integer data types with 0s so that they are the same size as the
largest data type.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

default is set

Source DINT Value to NOT.

valid = any integer

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the instruction. Arithmetic status flags are set for this output.

If the Bit In the
Source Is:

The Bit In the
Destination Is:

0 1

1 0

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The instruction performs a bitwise NOT operation.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 317
Function Block

Example: When enabled, the NOT instruction performs a bitwise NOT operation
on Source and places the result in Dest.

Relay Ladder

Structured Text

value_result_not := NOT value_1;

Function Block

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

value_1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

value_result_not 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

318 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 319
Boolean AND (BAND) The BAND instruction logically ANDs as many as 8 boolean inputs.

To perform a bitwise AND, see page 13-305.

Operands:

Structured Text

Use AND or the ampersand sign “&” as an operator within an
expression. The operands must be BOOL values or expressions that
evaluate to BOOL values. This expression evaluates whether
operandA and operandB are both set (true).

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

FBD_BOOLEAN_AND Structure

Operand Type Format Description

BAND tag FBD_BOOLEAN_AND structure BAND structure

IF operandA AND operandB THEN

<statement>;

END_IF;

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

In1 BOOL First boolean input.

Default is set.

In2 BOOL Second boolean input.

Default is set.

In3 BOOL Third boolean input.

Default is set.

In4 BOOL Fourth boolean input.

Default is set.

In5 BOOL Fifth boolean input.

default is set.

In6 BOOL Sixth boolean input.

Default is set.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

320 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Description: The BAND instruction ANDs as many as eight boolean inputs. If an
input is not used, it defaults to set (1).

Out = In1 AND In2 AND In3 AND In4 AND In5 AND In6 AND In7 AND In8

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

In7 BOOL Seventh boolean input.

Default is set.

In8 BOOL Eighth boolean input.

Default is set.

Output Parameter Data Type Description

EnableOut BOOL Enable output.

Out BOOL The output of the instruction.

Input Parameter Data Type Description

Condition Function Block Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 321
Example 1: This example ANDs bool_in1 and bool_in2 and places the result in
value_result_and.

Structured Text

value_result_and := bool_in1 AND bool_in2;

Function Block

Example 2: If both bool_in1 and bool_in2 are set (true), light1 is set (on).
Otherwise, light1 is cleared (off).

Structured Text

IF bool_in1 AND bool_in2 THEN

light1 := 1;

ELSE

light1 := 0;

END_IF;

If BOOL_IN1 Is If BOOL_IN2 Is Then VALUE_RESULT_AND Is

0 0 0

0 1 0

1 0 0

1 1 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

322 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Boolean OR (BOR) The BOR instruction logically ORs as many as eight boolean inputs.

To perform a bitwise OR, see page 13-308.

Operands:

Structured Text

Use OR as an operator within an expression. The operands must be
BOOL values or expressions that evaluate to BOOL values. This
expression evaluates whether operandA or operandB or both are
set (true).

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

FBD_BOOLEAN_OR Structure

Operand Type Format Description

BOR tag FBD_BOOLEAN_OR structure BOR structure

IF operandA OR operandB THEN

<statement>;

END_IF;

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

In1 BOOL First boolean input.

Default is cleared.

In2 BOOL Second boolean input.

Default is cleared.

In3 BOOL Third boolean input.

Default is cleared.

In4 BOOL Fourth boolean input.

Default is cleared.

In5 BOOL Fifth boolean input.

Default is cleared.

In6 BOOL Sixth boolean input.

Default is cleared.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 323
Description: The BOR instruction ORs as many as eight boolean inputs. If an input
is not used, it defaults to cleared (0).

Out = In1 OR In2 OR In3 OR In4 OR In5 OR In6 OR In7 OR In8

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

In7 BOOL Seventh boolean input.

Default is cleared.

In8 BOOL Eighth boolean input.

Default is cleared.

Output Parameter Data Type Description

EnableOut BOOL Enable output.

Out BOOL The output of the instruction.

Input Parameter Data Type Description

Condition Function Block Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

324 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Example 1: This example ORs bool_in1 and bool_in2 and places the result
in value_result_or.

Structured Text

value_result_or := bool_in1 OR bool_in2;

Function Block

Example 2: In this example, light1 is set (on) if:

• only bool_in1 is set (true).

• only bool_in2 is set (true).

• both bool_in1 and bool_in2 are set (true).

Otherwise, light1 is cleared (off).

Structured Text

IF bool_in1 OR bool_in2 THEN

light1 := 1;

ELSE

light1 := 0;

END_IF;

If BOOL_IN1 Is If BOOL_IN2 Is: Then VALUE_RESULT_OR Is:

0 0 0

0 1 1

1 0 1

1 1 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 325
Boolean Exclusive OR
(BXOR)

The BXOR performs an exclusive OR on two boolean inputs.

To perform a bitwise XOR, see page 13-311.

Operands:

Structured Text

Use XOR as an operator within an expression. The operands must be
BOOL values or expressions that evaluate to BOOL values. This
expression evaluates whether only operandA or only operandB is
set (true).

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

FBD_BOOLEAN_XOR Structure

Description: The BXOR instruction performs an exclusive OR on two
boolean inputs.

Out = In1 XOR In2

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

BXOR tag FBD_BOOLEAN_XOR structure BXOR structure

IF operandA XOR operandB THEN

<statement>;

END_IF;

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

In1 BOOL First boolean input.

Default is cleared.

In2 BOOL Second boolean input.

Default is cleared.

Output Parameter Data Type Description

EnableOut BOOL Enable output.

Out BOOL The output of the instruction.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

326 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Execution:

Example 1: This example performs an exclusive OR on bool_in1 and bool_in2
and places the result in value_result_xor.

Structured Text

value_result_xor := bool_in1 XOR bool_in2;

Function Block

Condition Function Block Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

If BOOL_IN1 Is If BOOL_IN2 Is Then VALUE_RESULT_XOR Is

0 0 0

0 1 1

1 0 1

1 1 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 327
Example 2: In this example, light1 is set (on) if

• only bool_in1 is set (true).

• only bool_in2 is set (true).

Otherwise, light1 is cleared (off).

Structured Text

IF bool_in1 XOR bool_in2 THEN

light1 := 1;

ELSE

light1 := 0;

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

328 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Boolean NOT (BNOT) The BNOT instruction complements a boolean input.

To perform a bitwise NOT, see page 13-315.

Operands:

Structured Text

Use NOT as an operator within an expression. The operand must be a
BOOL values or expressions that evaluate to BOOL values. This
expression evaluates whether operand is cleared (false).

See Structured Text Programming for information on the syntax of
expressions within structured text.

Function Block

FBD_BOOLEAN_NOT Structure

Description: The BNOT instruction complements a boolean input.

Out = NOT In

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

BNOT tag FBD_BOOLEAN_NOT structure BNOT structure

IF NOT operand THEN

<statement>;

END_IF;

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

In BOOL Input to the instruction.

Default is set.

Output Parameter Data Type Description:

EnableOut BOOL Enable output.

Out BOOL The output of the instruction.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT) 329
Execution:

Example 1: This example complements bool_in1 and places the result in
value_result_not.

Structured Text

value_result_not := NOT bool_in1;

Function Block

Example 2: If bool_in1 is cleared, light1 is cleared (off). Otherwise, light1
is set (on).

Structured Text

IF NOT bool_in1 THEN

light1 := 0;

ELSE

light1 := 1;

END_IF;

Condition Function Block Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

If BOOL_IN1 Is Then VALUE_RESULT_NOT Is

0 1

1 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

330 Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 9

Array (File)/Misc. Instructions
(FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)

Introduction The file/miscellaneous instructions operate on arrays of data.

You can mix data types, but loss of accuracy and rounding error
might occur and the instruction takes more time to execute. Check the
S:V bit to see whether the result was truncated.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

If You Want To Use This Instruction Available In These Languages See Page

perform arithmetic, logic, shift, and function
operations on values in arrays

FAL relay ladder

structured text(1)

337

search for and compare values in arrays FSC relay ladder 349

copy the contents of one array into
another array

COP relay ladder

structured text

358

copy the contents of one array into
another array without interruption

CPS relay ladder

structured text

358

fill an array with specific data FLL relay ladder

structured text(1)

364

calculate the average of an array of values AVE relay ladder

structured text(1)

368

sort one dimension of array data into
ascending order

SRT relay ladder

structured text

373

calculate the standard deviation of an array
of values

STD relay ladder

structured text(1)

378

find the size of a dimension of an array SIZE relay ladder

structured text

384

(1) There is no equivalent structured text instruction. Use other structured text programming to achieve the same result. See the description for the instruction.
331 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

332 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Selecting Mode of
Operation

For FAL and FSC instructions, the mode tells the controller how to
distribute the array operation.

All mode

In All mode, all the specified elements in the array are operated on
before continuing on to the next instruction. The operation begins
when the instruction’s rung-condition-in goes from false to true. The
position (.POS) value in the control structure points to the element in
the array that the instruction is currently using. Operation stops when
the .POS value equals the .LEN value.

If You Want To Select This Mode

operate on all of the specified elements in an array before
continuing on to the next instruction

All

distribute array operation over a number of scans

enter the number of elements to operate on per scan
(1-2147483647)

Numerical

manipulate one element of the array each time the
rung-condition-in goes from false to true

Incremental

Data array one scan

16639
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 333
The following timing diagram shows the relationship between status
bits and instruction operation. When the instruction execution is
complete, the .DN bit is set. The .DN bit, the .EN bit, and the .POS
value are cleared when the rung-condition-in is false. Only then can
another execution of the instruction be triggered by a false-to-true
transition of rung-condition-in.

Numerical mode

Numerical mode distributes the array operation over a number of
scans. This mode is useful when working with non-time-critical data
or large amounts of data. You enter the number of elements to
operate on for each scan, which keeps scan time shorter.

one
scan

operation complete

clears status bits and
clears .POS value

rung-condition-in

.EN bit

.DN bit

scan of the instruction

40010no execution occurs
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

334 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Execution is triggered when the rung-condition-in goes from false to
true. Once triggered, the instruction is executed each time it is
scanned for the number of scans necessary to complete operating on
the entire array. Once triggered, rung-condition-in can change
repeatedly without interrupting execution of the instruction.

The following timing diagram shows the relationship between status
bits and instruction operation. When the instruction execution is
complete, the .DN bit is set.

IMPORTANT Avoid using the results of a file instruction operating in
numerical mode until the .DN bit is set.

one scan

16641

second scan

next scan

multiple scans multiple scans

rung-condition-in

.EN bit

.DN bit

scan of the instruction

clears status bits and
clears .POS value

clears status bits and
clears .POS value

rung is true at completion rung is false at completion

40013operation complete operation complete
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 335
If the rung-condition-in is true at completion, the .EN and .DN bit are
set until the rung-condition-in goes false. When the rung-condition-in
goes false, these bits are cleared and the .POS value is cleared.

If the rung-condition-in is false at completion, the .EN bit is cleared
immediately. One scan after the .EN bit is cleared, the .DN bit and the
.POS value are cleared.

Incremental mode

Incremental mode manipulates one element of the array each time the
instruction’s rung-condition-in goes from false to true.

16643

1st instruction enable
2nd instruction enable
3rd instruction enable

last instruction enable
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

336 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
The following timing diagram shows the relationship between status
bits and instruction operation. Execution occurs only in a scan in
which the rung-condition-in goes from false to true. Each time this
occurs, only one element of the array is manipulated. If the
rung-condition-in remains true for more than one scan, the instruction
only executes during the first scan.

The .EN bit is set when rung-condition-in is true. The .DN bit is set
when the last element in the array has been manipulated. When the
last element has been manipulated and the rung-condition-in goes
false, the .EN bit, the .DN bit, and the .POS value are cleared.

The difference between incremental mode and numerical mode at a
rate of one element per scan is:

• Numerical mode with any number of elements per scan requires
only one false-to-true transition of the rung-condition-in to start
execution. The instruction continues to execute the specified
number of elements each scan until completion regardless of the
state of the rung-condition-in.

• Incremental mode requires the rung-condition-in to change from
false to true to manipulate one element in the array.

one
scan

rung-condition-in

.EN bit

.DN bit

scan of the instruction

operation
complete

clears status bits and
clears .POS value

40014
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 337
File Arithmetic and Logic
(FAL)

The FAL instruction performs copy, arithmetic, logic, and function
operations on data stored in an array.

Operands:

Relay Ladder

Structured Text

Structured text does not have an FAL instruction, but you can achieve
the same results using a SIZE instruction and a FOR...DO or other
loop construct.

SIZE(destination,0,length-1);

FOR position = 0 TO length DO

destination[position] := numeric_expression;

END_FOR;

See Appendix B for information on the syntax of constructs within
structured text.

Operand Type Format Description

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements in the array to
be manipulated

Position DINT immediate current element in array

initial value is typically 0

Mode DINT immediate how to distribute the operation

select INC, ALL, or enter a number

Destination SINT

INT

DINT

REAL

tag tag to store the result

Expression SINT

INT

DINT

REAL

immediate

tag

an expression consisting of tags
and/or immediate values separated
by operators

A SINT or INT tag converts to a DINT value by sign-extension.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

338 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
CONTROL Structure

Description: The FAL instruction performs the same operations on arrays as the
CPT instruction performs on elements.

The examples that start on page 9-344 show how to use the .POS
value to step through an array. If a subscript in the expression of the
Destination is out of range, the FAL instruction generates a major fault
(type 4, code 20).

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the FAL instruction is enabled.

.DN BOOL The done bit is set when the instruction has operated on the last element (.POS = .LEN).

.ER BOOL The error bit is set if the expression generates an overflow (S:V is set). The instruction stops
executing until the program clears the .ER bit. The .POS value contains the position of the
element that caused the overflow.

.LEN DINT The length specifies the number of elements in the array on which the FAL
instruction operates.

.POS DINT The position contains the position of the current element that the instruction is accessing.

A Major Fault Will Occur If Fault Type Fault Code

subscript is out of range 4 20

.POS < 0 or .LEN < 0 4 21
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 339
Execution:

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

examine .DN bit
.DN bit = 0

.DN bit = 1

rung-condition-in is false

rung-condition-out is set to
false

end

.EN bit is cleared

.ER bit is cleared

INC mode
no

yes

ALL mode
no

yes

.EN bit is cleared

.POS = .POS + 1

numeric
mode

internal bit is cleared

.LEN < 0 or
.POS < 0

yes

no

major fault

.POS = .POS - 1

.POS = 0
yes

no

.DN bit is set

.POS < .LEN
no

yes

.LEN > mode

yes

no

mode = .LEN

.LEN = 0
yes

no

.DN bit is set

page 9-343
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

340 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Condition Relay Ladder Action

rung-condition-in is true

rung-condition-out is set to
true

end

examine .DN bit

.DN bit = 0

.DN bit = 1

.LEN = 0
no

yes

INC mode
no

yes

ALL mode

no

yes

loop_count =
loop_count - 1

loop_count < 0
no

yes

.POS = .POS + 1

evaluate expression

.POS = .POS + 1

examine S:V
no

yes

.ER bit is set

.POS = .LEN
no

yes

.DN bit is set .POS = .POS + 1

examine .ER bit
.ER bit = 0

.ER bit = 1

.DN bit is set
INC
mode

ALL
mode

numeric
mode

common

page 9-343

page 9-341 page 9-342

.LEN < 0 or

.POS < 0
yes

no

major fault
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 341
Condition Relay Ladder Action

examine .EN bit
.EN bit = 1

.EN bit = 0

.POS = .POS + 1

.POS ≥ .LEN
yes

no

.EN bit is set

loop_count = 1

examine
internal bit

bit = 1

bit = 0

internal bit is set

INC
mode

common

.POS = .POS - 1

.POS = 0
yes

no

.DN bit is set

rung-condition-out is set to
true

end

page 9-340
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

342 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Condition Relay Ladder Action

examine .EN bit
.EN bit = 0

.EN bit = 1

.POS = .POS + 1

.POS ≥ .LEN
yes

no

loop_count = .LEN - .POS

examine
internal bit

bit = 1

bit = 0

.EN bit is set

ALL
mode

common

.POS = .POS - 1

.POS = 0
yes

no

.DN bit is set rung-condition-out is set to
true

end
page 9-340
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 343
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

examine .EN bit
.EN bit = 1

.EN bit = 0

.POS = .POS + 1

.POS ≥ .LEN
yes

no

examine
internal bit

bit = 1

bit = 0

internal bit is set

numeric
mode

common

.POS = .POS - 1

.POS = 0
yes

no

.DN bit is set rung-condition-out is set to
true

end

.LEN ≥ mode

yes

no
mode = .LEN

.EN bit is set

loop_count = .LEN - .POS

mode ≥
loop_count

no

.EN bit is set

yes

page 9-340
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

344 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 1: When enabled, the FAL instruction copies each element of array_2
into the same position within array_1.

Example 2: When enabled, the FAL instruction copies value_1 into the first 10
positions of the second dimension of array_2.

Example 3: Each time the FAL instruction is enabled, it copies the current value of
array_1 to value_1. The FAL instruction uses incremental mode, so
only one array value is copied each time the instruction is enabled.
The next time the instruction is enabled, the instruction overwrites
value_1 with the next value in array_1.

Example 4: When enabled, the FAL instruction adds value_1 and value_2 and
stores the result in the current position of array_1.

array-to-array copy

Expression: Destination:

element-to-array copy

Expression: Destination:

array-to-element copy

Expression: Destination:

arithmetic operation: (element + element) to array

Expression: Destination:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 345
Example 5: When enabled, the FAL instruction divides the value in the current
position of array_2 with the value in the current position of array_3
and stores the result in the current position of array_1.

Example 6: When enabled, the FAL instruction adds the value at the current
position in array_1 to value_1 and stores the result in the current
position in array_3. The instruction must execute 10 times for the
entire array_1 and array_3 to be manipulated.

Example 7: Each time the FAL instruction is enabled, it adds value_1 to the current
value of array_1 and stores the result in value_2. The FAL instruction
uses incremental mode, so only one array value is added to value_1
each time the instruction is enabled. The next time the instruction is
enabled, the instruction overwrites value_2.

arithmetic operation: (array / array) to array

Expression: Destination:

arithmetic operation: (array + element) to array

Expression: Destination:

arithmetic operation: (element + array) to element

Expression: Destination:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

346 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 8: When enabled, the FAL instruction multiplies the current value of
array_1 by the current value of array_3 and stores the result in
value_1. The FAL instruction uses incremental mode, so only one pair
of array values is multiplied each time the instruction is enabled. The
next time the instruction is enabled, the instruction overwrites
value_1.

FAL Expressions

You program expressions in FAL instructions the same as expressions
in CPT instructions. Use the following sections for information on
valid operators, format, and order of operation, which are common to
both instructions.

arithmetic operation: (array ∗ array) to element

Expression: Destination:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 347
Valid operators

Format Expressions

For each operator that you use in an expression, you have to provide
one or two operands (tags or immediate values). Use the following
table to format operators and operands within an expression:

Operator Description Optimal

+ add DINT, REAL

- subtract/negate DINT, REAL

* multiply DINT, REAL

/ divide DINT, REAL

** exponent (x to y) DINT, REAL

ABS absolute value DINT, REAL

ACS arc cosine REAL

AND bitwise AND DINT

ASN arc sine REAL

ATN arc tangent REAL

COS cosine REAL

DEG radians to degrees DINT, REAL

FRD BCD to integer DINT

LN natural log REAL

LOG log base 10 REAL

MOD modulo-divide DINT, REAL

NOT bitwise complement DINT

OR bitwise OR DINT

RAD degrees to radians DINT, REAL

SIN sine REAL

SQR square root DINT, REAL

TAN tangent REAL

TOD integer to BCD DINT

TRN truncate DINT, REAL

XOR bitwise exclusive OR DINT

Operator Description Optimal

For Operators That
Operate On

Use This Format Examples

one operand operator(operand) ABS(tag_a)

two operands operand_a operator operand_b • tag_b + 5

• tag_c AND tag_d

• (tag_e ** 2) MOD (tag_f /
tag_g)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

348 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Determine the order of operation

The operations you write into the expression are performed by the
instruction in a prescribed order, not necessarily the order you write
them. You can override the order of operation by grouping terms
within parentheses, forcing the instruction to perform an operation
within the parentheses ahead of other operations.

Operations of equal order are performed from left to right.

Order Operation

1. ()

2. ABS, ACS, ASN, ATN, COS, DEG, FRD, LN, LOG,
RAD, SIN, SQR, TAN, TOD, TRN

3. **

4. − (negate), NOT

5. *, /, MOD

6. − (subtract), +

7. AND

8. XOR

9. OR
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 349
File Search and Compare
(FSC)

The FSC instruction compares values in an array, element by element.

Operands:

Relay Ladder

CONTROL Structure

Description: When the FSC instruction is enabled and the comparison is true, the
instruction sets the .FD bit and the .POS bit reflects the array position
where the instruction found the true comparison. The instruction sets
the .IN bit to prevent further searching.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Operand Type Format Description

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements in the array to
be manipulated

Position DINT immediate offset into array

initial value is typically 0

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the FSC instruction is enabled.

.DN BOOL The done bit is set when the instruction has operated on the last element
(.POS = .LEN).

.ER BOOL The error bit is not modified.

.IN BOOL The inhibit bit indicates that the FSC instruction detected a true comparison. You must clear
this bit to continue the search operation.

.FD BOOL The found bit indicates that the FSC instruction detected a true comparison.

.LEN DINT The length specifies the number of elements in the array on which the instruction operates.

.POS DINT The position contains the position of the current element that the instruction is accessing.

A Major Fault Will Occur If Fault Type Fault Code

.POS < 0 or .LEN < 0 4 21
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

350 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Execution:

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

examine .DN bit
.DN bit = 0

.DN bit = 1

rung-condition-in is false

rung-condition-out is set to
false

end

.EN bit is cleared

.ER bit is cleared

INC mode
no

yes

ALL mode
no

yes

.EN bit is cleared

.POS = .POS + 1

numeric
mode

internal bit is cleared

.LEN < 0 or
.POS < 0

yes

no

major fault

.POS = .POS - 1

.POS = 0
yes

no

.DN bit is set

.POS < .LEN
no

yes

.LEN > mode

yes

no

mode = .LEN

.LEN = 0
yes

no

.DN bit is set

page 9-343
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 351
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

rung-condition-in is true

rung-condition-out is set to
true

end

examine .IN bit

.DN bit = 0

.DN bit = 1

.LEN = 0
no

yes

INC mode
no

yes

ALL mode

no

yes

loop_count =
loop_count - 1

loop_count < 0
no

yes

.POS = .POS + 1

evaluate comparison

.POS = .POS + 1

match
no

yes

.EN bit is set

.FD bit is set

.POS = .LEN
no

yes

.DN bit is set .POS = .POS + 1

examine .ER bit
.ER bit = 0

.ER bit = 1

.DN bit is set
INC
mode

ALL
mode

numeric
mode

common

page 9-343

page 9-341 page 9-342

.LEN < 0 or

.POS < 0
yes

no

major fault

examine .DN bit

.DN bit = 1

.IN bit = 0

.DN bit = 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

352 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 1: Search for a match between two arrays. When enabled, the FSC
instruction compares each of the first 10 elements in array_1 to the
corresponding elements in array_2.

00000000000000000000000000000000 0

00000000000000000000000000000000 1

00000000000000000000000000000000 2

00000000000000000000000000000000 3

11111111111111110000000000000000 4

11111111111111111111111111111111 5

11111111111111111111111111111111 6

11111111111111111111111111111111 7

11111111111111111111111111111111 8

11111111111111111111111111111111 9

array_1 array_2

The FSC instruction finds that these
elements are not equal. The instruction sets
the .FD and .IN bits. The .POS value (4)
indicates the position of the elements that
are not equal. To continue comparing the
rest of the array, clear the .IN bit.

control_3.pos

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000001111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 353
Example 2: Search for a match in an array. When enabled, the FSC instruction
compares the MySearchKey to 10 elements in array_1.

MySearchKey reference

The FSC instruction finds that this array
element equals MySearchKey. The
instruction sets the .FD and .IN bits. The
.POS (4) value indicates the position of the
equal element. To continue comparing the
rest of the array, clear the .IN bit.

control_3.pos

00000000000000000000000000000000 0

00000000000000000000000000000000 1

00000000000000000000000000000000 2

00000000000000000000000000000000 3

11111111111111110000000000000000 4

11111111111111111111111111111111 5

11111111111111111111111111111111 6

11111111111111111111111111111111 7

11111111111111111111111111111111 8

11111111111111111111111111111111 9

11111111111111110000000000000000
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

354 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 3: Search for a string in an array of strings. When enabled, the FSC
instruction compares the characters in code to 10 elements in
code_table.

FSC expressions

You program expressions in FSC instructions the same as expressions
in CMP instructions. Use the following sections for information on
valid operators, format, and order of operation, which are common to
both instructions.

SAM

AFG 0

BEH 1

HUO 2

SAK 3

SAM 4

FQG 5

CLE 6

CAK 7

DET 8

BWG 9

code code_table

The FSC instruction finds that this array
element equals code. The instruction sets
the .FD and .IN bits. The .POS (4) value
indicates the position of the equal element.
To continue comparing the rest of the array,
clear the .IN bit.

code_table_search.POS
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 355
Valid Operators

Format Expressions

For each operator that you use in an expression, you have to provide
one or two operands (tags or immediate values). Use the following
table to format operators and operands within an expression:

Operator Description Optimal

+ add DINT, REAL

- subtract/negate DINT, REAL

* multiply DINT, REAL

/ divide DINT, REAL

= equal DINT, REAL

< less than DINT, REAL

<= less than or equal DINT, REAL

> greater than DINT, REAL

>= greater than or equal DINT, REAL

<> not equal DINT, REAL

** exponent (x to y) DINT, REAL

ABS absolute value DINT, REAL

ACS arc cosine REAL

AND bitwise AND DINT

ASN arc sine REAL

ATN arc tangent REAL

COS cosine REAL

DEG radians to degrees DINT, REAL

FRD BCD to integer DINT

LN natural log REAL

LOG log base 10 REAL

MOD modulo-divide DINT, REAL

NOT bitwise complement DINT

OR bitwise OR DINT

RAD degrees to radians DINT, REAL

SIN sine REAL

SQR square root DINT, REAL

TAN tangent REAL

TOD integer to BCD DINT

TRN truncate DINT, REAL

XOR bitwise exclusive OR DINT

Operator Description Optimal

For Operators That
Operate On

Use This Format Examples

one operand operator(operand) ABS(tag_a)

two operands operand_a operator operand_b • tag_b + 5

• tag_c AND tag_d

• (tag_e ** 2) MOD (tag_f /
tag_g)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

356 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Determine the order of operation

The operations you write into the expression are performed by the
instruction in a prescribed order, not necessarily the order you write
them. You can override the order of operation by grouping terms
within parentheses, forcing the instruction to perform an operation
within the parentheses ahead of other operations.

Operations of equal order are performed from left to right.

Order Operation

1. ()

2. ABS, ACS, ASN, ATN, COS, DEG, FRD, LN, LOG,
RAD, SIN, SQR, TAN, TOD, TRN

3. **

4. − (negate), NOT

5. *, /, MOD

6. <, <=, >, >=, =

7. − (subtract), +

8. AND

9. XOR

10. OR
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 357
Use Strings In an Expression

To use strings of ASCII characters in an expression, follow these
guidelines:

• An expression lets you compare two string tags.

• You cannot enter ASCII characters directly into the expression.

• Only the following operators are permitted

• Strings are equal if their characters match.

• ASCII characters are case sensitive. Upper case “A” ($41) is not
equal to lower case “a” ($61).

• The hexadecimal values of the characters determine if one string
is less than or greater than another string. For the hex code of a
character, see the back cover of this manual.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

Operator Description

= equal

< less than

<= less than or equal

> greater than

>= greater than or equal

<> not equal

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

358 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Copy File (COP)
Synchronous Copy File
(CPS)

The COP and CPS instructions copy the value(s) in the Source to the
Destination. The Source remains unchanged.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder COP and
CPS instructions.

Operand Type Format Description

Source SINT

INT

DINT

REAL

string

structure

tag initial element to copy

Important: the Source and Destination
operands should be the same data type, or
unexpected results may occur

Destination SINT

INT

DINT

REAL

string

structure

tag initial element to be overwritten by
the Source

Important: the Source and Destination
operands should be the same data type, or
unexpected results may occur

Length DINT immediate

tag

number of Destination elements to copy

COP(Source,Dest,Length);

CPS(Source,Dest,Length);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 359
Description: During execution of the COP and CPS instructions, other controller
actions may try to interrupt the copy operation and change the source
or destination data:

The number of bytes copied is:

Byte Count = Length ∗ (number of bytes in the Destination data type)

Arithmetic Status Flags: not affected

Fault Conditions: none

If the Source Or Destination Is And You Want To Then Select Notes

• produced tag

• consumed tag

• I/O data

• data that another task can
overwrite

prevent the data from changing
during the copy operation

CPS • Tasks that attempt to interrupt a CPS
instruction are delayed until the
instruction is done.

• To estimate the execution time of the
CPS instruction, see ControlLogix
System User Manual, publication
1756-UM001.

allow the data to change during the
copy operation

COP

none of the above COP

ATTENTION If the byte count is greater than the length of the Source, unpredictable data is
copied for the remaining elements.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The COP and CPS instructions operate on contiguous memory. They do a straight
byte-to-byte memory copy. In some cases, they write past the array into other
members of the tag. This happens if the length is too big and the tag is a
user-defined data type.

The Length is too big if it is more than the total number of elements in the
Destination array.

If The Tag Is Then

user-defined data type If the Length is too big, the instruction writes past the end of
the array into other members of the tag. It stops at the end of
the tag. No major fault is generated.

NOT user-defined data
type

If the Length is too big, the instruction stops at the end of the
array. No major fault is generated.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

360 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Execution:

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

postscan The rung-condition-out is set to false. No action taken.

instruction execution

rung-condition-out is set to
true

end

end_address = start_address + (Length ∗
number of bytes in a destination element)

yes

no

end_address > end
of destination array

end_address = end of destination array

source_address = Source

yes

no

destination_address =
end_address

copy data in source_address to destination
_address

source_address = source _address + 1

destination_address =
destination_address + 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 361
Example 1: Both array_4 and array_5 are the same data type. When enabled, the
COP instruction copies the first 10 elements of array_4 into the first 10
elements of array_5.

Relay Ladder

Structured Text

COP(array_4[0],array_5[0],10);

Example 2: When enabled, the COP instruction copies the structure timer_1 into
element 5 of array_timer. The instruction copies only one structure to
one array element.

Relay Ladder

Structured Text

COP(timer_1,array_timer[5],1);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

362 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 3: The project_data array (100 elements) stores a variety of values that
change at different times in the application. To send a complete image
of project_data at one instance in time to another controller, the CPS
instruction copies project_data to produced_array.

• While the CPS instruction copies the data, no I/O updates or
other tasks can change the data.

• The produced_array tag produces the data on a ControlNet
network for consumption by other controllers.

• To use the same image of data (that is, a synchronized copy of
the data), the consuming controller (s) uses a CPS instruction to
copy the data from the consumed tag to another tag for use in
the application.

Relay Ladder

Structured Text

CPS(project_data[0],produced_array[0],100);

Example 4: Local:0:I.Data stores the input data for the DeviceNet network that is
connected to the 1756-DNB module in slot 0. To synchronize the
inputs with the application, the CPS instruction copies the input data
to input_buffer.

• While the CPS instruction copies the data, no I/O updates can
change the data.

• As the application executes, it uses for its inputs the input data
in input_buffer.

Relay Ladder

Structured Text

CPS(Local:0:I.Data[0],input_buffer[0],20);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 363
Example 5: This example initializes an array of timer structures. When enabled,
the MOV instructions initialize the .PRE and .ACC values of the first
array_timer element. When enabled, the COP instruction copies a
contiguous block of bytes, starting at array_timer[0]. The length is
nine timer structures.

Relay Ladder

Structured Text

IF S:FS THEN

array_timer[0].pre := 500;

array_timer[0].acc := 0;

COP(array_timer[0],array_timer[1],10);

END_IF;

array_timer[0] First the instruction copies timer[0]
values to timer[1]

array_timer[1] Then the instruction copies timer[1]
values to timer[2]

array_timer[2] Then the instruction copies timer[2]
values to timer[3]

array_timer[3] Then the instruction copies timer[3]
values to timer[4]

array_timer[4]

•

•

•

array_timer[9] Finally, the instruction copies
timer[9] values to timer[10]

array_timer[10]
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

364 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
File Fill (FLL) The FLL instruction fills elements of an array with the Source value.
The Source remains unchanged.

Operands:

Relay Ladder

Structured Text

Structured text does not have an FLL instruction, but you can achieve
the same results using a SIZE instruction and a FOR...DO or other
loop construct.

SIZE(destination,0,length);

FOR position = 0 TO length-1 DO

destination[position] := source;

END_FOR;

See Appendix B for information on the syntax of constructs within
structured text.

Operand Type Format: Description

Source SINT

INT

DINT

REAL

immediate

tag

element to copy

Important: the Source and Destination
operands should be the same data type, or
unexpected results may occur

Destination SINT

INT

DINT

REAL

structure

tag initial element to be overwritten by
the Source

Important: the Source and Destination
operands should be the same data type, or
unexpected results may occur

The preferred way to initialize a structure is
to use the COP instruction.

Length DINT immediate number of elements to fill
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 365
Description: The number of bytes filled is:

Byte count = Length ∗ (number of bytes in the Destination data type)

For best results, the Source and Destination should be the same type.
If you want to fill a structure, use the COP instruction (see example 3
on page 9-362). If you mix data types for the Source and Destination,
the Destination elements are filled with converted Source values.

Arithmetic Status Flags: not affected

Fault Conditions: none

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The FLL instruction operates on contiguous data memory. In some cases, the
instruction writes past the array into other members of the tag. This happens if the
length is too big and the tag is a user-defined data type.

The Length is too big if it is more than the total number of elements in the
Destination array.

If the tag is Then

user-defined data type If the Length is too big, the instruction writes past the end of
the array into other members of the tag. It stops at the end of
the tag. No major fault is generated.

NOT user-defined data
type

If the Length is too big, the instruction stops at the end of the
array. No major fault is generated.

If The Source Is And The Destination Is The Source Is
Converted To

SINT, INT, DINT, or REAL SINT SINT

SINT, INT, DINT, or REAL INT INT

SINT, INT, DINT, or REAL DINT DINT

SINT, INT, DINT, or REAL REAL REAL

SINT structure SINT (not converted)

INT structure INT (not converted)

DINT structure DINT (not converted)

REAL structure REAL (not converted)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

366 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Execution:

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

rung-condition-out is set to
true

end

end_address = start_address + (Length ∗
number of bytes in a destination element)

yes

no

end_address > end
of destination array

end_address = end of destination array

source_address = Source

yes

no

destination_address =
end_address

copy data in source_address to destination
_address

destination_address =
destination_address + 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 367
Example: The FLL instruction copies the value in value_1 into dest_1

Relay Ladder

Structured Text

dest_1 := value_1;

Source (value_1)
Data Type

Source (value_1)
Value

Destination
(dest_1) Data Type

Destination
(dest_1) Value
After FLL

SINT 16#80 (-128) DINT 16#FFFF FF80 (-128)

DINT 16#1234 5678 SINT 16#78

SINT 16#01 REAL 1.0

REAL 2.0 INT 16#0002

SINT 16#01 TIMER 16#0101 0101

16#0101 0101

16#0101 0101

INT 16#0001 TIMER 16#0001 0001

16#0001 0001

16#0001 0001

DINT 16#0000 0001 TIMER 16#0000 0001

16#0000 0001

16#0000 0001
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

368 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
File Average (AVE) The AVE instruction calculates the average of a set of values.

Operands:

Relay Ladder

Structured Text

Structured text does not have an AVE instruction, but you can achieve
the same results using a SIZE instruction and a FOR...DO or other
loop construct.

SIZE(array,0,length);

sum := 0;

FOR position = 0 TO length-1 DO

sum := sum + array[position];

END_FOR;

Operand Type Format Description

Array SINT

INT

DINT

REAL

array tag find the average of the values in this array

specify the first element of the group of
elements to average

do not use CONTROL.POS in the subscript

Dimension
to vary

DINT immediate

(0, 1, 2)

which dimension to use

depending on the number of dimensions, the
order is

array[dim_0,dim_1,dim_2]

array[dim_0,dim_1]

array[dim_0]

Destination SINT

INT

DINT

REAL

tag result of the operation

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements of the array to average

Position DINT immediate current element in the array

initial value is typically 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 369
destination := sum / length;

See Appendix B for information on the syntax of constructs within
structured text.

CONTROL Structure

Description: The AVE instruction calculates the average of a set of values.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the AVE instruction is enabled.

.DN BOOL The done bit is set when the instruction has operated on the last element in the Array (.POS
= .LEN).

.ER BOOL The error bit is set if the instruction generates an overflow. The instruction stops executing
until the program clears the .ER bit. The position of the element that caused the overflow is
stored in the .POS value.

.LEN DINT The length specifies the number of elements in the array on which the instruction operates.

.POS DINT The position contains the position of the current element that the instruction is accessing.

IMPORTANT Make sure the Length does not cause the instruction to exceed
the specified Dimension to vary. If this happens, the Destination
will be incorrect.

A Major Fault Will Occur If Fault Type Fault Code

.POS < 0 or .LEN < 0 4 21

Dimension to vary does not exist for the
specified array

4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

370 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Execution:

Condition Relay Ladder Action

prescan The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true The AVE instruction calculates the average by adding all the specified elements in the
array and dividing by the number of elements.

Internally, the instruction uses a FAL instruction to calculate the average:

Expression = average calculation

Mode = ALL

For details on how the FAL instruction executes, see page 9-339.

postscan The rung-condition-out is set to false.

examine .DN bit .DN bit = 0

.DN bit = 1

rung-condition-in is false

rung-condition-out is set to
false

end

.EN bit is cleared

.ER bit is cleared

.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 371
Example 1: Average array_dint, which is DINT[4,5].

Relay Ladder

Structured Text

SIZE(array_dint,0,length);

sum := 0;

FOR position = 0 TO (length-1) DO

sum := sum + array_dint[position];

END_FOR;

dint_ave := sum / length;

dimension 1

dimension 0

0 20 19 18 17 16

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

1

2

3

0 1 2 3 4

AVE 19 14 9 4+ + +
4

------------------------------------ 46
4
------ 11.5= = =

dint_ave = 12

subscripts
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

372 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 2: Average array_dint, which is DINT[4,5].

Relay Ladder

Structured Text

SIZE(array_dint,1,length);

sum := 0;

FOR position = 0 TO (length-1) DO

sum := sum + array_dint[position];

END_FOR;

dint_ave := sum / length;

dimension 1

dimension 0

0 20 19 18 17 16

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

1

2

3

0 1 2 3 4

AVE 5 4 3 2 1+ + + +
5

-- 15
5
------ 3= = =

subscripts

dint_ave = 3
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 373
File Sort (SRT) The SRT instruction sorts a set of values in one dimension (Dim to
vary) of the Array into ascending order.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
SRT instruction. However, you specify the Length and Position values
by accessing the .LEN and .POS members of the CONTROL structure,
rather than by including values in the operand list.

CONTROL Structure

Operand Type Format Description

Array SINT

INT

DINT

REAL

array tag array to sort

specify the first element of the group of
elements to sort

do not use CONTROL.POS in the subscript

Dimension
to vary

DINT immediate

(0, 1, 2)

which dimension to use

depending on the number of dimensions, the
order is

array[dim_0,dim_1,dim_2]

array[dim_0,dim_1]

array[dim_0]

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements of the array to sort

Position DINT immediate current element in the array

initial value is typically 0

SRT(Array,Dimtovary,
Control);

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the SRT instruction is enabled.

.DN BOOL The done bit is set when the specified elements have been sorted.

.ER BOOL The error bit is set when either .LEN < 0 or .POS < 0. Either of these conditions also generates
a major fault.

.LEN DINT The length specifies the number of elements in the array on which the instruction

.POS DINT The position contains the position of the current element that the instruction is accessing.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

374 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Description: The SRT instruction sorts a set of values in one dimension (Dim to
vary) of the Array into ascending order.

This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition. See Appendix B.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The SRT instruction operates on contiguous memory. In some cases, the instruction
changes data in other members of the tag. This happens if the length is too big and
the tag is a user-defined data type.

IMPORTANT Make sure the Length does not cause the instruction to exceed the specified
Dimension to vary. If this happens, unexpected results will occur.

A Major Fault Will Occur If Fault Type Fault Code

.POS < 0 or .LEN < 0 4 21

Dimension to vary does not exist for the
specified array

4 20

Instruction tries to access data outside of
the array boundaries

4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 375
Execution:

Condition Relay Ladder Action Structured Text Action

prescan The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

The rung-condition-out is set to false.

The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction sorts the specified elements of the
array into ascending order.

The instruction sorts the specified elements of the
array into ascending order.

postscan The rung-condition-out is set to false. No action taken.

examine .DN bit .DN bit = 0

.DN bit = 1

rung-condition-out is set to
false

end

.EN bit is cleared

.ER bit is cleared

.DN bit is cleared

rung-condition-in is false
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

376 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 1: Sort int _array, which is DINT[4,5].

Relay Ladder

Structured Text

control_1.LEN := 4;

control_1.POS := 0;

SRT(int_array[0,2],0,control_1);

dimension 1

dimension 0

0 20 19 18 17 16

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

1

2

3

0 1 2 3 4

dimension 1

dimension 0

0 20 19 3 17 16

15 14 8 12 11

10 9 13 7 6

5 4 18 2 1

1

2

3

0 1 2 3 4

Before After

subscripts

subscripts
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 377
Example 2: Sort int _array, which is DINT[4,5].

Relay Ladder

Structured Text

control_1.LEN := 5;

control_1.POS := 0;

SRT(int_array[2,0],1,control_1);

dimension 1

dimension 0

0 20 19 18 17 16

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

1

2

3

0 1 2 3 4

dimension 1

dimension 0

0 20 19 18 17 16

15 14 13 12 11

6 7 8 9 10

5 4 3 2 1

1

2

3

0 1 2 3 4

Before After

subscripts

subscripts
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

378 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
File Standard Deviation
(STD)

The STD instruction calculates the standard deviation of a set of values
in one dimension of the Array and stores the result in the Destination.

Operands:

Relay Ladder

CONTROL Structure

Operand Type Format Description

Array SINT

INT

DINT

REAL

array tag find the standard deviation of the values in
this array

specify the first element of the group of
elements to use in calculating the standard
deviation

do not use CONTROL.POS in the subscript

A SINT or INT tag converts to a DINT value by sign-extension.

Dimension
to vary

DINT immediate

(0, 1, 2)

which dimension to use

depending on the number of dimensions, the
order is

array[dim_0,dim_1,dim_2]

array[dim_0,dim_1]

array[dim_0]

Destination REAL tag result of the operation

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements of the array to use in
calculating the standard deviation

Position DINT immediate current element in the array

initial value is typically 0

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the STD instruction is enabled.

.DN BOOL The done bit is set when the calculation is complete.

.ER BOOL The error bit is set when the instruction generates an overflow. The instruction stops
executing until the program clears the .ER bit. The position of the element that caused the
overflow is stored in the .POS value.

.LEN DINT The length specifies the number of elements in the array on which the instruction operates.

.POS DINT The position contains the position of the current element that the instruction is accessing.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 379
Structured Text

Structured text does not have an STD instruction, but you can achieve
the same results using a SIZE instruction and a FOR...DO or other
loop construct.

SIZE(array,0,length);

sum := 0;

FOR position = 0 TO length-1 DO

sum := sum + array[position];

END_FOR;

average := sum / length;

sum := 0;

FOR position = 0 TO length-1 DO

sum := sum + ((array[position] - average)**2);

END_FOR;

destination := SQRT(sum /(length-1));

See Appendix B for information on the syntax of constructs within
structured text.

Description: The standard deviation is calculated according to this formula:

Where:

• start = dimension-to-vary subscript of the array operand

• xi = variable element in the array

• N = number of specified elements in the array

• AVE =

X start i+() AVE∠〈 〉2[]

i 1=

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

N 1∠()
--

Standard Deviation =

x start i+()

i 1=

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

N
--

IMPORTANT Make sure the Length does not cause the instruction to exceed the specified
Dimension to vary. If this happens, the Destination will be incorrect.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

380 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

A Major Fault Will Occur If Fault Type Fault Code

.POS < 0 or .LEN < 0 4 21

Dimension to vary does not exist for the
specified array

4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 381
Execution:

Condition Relay Ladder Action

prescan The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true The STD instruction calculates the standard deviation of the specified elements.

Internally, the instruction uses a FAL instruction to calculate the average:

Expression = standard deviation calculation

Mode = ALL

For details on how the FAL instruction executes, see page 9-339.

postscan The rung-condition-out is set to false.

examine .DN bit .DN bit = 0

.DN bit = 1

rung-condition-in is false

rung-condition-out is set to
false

end

.EN bit is cleared

.ER bit is cleared

.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

382 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 1: Calculate the standard deviation of dint_array, which is DINT[4,5].

Relay Ladder

Structured Text

SIZE(dint_array,0,length);

sum := 0;

FOR position = 0 TO (length-1) DO

sum := sum + dint_array[position];

END_FOR;

average := sum / length;

sum := 0;

FOR position = 0 TO (length-1) DO

sum := sum + ((dint_array[position] - average)**2);

END_FOR;

real_std := SQRT(sum / (length-1));

dimension 1

dimension 0

0 20 19 18 17 16

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

1

2

3

0 1 2 3 4

STD 16 8.5∠〈 〉2 11 8.5∠〈 〉2 6 8.5∠〈 〉2 1 8.5∠〈 〉2+ + +
4 1∠〈 〉

--- 6.454972= =

AVE 16 11 6 1+ + +
4

------------------------------------ 34
4
------ 8.5= = =

subscripts

real_std = 6.454972
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 383
Example 2: Calculate the standard deviation of dint_array, which is DINT[4,5].

Relay Ladder

Structured Text

SIZE(dint_array,1,length);

sum := 0;

FOR position = 0 TO (length-1) DO

sum := sum + dint_array[position];

END_FOR;

average := sum / length;

sum := 0;

FOR position = 0 TO (length-1) DO

sum := sum + ((dint_array[position] - average)**2);

END_FOR;

real_std := SQRT(sum / (length-1));

dimension 1

dimension 0

0 20 19 18 17 16

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

1

2

3

0 1 2 3 4

STD 20 18∠〈 〉2 19 18∠〈 〉2 18 18∠〈 〉2 17 18∠〈 〉2 16 18∠〈 〉2+ + + +
5 1∠〈 〉

--- 1.581139= =

AVE 20 19 18 17 16+ + + +
5

--- 90
5
------ 18= = =

subscripts

real_std = 1.581139
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

384 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Size In Elements (SIZE) The SIZE instruction finds the size of a dimension of an array.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
SIZE instruction.

Description: The SIZE instruction finds the number of elements (size) in the
designated dimension of the Source array and places the result in the
Size operand.

• The instruction finds the size of one dimension of an array.

• The instruction operates on an:

– array

– array in a structure

– array that is part of a larger array

Arithmetic Status Flags: not affected

Operand Type Format Description

Source SINT

INT

DINT

REAL

structure

string

array tag array on which the instruction is to operate

Dimension
to Vary

DINT immediate
(0, 1, 2)

dimension to use:

Size SINT

INT

DINT

REAL

tag tag to store the number of elements in the
specified dimension of the array

For The Size Of Enter

first dimension 0

second dimension 1

third dimension 2

SIZE(Source,Dimtovary,Size);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE) 385
Fault Conditions: none.

Execution:

Example 1: Find the number of elements in dimension 0 (first dimension) of
array_a. Store the size in array_a_size. In this example, dimension 0
of array_a has 10 elements.

Relay Ladder

Structured Text

SIZE(array_a,0,array_a_size);

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction finds the size of a dimension. The instruction finds the size of a dimension.

postscan The rung-condition-out is set to false. No action taken.

Size in Elements
Source array_a[0]

 255
Dim. To Vary 0
Size array_a_size

 10

SIZE
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

386 Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
Example 2: Find the number of elements in the DATA member of string_1, which
is a string. Store the size in string_1_size. In this example, the DATA
member of string_1 has 82 elements. (The string uses the default
STRING data type.) Since each element holds one character, string_1
can contain up to 82 characters.

Relay Ladder

Structured Text

SIZE(string_1.DATA[0],0,string_1_size);

Example 3: Strings_a is an array of string structures. The SIZE instruction finds the
number of elements in the DATA member of the string structure and
stores the size in data_size_a. In this example, the DATA member has
24 elements. (The string structure has a user-specified length of 24.)

Relay Ladder

Structured Text

SIZE(strings_a[0].DATA[0],0,data_size_a);

Size in Elements
Source string_1.DATA[0]

 '$00'
Dim. To Vary 0
Size string_1_size

 82

SIZE

Size in Elements
Source strings_a[0].DATA[0]

 '$00'
Dim. To Vary 0
Size data_size_a

 24

SIZE
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 10

Array (File)/Shift Instructions
(BSL, BSR, FFL, FFU, LFL, LFU)

Introduction Use the array (file)/shift instructions to modify the location of data
within arrays.

You can mix data types, but loss of accuracy and rounding errors
might occur.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

If You Want To Use This Instruction Available In These Languages See Page

Load bits into, shift bits through, and unload
bits from a bit array one bit at a time.

BSL relay ladder 388

BSR relay ladder 392

Load and unload values in the same order. FFL relay ladder 396

FFU relay ladder 402

Load and unload values in reverse order. LFL relay ladder 408

LFU relay ladder 414
387 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

388 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Bit Shift Left (BSL) The BSL instruction shifts the specified bits within the Array one
position left.

Operands:

Relay Ladder

CONTROL Structure

Description: When enabled, the instruction unloads the uppermost bit of the
specified bits to the .UL bit, shifts the remaining bits one position left,
and loads Source bit into bit 0 of Array.

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

Array DINT array tag array to modify

specify the first element of the group of
elements

do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation

Source bit BOOL tag bit to shift

Length DINT immediate number of bits in the array to shift

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the BSL instruction is enabled.

.DN BOOL The done bit is set to indicate that bits shifted one position to the left.

.UL BOOL The unload bit is the instruction’s output. The .UL bit stores the status of the bit that was
shifted out of the range of bits.

.ER BOOL The error bit is set when .LEN < 0.

.LEN DINT The length specifies the number of array bits to shift.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The BSL instruction operates on contiguous memory. In some cases, the instruction
shifts bits past the array into other members of the tag. This happens if the length is
too big and the tag is a user-defined data type.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 389
Execution:

Condition: Relay Ladder Action

prescan The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

The .POS value is cleared.

The rung-condition-out is set to false.

rung-condition-in is false The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

The .POS value is cleared.

The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

390 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Condition: Relay Ladder Action

postscan The rung-condition-out is set to false.

rung-condition-in is true

examine .EN bit .EN bit = 1

.EN bit = 0

end

.DN bit is set

shift array left one position left

.EN bit is set

rung-condition-out is set to
true

.DN bit is set

.LEN = 0 yes

no

.LEN < 0 yes

no

source
bit.UL bit array

examine source bit .source bit = 1

.source bit = 0

.UL bit remains set

.UL bit is set

.ER bit is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 391
Example 1: When enabled, the BSL instruction starts at bit 0 in array_dint[0]. The
instruction unloads array_dint[0].9 into the .UL bit, shifts the
remaining bits, and loads input_1 into array_dint[0].0. The values in
the remaining bits (10-31) are invalid.

Example 2: When enabled, the BSL instruction starts at bit 0 in array_dint[0]. The
instruction unloads array_dint[1].25 into the .UL bit, shifts the
remaining bits, and loads input_1 into array_dint[0].0. The values in
the remaining bits (31-26 in array_dint[1]) are invalid. Note how
array_dint[0].31 shifts across words to array_dint[1].0.

9 8 7 6 5 4 3 2 1 0

array_dint[0]
before shift

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

9 8 7 6 5 4 3 2 1 0

array_dint[0]
after shift

0 1 1 1 1 0 0 0 0 1

1

input_10

.UL bit

these bits shift left

31 0

array_dint[0] 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

31 0

array_dint[1] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1

input_1
these bits shift left

0

.UL bit

these bits shift left
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

392 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Bit Shift Right (BSR) The BSR instruction shifts the specified bits within the Array one
position right.

Operands:

Relay Ladder

CONTROL Structure

Description: When enabled, the instruction unloads the value at bit 0 of Array to
the .UL bit, shifts the remaining bits one position right, and loads
Source bit into the uppermost bit of the specified bits.

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Description

Array DINT array tag array to modify

specify the element where to begin the shift

do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation

Source bit BOOL tag bit to shift

Length DINT immediate number of bits in the array to shift

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the BSR instruction is enabled.

.DN BOOL The done bit is set to indicate that bits shifted one position to the right.

.UL BOOL The unload bit is the instruction’s output. The .UL bit stores the status of the bit that was
shifted out of the range of bits.

.ER BOOL The error bit is set when .LEN < 0.

.LEN DINT The length specifies the number of array bits to shift.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The BSR instruction operates on contiguous memory. In some cases, the instruction
changes bits in other members of the tag. This happens if the length is too big and
the tag is a user-defined data type.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 393
Execution:

Condition Relay Ladder Action

prescan The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

The .POS value is cleared.

The rung-condition-out is set to false.

rung-condition-in is false The .EN bit is cleared.

The .DN bit is cleared.

The .ER bit is cleared.

The .POS value is cleared.

The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

394 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Condition Relay Ladder Action

postscan The rung-condition-out is set to false.

rung-condition-in is true

examine .EN bit .EN bit = 1

.EN bit = 0

end

.DN bit is set

shift array left one position left

.EN bit is set

rung-condition-out is set to
true

.DN bit is set

.LEN = 0 yes

no

.LEN < 0 yes

no

source
bit .UL bitarray

examine source bit .source bit = 1

.source bit = 0

.UL bit remains set

.UL bit is set

.ER bit is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 395
Example 1: When enabled, the BSR instruction starts at bit 9 in array_dint[0]. The
instruction unloads array_dint[0].0 into the .UL bit, shifts the
remaining bits right, and loads input_1 into array_dint[0].9. The
values in the remaining bits (10-31) are invalid.

Example 2: When enabled, the BSR instruction starts at bit 25 in array_dint[1].
The instruction unloads array_dint[0].0 into the .UL bit, shifts the
remaining bits right, and loads input_1 into array_dint[1].25. The
values in the remaining bits (31-26 in dint_array[1]) are invalid. Note
how array_dint[1].0 shifts across words into array_dint[0].31.

9 8 7 6 5 4 3 2 1 0

array_dint[0]
before shift

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

9 8 7 6 5 4 3 2 1 0

array_dint[0]
after shift

1 0 0 1 1 1 1 0 0 0

these bits shift right
0

.UL bit
1

input_1

31 0

array_dint[0] 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

31 0

array_dint[1] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

these bits shift right 0

.UL bit

these bits shift right1

input_1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

396 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
FIFO Load (FFL) The FFL instruction copies the Source value to the FIFO.

Operands:

Relay Ladder

If you use a user-defined structure as the data type for the Source or
FIFO operand, use the same structure for both operands.

Operand Type Format Description

Source SINT

INT

DINT

REAL

string

structure

immediate

tag

data to be stored in the FIFO

The Source converts to the data type of the array tag. A smaller integer
converts to a larger integer by sign-extension.

FIFO SINT

INT

DINT

REAL

string

structure

array tag FIFO to modify

specify the first element of the FIFO

do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation

typically use the same CONTROL as the
associated FFU

Length DINT immediate maximum number of elements the FIFO can
hold at one time

Position DINT immediate next location in the FIFO where the
instruction loads data

initial value is typically 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 397
CONTROL Structure

Description: Use the FFL instruction with the FFU instruction to store and retrieve
data in a first-in/first-out order. When used in pairs, the FFL and FFU
instructions establish an asynchronous shift register.

Typically, the Source and the FIFO are the same data type.

When enabled, the FFL instruction loads the Source value into the
position in the FIFO identified by the .POS value. The instruction
loads one value each time the instruction is enabled, until the FIFO
is full.

Arithmetic Status Flags: not affected

Fault Conditions:

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the FFL instruction is enabled.

.DN BOOL The done bit is set to indicate that the FIFO is full (.POS = .LEN). The .DN bit inhibits loading
the FIFO until .POS < .LEN.

.EM BOOL The empty bit indicates that the FIFO is empty. If .LEN ≤ 0 or .POS < 0, both the .EM bit and
.DN bit are set.

.LEN DINT The length specifies the maximum number of elements the FIFO can hold at one time.

.POS DINT The position identifies the location in the FIFO where the instruction will load the next value.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The FFL instruction operates on contiguous memory. In some cases, the instruction
loads data past the array into other members of the tag. This happens if the length is
too big and the tag is a user-defined data type.

A Major Fault Will Occur If Fault Type Fault Code

(starting element + .POS) > FIFO array size 4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

398 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Execution:

Condition Relay Ladder Action

prescan

end

.EN bit is set to prevent a
false load when scan begins

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 399
Condition Relay Ladder Action

rung-condition-in is false

end

.EN bit is cleared

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

400 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

rung-condition-in is true

end

rung-condition-out is set to
true

examine .EN bit
.EN = 0

.EN = 1

.EN bit is set .LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is set.EM bit is cleared

.DN is cleared

.POS ≥ .LEN
yes

no

.DN bit is set

.POS or
.LEN > size of

array

yes

no

major fault

.POS > .LEN
yes

no

.POS = .POS - 1

FIFO[.POS - 1] = source

.LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is cleared

.POS = 0
yes

no

.EM bit is set

.POS ≥ .LEN
yes

no

.DN bit is set

.EM bit is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 401
Example: When enabled, the FFL instruction loads value_1 into the next
position in the FIFO, which is array_dint[5] in this example.

before FIFO load after FIFO load

array_dint[0] 00000 00000

11111 11111

22222 22222

33333 control_1.pos = 5 33333

44444 value_1 = 55555 44444

array_dint[5] 00000 55555

00000 00000 control_1.pos = 6

00000 00000

00000 00000

00000 00000
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

402 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
FIFO Unload (FFU) The FFU instruction unloads the value from position 0 (first position)
of the FIFO and stores that value in the Destination. The remaining
data in the FIFO shifts down one position.

Operands:

Relay Ladder

If you use a user-defined structure as the data type for the FIFO or
Destination operand, use the same structure for both operands.

Operand Type Format Description

FIFO SINT

INT

DINT

REAL

string

structure

array tag FIFO to modify

specify the first element of the FIFO

do not use CONTROL.POS in the subscript

Destination SINT

INT

DINT

REAL

string

structure

 tag value that exits the FIFO

The Destination value converts to the data type of the Destination tag. A
smaller integer converts to a larger integer by sign-extension.

Control CONTROL tag control structure for the operation

typically use the same CONTROL as the
associated FFL

Length DINT immediate maximum number of elements the FIFO can
hold at one time

Position DINT immediate next location in the FIFO where the
instruction unloads data

initial value is typically 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 403
CONTROL Structure

Description: Use the FFU instruction with the FFL instruction to store and retrieve
data in a first-in/first-out order.

When enabled, the FFU instruction unloads data from the first element
of the FIFO and places that value in the Destination. The instruction
unloads one value each time the instruction is enabled, until the FIFO
is empty. If the FIFO is empty, the FFU returns 0 to the Destination.

Arithmetic Status Flags: not affected

Fault Conditions:

Mnemonic Data Type Description

.EU BOOL The enable unload bit indicates that the FFU instruction is enabled. The .EU bit is set to
preset a false unload when the program scan begins.

.DN BOOL The done bit is set to indicate that the FIFO is full (.POS = .LEN).

.EM BOOL The empty bit indicates that the FIFO is empty. If .LEN ≤ 0 or .POS < 0, the .EM bit and .DN
bits are set.

.LEN DINT The length specifies the maximum number of elements in the FIFO.

.POS DINT The position identifies the end of the data that has been loaded into the FIFO.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The FFU instruction operates on contiguous memory. In some cases, the instruction
unloads data from other members of the tag. This happens if the length is too big
and the tag is a user-defined data type.

A Major Fault Will Occur If Fault Type Fault Code

Length > FIFO array size 4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

404 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Execution:

Condition Relay Ladder Action

prescan

end

.EU bit is set to prevent a false
unload when scan begins

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 405
Condition Relay Ladder Action

rung-condition-in is false

end

.EU bit is cleared

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

406 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

rung-condition-in is true

end

examine .EU bit
.EU = 0

.EU = 1

.EU bit is set .LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is set.EM bit is cleared

.LEN > size of
array

yes

no

major fault

.POS ≤ 1
yes

no

.EM bit is set

.LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is cleared

.POS = 0
yes

no

.EM bit is set

.POS ≥ .LEN
yes

no

.DN bit is set

.EM bit is set

.POS < 1
yes

no

Destination = 0

.POS = .POS -1

Destination = FIFO[0]

FIFO[i - 1] = FIFO[i]

i < .LEN
yes

no
rung-condition-out is set to
true
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 407
Example: When enabled, the FFU instruction unloads array_dint[0] into value_2
and shifts the remaining elements in array_dint.

before FIFO unload after FIFO unload

array_dint[0] 00000 11111

11111 22222

22222 33333

33333 44444

44444 55555

array_dint[5] 55555 00000 control_1.pos = 5

00000 control_1.pos = 6 00000 value_2 = 00000

00000 00000

00000 00000

00000 00000
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

408 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
LIFO Load (LFL) The LFL instruction copies the Source value to the LIFO.

Operands:

Relay Ladder

If you use a user-defined structure as the data type for the Source or
LIFO operand, use the same structure for both operands.

Operand Type Format Description

Source SINT

INT

DINT

REAL

string

structure

immediate

tag

data to be stored in the LIFO

The Source converts to the data type of the array tag. A smaller integer
converts to a larger integer by sign-extension.

LIFO SINT

INT

DINT

REAL

string

structure

array tag LIFO to modify

specify the first element of the LIFO

do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation

typically use the same CONTROL as the
associated LFU

Length DINT immediate maximum number of elements the LIFO can
hold at one time

Position DINT immediate next location in the LIFO where the
instruction loads data

initial value is typically 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 409
CONTROL Structure

Description: Use the LFL instruction with the LFU instruction to store and retrieve
data in a last-in/first-out order. When used in pairs, the LFL and LFU
instructions establish an asynchronous shift register.

Typically, the Source and the LIFO are the same data type.

When enabled, the LFL instruction loads the Source value into the
position in the LIFO identified by the .POS value. The instruction
loads one value each time the instruction is enabled, until the LIFO
is full.

Arithmetic Status Flags: not affected

Fault Conditions:

Mnemonic Data Type Description:

.EN BOOL The enable bit indicates that the LFL instruction is enabled.

.DN BOOL The done bit is set to indicate that the LIFO is full (.POS = .LEN). The .DN bit inhibits loading
the LIFO until .POS < .LEN.

.EM BOOL The empty bit indicates that the LIFO is empty. If .LEN ≤ 0 or .POS < 0, both the .EM bit and
.DN bit are set.

.LEN DINT The length specifies the maximum number of elements the LIFO can hold at one time.

.POS DINT The position identifies the location in the LIFO where the instruction will load the next value.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The LFL instruction operates on contiguous memory. In some cases, the instruction
loads data past the array into other members of the tag. This happens if the length is
too big and the tag is a user-defined data type.

A Major Fault Will Occur If Fault Type Fault Code

(starting element + .POS) > LIFO array size 4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

410 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Execution:

Condition: Relay Ladder Action

prescan

end

.EN bit is set to prevent a
false load when scan begins

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 411
Condition: Relay Ladder Action

rung-condition-in is false

end

.EN bit is cleared

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

412 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
postscan The rung-condition-out is set to false.

Condition: Relay Ladder Action

rung-condition-in is true

end

rung-condition-out is set to
true

examine .EN bit
.EN = 0

.EN = 1

.EN bit is set .LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is set.EM bit is cleared

.DN is cleared

.POS ≥ .LEN
yes

no

.DN bit is set

.POS or
.LEN > size of

array

yes

no

major fault

.POS > .LEN
yes

no

.POS = .POS - 1

LIFO[.POS - 1] = source

.LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is cleared

.POS = 0
yes

no

.EM bit is set

.POS ≥ .LEN
yes

no

.DN bit is set

.EM bit is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 413
Example: When enabled, the LFL instruction loads value_1 into the next
position in the LIFO, which is array_dint[5] in this example.

before LIFO load after LIFO load

array_dint[0] 00000 00000

11111 11111

22222 22222

33333 control_1.pos = 5 33333

44444 value_1 = 55555 44444

array_dint[5] 00000 55555

00000 00000 control_1.pos = 6

00000 00000

00000 00000

00000 00000
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

414 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
LIFO Unload (LFU) The LFU instruction unloads the value at .POS of the LIFO and stores
0 in that location.

Operands:

Relay Ladder

If you use a user-defined structure as the data type for the LIFO or
Destination operand, use the same structure for both operands.

Operand Type Format Description

LIFO SINT

INT

DINT

REAL

string

structure

array tag LIFO to modify

specify the first element of the LIFO

do not use CONTROL.POS in the subscript

Destination SINT

INT

DINT

REAL

string

structure

 tag value that exits the LIFO

The Destination value converts to the data type of the Destination tag. A
smaller integer converts to a larger integer by sign-extension.

Control CONTROL tag control structure for the operation

typically use the same CONTROL as the
associated LFL

Length DINT immediate maximum number of elements the LIFO can
hold at one time

Position DINT immediate next location in the LIFO where the
instruction unloads data

initial value is typically 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 415
CONTROL Structure

Description: Use the LFU instruction with the LFL instruction to store and retrieve
data in a last-in/first-out order.

When enabled, the LFU instruction unloads the value at .POS of the
LIFO and places that value in the Destination. The instruction unloads
one value and replaces it with 0 each time the instruction is enabled,
until the LIFO is empty. If the LIFO is empty, the LFU returns 0 to the
Destination.

Arithmetic Status Flags: not affected

Fault Conditions:

Mnemonic Data Type: Description

.EU BOOL The enable unload bit indicates that the LFU instruction is enabled. The .EU bit is set to
preset a false unload when the program scan begins.

.DN BOOL The done bit is set to indicate that the LIFO is full (.POS = .LEN).

.EM BOOL The empty bit indicates that the LIFO is empty. If .LEN ≤ 0 or .POS < 0, both the .EM bit and
.DN bit are set.

.LEN DINT The length specifies the maximum number of elements the LIFO can hold at one time.

.POS DINT The position identifies the end of the data that has been loaded into the LIFO.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The LFU instruction operates on contiguous memory. In some cases, the instruction
unloads data from other members of the tag. This happens if the length is too big
and the tag is a user-defined data type.

A Major Fault Will Occur If Fault Type Fault Code

Length > LIFO array size 4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

416 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Execution:

Condition Relay Ladder Action:

prescan

end

.EU bit is set to prevent a false
unload when scan begins

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 417
Condition Relay Ladder Action:

rung-condition-in is false

end

.EU bit is cleared

rung-condition-out is set to
false

.LEN < 0 yes

no

.POS < 0 yes

.EM is cleared

no

.POS = 0 yes

no

.EM is set

.POS ≥ .LEN yes

no

.DN is set

.EM is set
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

418 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action:

rung-condition-in is true

end

rung-condition-out is set to
true

examine .EU bit
.EU = 0

.EU = 1

.EU bit is set .LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is set.EM bit is cleared

.LEN > size of
array

yes

no

major fault

.POS ≤ 1
yes

no

.EM bit is set

.LEN < 0
yes

no

.POS < 0
yes

no

.EM bit is cleared

.POS = 0
yes

no

.EM bit is set

.POS ≥ .LEN
yes

no

.DN bit is set

.EM bit is set

.POS < 1
yes

no

.POS > .LEN
yes

no

.POS = .LEN

Destination = 0

Destination = LIFO[control.POS]

.POS = .POS -1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU) 419
Example: When enabled, the LFU instruction unloads array_dint[5] into
value_2.

before LIFO unload after LIFO unload

array_dint[0] 00000 00000

11111 11111

22222 22222

33333 33333

44444 44444

array_dint[5] 55555 00000 control_1.pos = 5

00000 control_1.pos = 6 00000 value_2 = 55555

00000 00000

00000 00000

00000 00000
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

420 Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 11

Sequencer Instructions
(SQI, SQO, SQL)

Introduction No action taken.Sequencer instructions monitor consistent and
repeatable operations.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

If You Want To Use This Instruction Available In These Languages See Page

Detect when a step is complete. SQI relay ladder 422

Set output conditions for the next step. SQO relay ladder 426

Load reference conditions into
sequencer arrays

SQL relay ladder 430
421 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

422 Sequencer Instructions (SQI, SQO, SQL)
Sequencer Input (SQI) The SQI instruction detects when a step is complete in a sequence
pair of SQO/SQI instructions.

Operands:

Relay Ladder

CONTROL Structure

Operand Type Format Description

Array DINT array tag sequencer array

specify the first element of the sequencer
array

do not use CONTROL.POS in the subscript

Mask SINT

INT

DINT

tag

immediate

which bits to block or pass

A SINT or INT tag converts to a DINT value by sign-extension.

Source SINT

INT

DINT

tag input data for the sequencer array

A SINT or INT tag converts to a DINT value by sign-extension.

Control CONTROL tag control structure for the operation

typically use the same CONTROL as the SQO
and SQL instructions

Length DINT immediate number of elements in the Array (sequencer
table) to compare

Position DINT immediate current position in the array

initial value is typically 0

Mnemonic Data Type Description

.ER BOOL The error bit is set when .LEN ≤ 0, .POS < 0, or .POS > .LEN.

.LEN DINT The length specifies the number of steps in the sequencer array.

.POS DINT The position identifies the element that the instruction is currently comparing.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequencer Instructions (SQI, SQO, SQL) 423
Description: When enabled, the SQI instruction compares a Source element
through a Mask to an Array element for equality.

Typically use the same CONTROL structure as the SQO and
SQL instructions.

The SQI instruction operates on contiguous memory.

Enter an Immediate Mask Value

When you enter a mask, the programming software defaults to
decimal values. If you want to enter a mask using another format,
precede the value with the correct prefix.

Arithmetic Status Flags: not affected

Fault Conditions: none

Prefix: Description

16# hexadecimal

for example; 16#0F0F

8# octal

for example; 8#16

2# binary

for example; 2#00110011
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

424 Sequencer Instructions (SQI, SQO, SQL)
Execution:

Condition: Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

.LEN ≤ 0

.POS < 0
or

.POS > .LEN

no

yes

end

.ER bit is set

rung-condition-out is set to
false

masked Source =
masked Array[.POS]

yes

.ER bit is cleared

no

rung-condition-out is set to
true
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequencer Instructions (SQI, SQO, SQL) 425
Example: When enabled, the SQI instruction passes value_2 through the mask
to determine whether the result is equal to the current element in
array_dint. The masked comparison is true, so the rung-condition-out
goes true.

A 0 in the mask means the bit is not compared (designated by xxxx in
this example).

Use SQI without SQO

If you use the SQI instruction without a paired SQO instruction, you
have to externally increment the sequencer array.

The SQI instruction compares the source value. The ADD instruction
increments the sequencer array. The GRT determined whether
another value is available to check in the sequencer array. The MOV
instruction resets the position value after completely stepping through
the sequencer array one time.

SQI Operand Example Values (DINTs Displayed In Binary)

Source xxxxxxxx xxxxxxxx xxxx0101 xxxx1010

Mask 00000000 00000000 00001111 00001111

Array xxxxxxxx xxxxxxxx xxxx0101 xxxx1010
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

426 Sequencer Instructions (SQI, SQO, SQL)
Sequencer Output (SQO) The SQO instruction sets output conditions for the next step of a
sequence pair of SQO/SQI instructions.

Operands:

Relay Ladder

CONTROL Structure

Operand Type Format Description

Array DINT array tag sequencer array

specify the first element of the sequencer
array

do not use CONTROL.POS in the subscript

Mask SINT

INT

DINT

tag

immediate

which bits to block or pass

A SINT or INT tag converts to a DINT value by sign-extension.

Destination DINT tag output data from the sequencer array

Control CONTROL tag control structure for the operation

typically use the same CONTROL as the SQI
and SQL instructions

Length DINT immediate number of elements in the Array (sequencer
table) to output

Position DINT immediate current position in the array

initial value is typically 0

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the SQO instruction is enabled.

.DN BOOL The done bit is set when all the specified elements have been moved to the Destination.

.ER BOOL The error bit is set when .LEN ≤ 0, .POS < 0, or .POS > .LEN.

.LEN DINT The length specifies the number of steps in the sequencer array.

.POS DINT The position identifies the element that the controller is currently manipulating.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequencer Instructions (SQI, SQO, SQL) 427
Description: When enabled, the SQO instruction increments the position, moves
the data at the position through the Mask, and stores the result in the
Destination. If .POS > .LEN, the instruction wraps around to the
beginning of the sequencer array and continues with .POS = 1.

Typically, use the same CONTROL structure as the SQI and
SQL instructions.

The SQO instruction operates on contiguous memory.

Enter an Immediate Mask Value

When you enter a mask, the programming software defaults to
decimal values. If you want to enter a mask using another format,
precede the value with the correct prefix.

Arithmetic Status Flags not affected

Fault Conditions: none

Execution:

Prefix Description

16# hexadecimal

for example; 16#0F0F

8# octal

for example; 8#16

2# binary

for example; 2#00110011

Condition Relay Ladder Action

prescan The .EN bit is set to prevent a false load when the program scan begins.

The rung-condition-out is set to false.

rung-condition-in is false The .EN bit is cleared.

The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

428 Sequencer Instructions (SQI, SQO, SQL)
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

rung-condition-in is true

.LEN ≤ 0 or
.POS < 0

no

yes

.DN bit is set

.POS = .LEN
no

yes

examine .EN bit
.EN = 0

.EN = 1

.EN bit is set

.ER bit is cleared

.POS ≥ .LEN
yes

no

.POS = .POS + 1

.POS value
rolls over

yes

no

.ER bit is set

end

rung-condition-out is set to
true

.DN bit is set.POS = .LEN
yes

no

Destination = (Destination AND (NOT(Mask)))
OR (Array[control.POS] AND Mask)

.POS > .LEN
no

yes

.POS = 1

goto
error

error
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequencer Instructions (SQI, SQO, SQL) 429
Example: When enabled, the SQO instruction increments the position, passes
the data at that position in array_dint through the mask, and stores
the result in value_1.

A 0 in the mask means the bit is not compared (designated by xxxx in
this example).

Using SQI with SQO
If you pair an SQI instruction with an SQO instruction, make sure that
both instructions use the same Control, Length, and Position values,.

Resetting the position of SQO
Each time the controller goes from Program to Run mode, the SQO
instruction clears (initializes) the .POS value. To reset .POS to the
initialization value (.POS = 0), use a RES instruction to clear the
position value. This example uses the status of the first-scan bit to
clear the .POS value.

SQO Operand Example Values (Using INTS Displayed In Binary)

Array xxxxxxxx xxxxxxxx xxxx0101 xxxx1010

Mask 00000000 00000000 00001111 00001111

Destination xxxxxxxx xxxxxxxx xxxx0101 xxxx1010
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

430 Sequencer Instructions (SQI, SQO, SQL)
Sequencer Load (SQL) The SQL instruction loads reference conditions into a sequencer array.

Operands:

Relay Ladder

CONTROL Structure

Operand Type Format Description

Array DINT array tag sequencer array

specify the first element of the sequencer
array

do not use CONTROL.POS in the subscript

Source SINT

INT

DINT

tag

immediate

input data to load into the sequencer array

A SINT or INT tag converts to a DINT value by sign-extension.

Control CONTROL tag control structure for the operation

typically use the same CONTROL as the SQI
and SQO instructions

Length DINT immediate number of elements in the Array (sequencer
table) to load

Position DINT immediate current position in the array

initial value is typically 0

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the SQL instruction is enabled.

.DN BOOL The done bit is set when all the specified elements have been loaded into Array.

.ER BOOL The error bit is set when .LEN ≤ 0, .POS < 0, or .POS > .LEN.

.LEN DINT The length specifies the number of steps in the sequencer array.

.POS DINT The position identifies the element that the controller is currently manipulating.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequencer Instructions (SQI, SQO, SQL) 431
Description: When enabled, the SQL instruction increments to the next position in
the sequencer array and loads the Source value into that position. If
the .DN bit is set or if .POS ≥ .LEN, the instruction sets .POS=1.

Typically use the same CONTROL structure as the SQI and
SQO instructions.

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The SQL instruction operates on contiguous memory. In some cases, the instruction
loads data past the array into other members of the tag. This happens if the length is
too big and the tag is a user-defined data type.

A Major Fault Will Occur If Fault Type Fault Code

Length > size of Array 4 20

Condition Relay Ladder Action

prescan The .EN bit is set to prevent a false load when the program scan begins.

The rung-condition-out is set to false.

rung-condition-in is false The .EN bit is cleared.

The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

432 Sequencer Instructions (SQI, SQO, SQL)
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

rung-condition-in is true

.LEN ≤ 0 or
.POS < 0

no

yes

.DN bit is set

.POS = .LEN
no

yes

examine .EN bit
.EN = 0

.EN = 1

.EN bit is set

.ER bit is cleared

.POS ≥ .LEN
yes

no

.POS = .POS + 1

.POS value
rolls over

yes

no

.ER bit is set

end

rung-condition-out is set to
true

.DN bit is set.POS = .LEN
yes

no

.POS > .LEN
no

yes

.POS = 1

goto
error

error

.LEN > size of
array

yes

no

Array[control.POS] = Source

major fault
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequencer Instructions (SQI, SQO, SQL) 433
Example: When enabled, the SQL instruction loads value_3 into the next
position in the sequencer array, which is array_dint[5] in this
example.

before load after load

array_dint[0] 00000 00000

11111 11111

22222 22222

33333 control_1.pos = 5 33333

44444 value_3 = 55555 44444

array_dint[5] 00000 55555

00000 00000 control_1.pos = 6

00000 00000

00000 00000

00000 00000
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

434 Sequencer Instructions (SQI, SQO, SQL)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 12

Program Control Instructions
(JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI,
NOP, EOT, SFP, SFR, EVENT)

Introduction Use the program control instructions to change the flow of logic.

If You Want To Use This Instruction Available In These Languages See Page

Jump over a section of logic that does not
always need to be executed.

JMP
LBL

relay ladder 436

Jump to a separate routine, pass data to the
routine, execute the routine, and return results.

JSR
SBR
RET

relay ladder 438

function block

structured text

Jump to an external routine (SoftLogix5800
controller only)

JXR relay ladder 449

Mark a temporary end that halts
routine execution.

TND relay ladder 452

structured text

Disable all the rungs in a section of logic. MCR relay ladder 454

Disable user tasks. UID relay ladder 456

structured text

Enable user tasks. UIE relay ladder 456

structured text

Disable a rung. AFI relay ladder 458

Insert a placeholder in the logic. NOP relay ladder 459

End a transition for a sequential function chart. EOT relay ladder 460

structured text

Pause a sequential function chart. SFP relay ladder 462

structured text

Reset a sequential function chart. SFR relay ladder 464

structured text

Trigger the execution of an event task EVENT relay ladder 466

structured text
435 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

436 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Jump to Label (JMP)
Label (LBL)

The JMP and LBL instructions skip portions of ladder logic.

Operands:

Relay Ladder

Description: When enabled, the JMP instruction skips to the referenced LBL
instruction and the controller continues executing from there. When
disabled, the JMP instruction does not affect ladder execution.

The JMP instruction can move ladder execution forward or backward.
Jumping forward to a label saves program scan time by omitting a
logic segment until it’s needed. Jumping backward lets the controller
repeat iterations of logic.

Be careful not to jump backward an excessive number of times. The
watchdog timer could time out because the controller never reaches
the end of the logic, which in turn faults the controller.

The LBL instruction is the target of the JMP instruction that has the
same label name. Make sure the LBL instruction is the first
instruction on its rung.

A label name must be unique within a routine. The name can:

• have as many as 40 characters

• contain letters, numbers, and underscores (_)

Operand Type Format Description

JMP instruction

Label name label name enter name for associated LBL instruction

LBL instruction

Label name label name execution jumps to LBL instruction with
referenced label name

ATTENTION Jumped logic is not scanned. Place critical logic outside the
jumped zone.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 437
Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

Example: When the JMP instruction is enabled, execution jumps over successive
rungs of logic until it reaches the rung that contains the LBL
instruction with label_20.

A Major Fault Will Occur If Fault Type Fault Code

label does not exist 4 42

Condition: Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The rung-condition-out is set to true.

Execution jumps to the rung that contains the LBL instruction with the referenced
label name.

postscan The rung-condition-out is set to false.

[other rungs of code]
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

438 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Jump to Subroutine (JSR)
Subroutine (SBR) Return
(RET)

The JSR instruction jumps execution to a different routine. The SBR
and RET instructions are optional instructions that exchange data with
the JSR instruction.

JSR Operands:

Relay Ladder

Operand Type Format Description

Routine
name

ROUTINE name routine to execute (that is, subroutine)

Input
parameter

BOOL

SINT

INT

DINT

REAL

structure

immediate

tag

array tag

data from this routine that you want to copy
to a tag in the subroutine

• Input parameters are optional.

• Enter multiple input parameters, if
needed.

Return
parameter

BOOL

SINT

INT

DINT

REAL

structure

tag

array tag

tag in this routine to which you want to copy
a result of the subroutine

• Return parameters are optional.

• Enter multiple return parameters, if
needed.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 439
Structured Text

(JSR operands continued on next page)

JSR Operands (continued)

Function Block

The operands are the same as those for the relay ladder
JSR instruction.

Operand Type Format Description

Routine
name

ROUTINE name routine to execute (that is, subroutine)

Input count SINT

INT

DINT

REAL

immediate number of input parameters

Input
parameter

BOOL

SINT

INT

DINT

REAL

structure

immediate

tag

array tag

data from this routine that you want to copy
to a tag in the subroutine

• Input parameters are optional.

• Enter multiple input parameters, if
needed.

Return
parameter

BOOL

SINT

INT

DINT

REAL

structure

tag

array tag

tag in this routine to which you want to copy
a result of the subroutine

• Return parameters are optional.

• Enter multiple return parameters, if
needed.

JSR(RoutineName,InputCount,
InputPar,ReturnPar);

Input Parameters Return Parameters

g g
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

440 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
SBR Operands: The SBR instruction must be the first instruction in a relay ladder or
structured text routine.

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
SBR instruction.

Function Block

The operands are the same as those for the relay ladder
SBR instruction.

ATTENTION For each parameter in a SBR or RET instruction, use the same
data type (including any array dimensions) as the corresponding
parameter in the JSR instruction. Using different data types
may produce unexpected results.

Operand Type Format Description

Input
parameter

BOOL

SINT

INT

DINT

REAL

structure

tag

array tag

tag in this routine into which you want to
copy the corresponding input parameter from
the JSR instruction

SBR(InputPar);

Parameters

g

Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 441
RET Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
RET instruction.

Function Block

The operands are the same as those for the relay ladder
RET instruction.

Description: The JSR instruction initiates the execution of the specified routine,
which is referred to as a subroutine:

• The subroutine executes one time.

• After the subroutine executes, logic execution returns to the
routine that contains the JSR instruction.

Operand Type Format Description

Return
parameter

BOOL

SINT

INT

DINT

REAL

structure

immediate

tag

array tag

data from this routine that you want to copy
to the corresponding return parameter in the
JSR instruction

RET(ReturnPar);

Parameters

g

Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

442 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
To program a jump to a subroutine, follow these guidelines:

The following diagram illustrates how the instructions operate.

IMPORTANT Do not use a JSR instruction to call (execute) the main routine.

• You can put a JSR instruction in the main routine
or any other routine.

• If you use a JSR instruction to call the main
routine and then put a RET instruction in the
main routine, a major fault occurs (type 4,
code 31).

Calling Routine

JSR

SBR

RET

RET

JSR

1. If you want to copy data to a tag in
the subroutine, enter an input
parameter.

2. If you want to copy a result of the
subroutine to a tag in this routine,
enter a return parameter.

3. Enter as many input and return
parameters as you need.

SBR

1. If the JSR instruction has an input
parameter, enter an SBR instruction.

2. Place the SBR instruction as the first
instruction in the routine.

3. For each input parameter in the JSR
instruction, enter the tag into which

42974

Subroutine

RET

1. If the JSR instruction has a return parameter, enter an RET
instruction.

2. Place the RET instruction as the last instruction in the routine.

3. For each return parameter in the JSR instruction, enter a return
parameter to send to the JSR instruction.

4. In a ladder routine, place additional RET instructions to exit the
subroutine based on different input conditions, if required.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 443
There are no restrictions, other than controller memory, on the
number of nested routines you can have or the number of parameters
you pass or return.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Execution:

Relay Ladder and Structured Text

main routine

level 1 level 3level 2

JSRJSR

JSR

SBRSBRSBR

RETRETRET

action_1

action_2 action_3

A Major Fault Will Occur If Fault Type Fault Code

JSR instruction has fewer input parameters than SBR instruction 4 31

JSR instruction jumps to a fault routine 4 or user-supplied 0 or user-supplied

RET instruction has fewer return parameters than JSR instruction 4 31

main routine contains a RET instruction 4 31

Condition Relay Ladder Action Structured Text Action

prescan The controller executes all subroutines regardless of rung condition. To ensure that all rungs in the
subroutine are prescanned, the controller ignores RET instructions. (that is, RET instructions do not exit
the subroutine.)

• Release 6.x and earlier, input and return parameters are passed.

• Release 7.x and later, input and return parameters are not passed.

If recursive calls exist to the same subroutine, the subroutine is prescanned only the first time. If multiple
calls exist (non-recursive) to the same subroutine, the subroutine is prescanned each time.

The rung-condition-out is set to false (relay ladder only).

rung-condition-in is false to
the JSR instruction

The subroutine does not execute.

Outputs in the subroutine remain in their last state.

The rung-condition-out is set to false.

na
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

444 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution

postscan Same action as prescan described above. Same action as prescan described above.

Condition Relay Ladder Action Structured Text Action

input parameters
yes

no

JSR copies input parameters to
appropriate SBR tags

end

logic execution begins in routine
identified by JSR

end of subroutine
yes

no

rung-condition-out is set to false

return parameters
yes

no

RET copies return parameters to
appropriate JSR tags

rung-condition-out is set to true

RET instruction
yes

no
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 445
Function Block

Condition: Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

normal execution 1. If the routine contains an SBR instruction, the controller first executes the SBR instruction.

2. The controller latches all data values in IREFs.

3. The controller executes the other function blocks in the order that is determined by their wiring. This
includes other JSR instructions.

4. The controller writes outputs in OREFs.

5. If the routine contains an RET instruction, the controller executes the RET instruction last.

postscan The subroutine is called.

If the routine is an SFC routine, the routine in initialized the same as it is during prescan.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

446 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Example 1: The JSR instruction passes value_1 and value_2 to routine_1.

The SBR instruction receives value_1 and value_2 from the JSR
instruction and copies those values to value_a and value_b,
respectively. Logic execution continues in this routine.

The RET instruction sends float_a to the JSR instruction. The JSR
instruction receives float_a and copies the value to float_value_1.
Logic execution continues with the next instruction following the JSR
instruction.

Relay Ladder

Structured Text

Routine: Program

Main routine

Subroutine

[other rungs of code]

Routine Program

Main routine JSR(routine_1,2,value_1,value_2,float_value_1);

Subroutine SBR(value_a,value_b);

<statements>;

RET(float_a);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 447
Example 2:

Relay Ladder

MainRoutine

When abc is on, subroutine_1 executes, calculates the number of cookies, and places a value in cookies_1.

Adds the value in cookies_1 to cookies_2 and stores the result in total_cookies.

Subroutine_1

When def is on, the RET instruction returns value_1 to the JSR cookies_1 parameter and the rest of the subroutine is not scanned.

When def is off (previous rung) and ghi is on, the RET instruction returns value_2 to the JSR cookies_1 parameter and the rest of the subroutine
is not scanned.

When both def and ghi are off (previous rungs), the RET instruction returns value_3 to the JSR cookies_1 parameter.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

448 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Example 3:

Function Block

42973

42972

2. The ADD instructions add Input_A, Input_B, and Input_C and place the result in Sum_A_B_C.

JSR instruction in Routine_A

Function blocks of the Add_Three_Inputs routine

1. The values in
Add_Input_1,
Add_Input_2, and
Add_Input_3 are copied
to Input_A, Input_B, and
Input_C, respectively.

3. The value of Sum_A_B_C is
copied to Add_Three_Result.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 449
Jump to External Routine
(JXR)

The JXR instruction executes an external routine. This instruction is
only supported by the SoftLogix5800 controllers.

Operands:

Relay Ladder

.

Operand Type Format Description

External routine
name

ROUTINE name external routine to execute

External routine
control

EXT_ROUTINE_
CONTROL

tag control structure (see the next page)

Parameter BOOL

SINT

INT

DINT

REAL

structure

immediate

tag

array tag

data from this routine that you want to copy to a variable in the external routine

• Parameters are optional.

• Enter multiple parameters, if needed.

• You can have as many as 10 parameters.

Return
parameter

BOOL

SINT

INT

DINT

REAL

tag tag in this routine to which you want to copy a result of the external routine

• The return parameter is optional.

• You can have only one return parameter
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

450 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
EXT_ROUTINE_CONTROL Structure

Mnemonic Data Type Description Implementation

ErrorCode SINT If an error occurs, this value identifies the error.
Valid values are from 0-255.

There are no predefined error codes. The
developer of the external routine must
provide the error codes.

NumParams SINT This value indicates the number of parameters
associated with this instruction.

Display only - this information is derived from
the instruction entry.

ParameterDefs EXT_ROUTINE_
PARAMETERS[10]

This array contains definitions of the
parameters to pass to the external routine. The
instruction can pass as many as 10 parameters.

Display only - this information is derived from
the instruction entry.

ReturnParamDef EXT_ROUTIN_
PARAMETERS

This value contains definitions of the return
parameter from the external routine. There is
only one return parameter.

Display only - this information is derived from
the instruction entry.

EN BOOL When set, the enable bit indicates that the JXR
instruction is enabled.

The external routine sets this bit.

ReturnsValue BOOL If set, this bit indicates that a return parameter
was entered for the instruction. If cleared, this
bit indicates that no return parameter was
entered for the instruction.

Display only - this information is derived from
the instruction entry.

DN BOOL The done bit is set when the external routine
has executed once to completion.

The external routine sets this bit.

ER BOOL The error bit is set if an error occurs. The
instruction stops executing until the program
clears the error bit.

The external routine sets this bit.

FirstScan BOOL This bit identifies whether this is the first scan
after switching the controller to Run mode. Use
FirstScan to initialize the external routine, if
needed.

The controller sets this bit to reflect scan
status.

EnableOut BOOL Enable output. The external routine sets this bit.

EnableIn BOOL Enable input. The controller sets this bit to reflect
rung-condition-in. The instruction executes
regardless of rung condition. The developer of
the external routine should monitor this
status and act accordingly.

User1 BOOL These bits are available for the user. The
controller does not initialize these bits.

Either the external routine or the user
program can set these bits.

User0 BOOL

ScanType1 BOOL These bits identify the current scan type:

Bit Values: Scan Type:

00 Normal

01 Pre Scan

10 Post Scan (not applicable to relay
ladder programs)

The controller sets these bits to reflect scan
status.

ScanType0 BOOL
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 451
Description: Use the Jump to External Routine (JXR) instruction to call the external
routine from a ladder routine in your project. The JXR instruction
supports multiple parameters so you can pass values between the
ladder routine and the external routine.

The JXR instruction is similar to the Jump to Subroutine (JSR)
instruction. The JXR instruction initiates the execution of the specified
external routine:

• The external routine executes one time.

• After the external routine executes, logic execution returns to
the routine that contains the JXR instruction.

Arithmetic Status Flags: Arithmetic status flags are not affected.

Fault Conditions:

Execution: The JXR can be synchronous or asynchronous depending on the
implementation of the DLL. The code in the DLL also determines how
to respond to scan status, rung-condition-in status, and
rung-condition-out status.

For more information on using the JXR instruction and creating
external routines, see the SoftLogix5800 System User Manual,
publication 1789-UM002.

A Major Fault Will Occur If Fault Type Fault code:

•an exception occurs in the external routine DLL

•the DLL could not be loaded

•the entry point was not found in the DLL

4 88
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

452 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Temporary End (TND) The TND instruction acts as a boundary.

Operands:

Relay Ladder Operands

none

Structured Text

none

You must enter the parentheses () after the instruction mnemonic,
even though there are no operands.

Description: When enabled, the TND instruction lets the controller execute logic
only up to this instruction.

When enabled, the TND instruction acts as the end of the routine.
When the controller scans a TND instruction, the controller moves to
the end of the current routine. If the TND instruction is in a
subroutine, control returns to the calling routine. If the TND
instruction is in a main routine, control returns to the next program
within the current task.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

TND();

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The current routine terminates. The current routine terminates.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 453
Example: You can use the TND instruction when debugging or troubleshooting
to execute logic up to a certain point. Progressively move the TND
instruction through the logic as you debug each new section.

When the TND instruction is enabled, the controller stops scanning
the current routine.

Relay Ladder

Structured Text

TND();
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

454 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Master Control Reset (MCR) The MCR instruction, used in pairs, creates a program zone that can
disable all rungs within the MCR instructions.

Operands:

Relay Ladder

none

Description: When the MCR zone is enabled, the rungs in the MCR zone are
scanned for normal true or false conditions. When disabled, the
controller still scans rungs within an MCR zone, but scan time is
reduced because non-retentive outputs in the zone are disabled. The
rung-condition-in is false for all the instructions inside of the disabled
MCR zone.

When you program an MCR zone, note that:

• You must end the zone with an unconditional MCR instruction.

• You cannot nest one MCR zone within another.

• Do not jump into an MCR zone. If the zone is false, jumping into
the zone activates the zone from the point to which you jumped
to the end of the zone.

• If an MCR zone continues to the end of the routine, you do not
have to program an MCR instruction to end the zone.

The MCR instruction is not a substitute for a hard-wired master control
relay that provides emergency-stop capability. You should still install a
hard-wired master control relay to provide emergency I/O
power shutdown.

Arithmetic Status Flags: not affected

Fault Conditions: none

ATTENTION Do not overlap or nest MCR zones. Each MCR zone must be
separate and complete. If they overlap or nest, unpredictable
machine operation could occur with possible damage to
equipment or injury to personnel.

Place critical operations outside the MCR zone. If you start
instructions such as timers in a MCR zone, instruction execution
stops when the zone is disabled and the timer is cleared.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 455
Execution:

Example: When the first MCR instruction is enabled (input_1, input_2, and
input_3 are set), the controller executes the rungs in the MCR zone
(between the two MCR instructions) and sets or clears outputs,
depending on input conditions.

When the first MCR instruction is disabled (input_1, input_2, and
input_3 are not all set), the controller executes the rungs in the MCR
zone (between the two MCR instructions) and the rung-condition-in
goes false for all the rungs in the MCR zone, regardless of input
conditions.

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

The instructions in the zone are scanned, but the rung-condition-in is false and
non-retentive outputs in the zone are disabled.

rung-condition-in is true The rung-condition-out is set to true.

The instructions in the zone are scanned normally.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

456 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
User Interrupt Disable (UID)
User Interrupt Enable (UIE)

The UID instruction and the UIE instruction work together to prevent
a small number of critical rungs from being interrupted by other tasks.

Operands:

Relay Ladder

none

Structured Text

none

You must enter the parentheses () after the instruction mnemonic,
even though there are no operands.

Description: When the rung-condition-in is true, the:

• UID instruction prevents higher-priority tasks from interrupting
the current task but does not disable execution of a fault routine
or the Controller Fault Handler.

• UIE instruction enables other tasks to interrupt the current task.

To prevent a series of rungs from being interrupted:

1. Limit the number of rungs that you do not want interrupted to as
few as possible. Disabling interrupts for a prolonged period of
time can produce communication loss.

2. Above the first rung that you do not want interrupted, enter a
rung and a UID instruction.

3. After the last rung in the series that you do not want interrupted,
enter a rung and a UIE instruction.

4. If required, you can nest pairs of UID/UIE instructions.

Arithmetic Status Flags: not affected

Fault Conditions: none

UID();

UIE();
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 457
Execution:

Example: When an error occurs (error_bit is on), the FSC instruction checks the
error code against a list of critical errors. If the FSC instruction finds
that the error is critical (error_check.FD is on), an alarm is
annunciated. The UID and UIE instructions prevent any other tasks
from interrupting the error checking and alarming.

Relay Ladder

Structured Text

UID();

<statements>

UIE();

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The UID instruction prevents interruption by higher-priority tasks.

The UIE instruction enables interruption by higher-priority tasks.

postscan The rung-condition-out is set to false. No action taken.

UID

error_bit

EN
DN
ER

File Search/Compare
Control error_check
Length 10
Position 8
Mode ALL
Expression error_code=error_list[error_check.POS]

FSC

error_check.FD

alarm

UIE
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

458 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Always False Instruction
(AFI)

The AFI instruction sets its rung-condition-out to false.

Operands:

Relay Ladder

none

Description: The AFI instruction sets its rung-condition-out to false.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Example: Use the AFI instruction to temporarily disable a rung while you are
debugging a program.

When enabled, the AFI disables all the instructions on this rung.

Condition Relay Ladder Action:

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 459
No Operation (NOP) The NOP instruction functions as a placeholder

Operands:

Relay Ladder

none

Description: You can place the NOP instruction anywhere on a rung. When
enabled the NOP instruction performs no operation. When disabled,
the NOP instruction performs no operation.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Example This instruction is useful for locating unconditional branches when
you place the NOP instruction on the branch.

The NOP instruction bypasses the XIC instruction to enable
the output.

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

460 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
End of Transition (EOT) The EOT instruction returns a boolean state to an SFC transition.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
EOT instruction.

Description: Because the EOT instruction returns a boolean state, multiple SFC
routines can share the same routine that contains the EOT instruction.
If the calling routine is not a transition, the EOT instruction acts as a
TND instruction (see page 452).

The Logix implementation of the EOT instruction differs from that in a
PLC-5 controller. In a PLC-5 controller, the EOT instruction has no
parameters. Instead, the PLC-5 EOT instruction returns rung condition
as its state. In a Logix controller, the return parameter returns the
transition state since rung condition is not available in all Logix
programming languages.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

data bit BOOL tag state of the transition
(0=executing, 1=completed)

EOT(data_bit);

Condition Relay Ladder Action: Structured Text Action:

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction returns the data bit value to the calling routine.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 461
Example: When both limit_switch1 and interlock_1 are set, set state. After
timer_1 completes, EOT returns the value of state to the calling
routine.

Relay Ladder

Structured Text

state := limit_switch1 AND interlock_1;

IF timer_1.DN THEN

EOT(state);

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

462 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
SFC Pause (SFP) The SFP instruction pauses an SFC routine.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
SFP instruction.

Description: The SFP instruction lets you pause an executing SFC routine. If an SFC
routine is in the paused state, use the SFP instruction again to change
the state and resume execution of the routine.

Also, use the SFP instruction to resume SFC execution after using an
SFR instruction (see page 17-464) to reset an SFC routine.

Arithmetic Status Flags: not affected

Fault Conditions:

Operand Type: Format: Description:

SFCRoutine
Name

ROUTINE name SFC routine to pause

TargetState DINT immediate

tag

select one:

executing (or enter 0)

paused (or enter 1)

SFP(SFCRoutineName,
TargetState);

A Major Fault Will Occur If: Fault Type Fault Code

the routine type is not an SFC routine 4 85
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 463
Execution:

Example: If sfc_en_p is set, pause the SFC routine named normal. Restart the
SFC when sfc_en_e is set.

Relay Ladder

Structured Text

Pause the SFC routine: IF (sfp_en_p) THEN

SFP(normal,paused);

sfp_en_p := 0;

END_IF;

Condition: Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction pauses or resumes execution of the specified SFC routine.

postscan The rung-condition-out is set to false. No action taken.

Pause the SFC routine.

Resume executing the SFC routine.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

464 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Resume executing the SFC routine: IF (sfp_en_e) THEN

SFP(normal,executing);

sfp_en_e := 0;

END_IF;

SFC Reset (SFR) The SFR instruction resets the execution of a SFC routine at a
specified step.

Operands:

Relay Ladder Operands

Structured Text

The operands are the same as those for the relay ladder
SFR instruction.

Description: When the SFR instruction is enabled:

• In the specified SFC routine, all stored actions stop executing
(reset).

• The SFC begins executing at the specified step.

If the target step is 0, the chart will be reset to its initial step

The Logix implementation of the SFR instruction differs from that in a
PLC-5 controller. In the PLC-5 controller, the SFR executed when the
rung condition was true. After reset, the SFC would remain paused
until the rung containing the SFR became false. This allowed the
execution following a reset to be delayed. This pause/un-pause
feature of the PLC-5 SFR instruction was decoupled from the rung
condition and moved into the SFP instruction.

Arithmetic Status Flags: not affected

Operand Type Format Description

SFCRoutine
Name

ROUTINE name SFC routine to reset

Step Name SFC_STEP tag target step where to resume execution

SFR(SFCRoutineName,StepName);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 465
Fault Conditions:

Execution:

Example: If a specific condition occurs (shutdown is set), restart the SFC at
step initialize.

Relay Ladder

Structured Text

IF shutdown THEN

SFR(mySFC,initialize);

END_IF;

A Major Fault Will Occur If: Fault Type Fault Code

the routine type is not an SFC routine 4 85

specified target step does not exist in
the SFC routine

4 89

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction resets the specified SFC routine. The instruction resets the specified SFC routine.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

466 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Trigger Event Task (EVENT) The EVENT instruction triggers one execution of an event task.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
EVENT instruction.

Description: Use the EVENT instruction to programmatically execute an event task:

• Each time the instruction executes, it triggers the specified event
task.

• Make sure that you give the event task enough time to complete
its execution before you trigger it again. If not, an overlap
occurs.

• If you execute an EVENT instruction while the event task is
already executing, the controller increments the overlap counter
but it does not trigger the event task.

Programmatically Determine if an EVENT Instruction Triggered a
Task

To determine if an EVENT instruction triggered an event task, use a
Get System Value (GSV) instruction to monitor the Status attribute of
the task.

Operand Type Format Description

Task TASK name event task to execute

The instruction lets you choose other types of
tasks, but it does not execute them.

EVENT(task_name);

Status Attribute of the TASK Object

Attribute Data Type Instruction Description

Status DINT GSV

SSV

Provides status information about the task. Once the controller sets a bit, you
must manually clear the bit to determine if another fault of that type occurred.

To determine if: Examine this bit:

An EVENT instruction triggered the task (event task
only).

0

A timeout triggered the task (event task only). 1

An overlap occurred for this task. 2
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 467
The controller does not clear the bits of the Status attribute once they
are set.

• To use a bit for new status information, you must manually clear
the bit.

• Use a Set System Value (SSV) instruction to set the attribute to a
different value.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Condition: Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes. na

The rung-condition-out is set to true.

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction triggers one execution of the specified event task

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

468 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Example 1: A controller uses multiple programs but a common shut down
procedure. Each program uses a program-scoped tag named
Shut_Down_Line that turns on if the program detects a condition that
requires a shut down. The logic in each program executes as follows:

If Shut_Down_Line = on (conditions require a shut down) then

Execute the Shut_Down task one time

Relay Ladder

Program A

Program B

Structured Text

Program A

Program B

IF Shut_Down_Line AND NOT Shut_Down_Line_One_Shot THEN

EVENT (Shut_Down);

END_IF;

Shut_Down_Line_One_Shot := Shut_Down_Line;

IF Shut_Down_Line AND NOT Shut_Down_Line_One_Shot THEN

EVENT (Shut_Down);

END_IF;

Shut_Down_Line_One_Shot := Shut_Down_Line;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT) 469
Example 2: The following example uses an EVENT instruction to initialize an
event task. (Another type of event normally triggers the event task.)

Continuous task

If Initialize_Task_1 = 1 then

The ONS instruction limits the execution of the EVENT instruction to one scan.

The EVENT instruction triggers an execution of Task_1 (event task).

Task_1 (event task)

The GSV instruction sets Task_Status (DINT tag) = Status attribute for the event task. In the Instance Name
attribute, THIS means the TASK object for the task that the instruction is in (that is, Task_1).

If Task_Status.0 = 1 then an EVENT instruction triggered the event task (that is, when the continuous task executes
its EVENT instruction to initialize the event task).

The RES instruction resets a counter that the event task uses.

The controller does not clear the bits of the Status attribute once they are set. To use a bit for new status
information, you must manually clear the bit.

If Task_Status.0 = 1 then clear that bit.

The OTU instruction sets Task_Status.0 = 0.

The SSV instruction sets the Status attribute of THIS task (Task_1) = Task_Status. This includes the cleared bit.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

470 Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 13

For/Break Instructions
(FOR, FOR...DO, BRK, EXIT, RET)

Introduction Use the FOR instruction to repeatedly call a subroutine. Use the BRK
instruction to interrupt the execution of a subroutine.

If You Want To Use This Instruction Available In These Languages See Page

Repeatedly execute a routine. FOR

FOR...DO(1)

relay ladder

structured text

472

Terminate the repeated execution of a routine. BRK

EXIT(1)

relay ladder

structured text

475

Return to the FOR instruction. RET relay ladder 476

(1) Structured text only.
471 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

472 For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET)
For (FOR) The FOR instruction executes a routine repeatedly.

Operands:

Relay Ladder

Structured Text

Use the FOR...DO construct. See Appendix B for information on
structured text constructs.

Description:

Operand Type Format Description

Routine
name

ROUTINE routine
name

routine to execute

Index DINT tag counts how many times the routine has
been executed

Initial value SINT

INT

DINT

immediate

tag

value at which to start the index

Terminal
value

SINT

INT

DINT

immediate

tag

value at which to stop executing the routine

Step size SINT

INT

DINT

immediate

tag

amount to add to the index each time the
FOR instruction executes the routine

FOR count:= initial_value TO
final_value BY increment DO

<statement>;

END_FOR;

IMPORTANT Do not use a FOR instruction to call (execute) the main routine.

• You can put a FOR instruction in the main routine or any other
routine.

• If you use a FOR instruction to call the main routine and then put
a RET instruction in the main routine, a major fault occurs (type 4,
code 31).
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET) 473
When enabled, the FOR instruction repeatedly executes the Routine
until the Index value exceeds the Terminal value. This instruction
does not pass parameters to the routine.

Each time the FOR instruction executes the routine, it adds the Step
size to the Index.

Be careful not to loop too many times in a single scan. An excessive
number of repetitions can cause the controller’s watchdog to timeout,
which causes a major fault.

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

A Major Fault Will Occur If Fault Type Fault Code

main routine contains a RET instruction 4 31

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

The controller executes the subroutine once.

If recursive FOR instruction0s exist to the same subroutine, the subroutine is prescanned
only the first time. If multiple FOR instructions exist (non-recursive) to the same
subroutine, the subroutine is prescanned each time.

rung-condition-in is false The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

474 For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET)
Example: When enabled, the FOR instruction repeatedly executes routine_2 and
increments value_2 by 1 each time. When value_2 is > 10 or a BRK
instruction is enabled, the FOR instruction no longer executes
routine_2.

postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

index ≥ terminal value
noyes

execute routine

rung-condition-in is true

end

index = initial_value

rung-condition-out is set to true

step size < 0
no

yes

index ≤ terminal value
no

yes

goto
end

endgoto
end
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET) 475
Break (BRK) The BRK instruction interrupts the execution of a routine that was
called by a FOR instruction.

Operands:

Relay Ladder

none

Structured Text

Use the EXIT statement in a loop construct. See Appendix B for
information on structured text constructs.

Description: When enabled, the BRK instruction exits the routine and returns the
controller to the instruction that follows the FOR.

If there are nested FOR instructions, a BRK instruction returns control
to the innermost FOR instruction.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Example: When enabled, the BRK instruction stops executing the current
routine and returns to the instruction that follows the calling
FOR instruction.

EXIT;

Condition Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The rung-condition-out is set to true.

Execution returns to the instruction that follows the calling FOR instruction.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

476 For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET)
Return (RET) The RET instruction returns to the calling FOR instruction.

Operands:

Relay Ladder

none

Description:

When enabled, the RET instruction returns to the FOR instruction. The
FOR instruction increments the Index value by the Step size and
executes the subroutine again. If the Index value exceeds the
Terminal value, the FOR instruction completes and execution moves
on to the instruction that follows the FOR instruction.

The FOR instruction does not use parameters. The FOR instruction
ignores any parameters you enter in a RET instruction.

You could also use a TND instruction to end execution of
a subroutine.

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

IMPORTANT Do not place a RET instruction in the main routine. If you place
a RET instruction in the main routine, a major fault occurs (type
4, code 31).

A Major Fault Will Occur If Fault Type Fault Code

main routine contains a RET instruction 4 31

Condition: Relay Ladder Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Returns the specified parameters to the calling routine.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET) 477
Example: The FOR instruction repeatedly executes routine_2 and increments
value_2 by 1 each time. When value_2 is > 10 or a BRK instruction is
enabled, the FOR instruction no longer executes routine_2.

The RET instruction returns to the calling FOR instruction. The FOR
instruction either executes the subroutine again and increments the
Index value by the Step size or, if the Index value exceeds the
Terminal value, the FOR instruction is complete and execution moves
on to the instruction that follows the FOR instruction.

calling routine subroutine
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

478 For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 14

Special Instructions
(FBC, DDT, DTR, PID)

Introduction The special instructions perform application-specific operations.

If You Want To Use This Instruction Available In These Languages See Page

Compare data against a known, good reference
and record any mismatches.

FBC relay ladder 480

Compare data against a known, good reference,
record any mismatches, and update the
reference to match the source.

DDT relay ladder 488

Pass the source data through a mask and
compare the result to reference data. Then
write the source into the reference for the next
comparison.

DTR relay ladder 496

Control a PID loop. PID relay ladder

structured text

499
479 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

480 Special Instructions (FBC, DDT, DTR, PID)
File Bit Comparison (FBC) The FBC instruction compares bits in a Source array with bits in a
Reference array.

Operands:

Relay Ladder

Operand Type Format Description:

Source DINT array tag array to compare to the reference

do not use CONTROL.POS in the subscript

Reference DINT array tag array to compare to the source

do not use CONTROL.POS in the subscript

Result DINT array tag array to store the result

do not use CONTROL.POS in the subscripts

Cmp control CONTROL structure control structure for the compare

Length DINT immediate number of bits to compare

Position DINT immediate current position in the source

initial value is typically 0

Result
control

CONTROL structure control structure for the results

Length DINT immediate number of storage locations in the result

Position DINT immediate current position in the result

initial value is typically 0

ATTENTION Use different tags for the compare control structure and the
result control structure. Using the same tag for both could
result in unpredictable operation, possibly causing equipment
damage and/or injury to personnel.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 481
COMPARE Structure

RESULT Structure

Description: When enabled, the FBC instruction compares the bits in the Source
array with the bits in the Reference array and records the bit number
of each mismatch in the Result array.

The difference between the DDT and FBC instructions is that each
time the DDT instruction finds a mismatch, the instruction changes the
reference bit to match the source bit. The FBC instruction does not
change the reference bit.

Mnemonic: Data Type Description:

.EN BOOL The enable bit indicates that the FBC instruction is enabled.

.DN BOOL The done bit is set when the FBC instruction compares the last bit in the Source and
Reference arrays.

.FD BOOL The found bit is set each time the FBC instruction records a mismatch (one-at-a-time
operation) or after recording all mismatches (all-per-scan operation).

.IN BOOL The inhibit bit indicates the FBC search mode.

0 = all mode

1 = one mismatch at a time mode

.ER BOOL The error bit is set if the compare .POS < 0, the compare .LEN < 0, the result .POS < 0 or the
result .LEN < 0. The instruction stops executing until the program clears the .ER bit.

.LEN DINT The length value identifies the number of bits to compare.

.POS DINT The position value identifies the current bit.

Mnemonic Data Type Description

.DN BOOL The done bit is set when the Result array is full.

.LEN DINT The length value identifies the number of storage locations in the Result array.

.POS DINT The position value identifies the current position in the Result array.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The FBC instruction operates on contiguous memory. In some cases, the instruction
searches or writes past the array into other members of the tag. This happens if a
length is too big and the tag is a user-defined data type.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

482 Special Instructions (FBC, DDT, DTR, PID)
Selecting the Search Mode

Arithmetic Status Flags: not affected

Fault Conditions:

If You Want To Detect Select This Mode

One mismatch at a time Set the .IN bit in the compare CONTROL structure.

Each time the rung-condition-in goes from false to true, the FBC instruction searches for
the next mismatch between the Source and Reference arrays. Upon finding a mismatch,
the instruction sets the .FD bit, records the position of the mismatch, and stops
executing.

All mismatches Clear the .IN bit in the compare CONTROL structure.

Each time the rung-condition-in goes from false to true, the FSC instruction searches for
all mismatches between the Source and Reference arrays.

A Major Fault Will Occur If: Fault Type Fault Code

Result.POS > size of Result array 4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 483
Execution:

Condition Relay Ladder Action

prescan

end

compare.EN bit is cleared

rung-condition-out is set to
false

examine
compare.DN bit

compare.DN = 0

compare.DN = 1

compare.DN bit is cleared

compare.POS value is cleared

result.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

484 Special Instructions (FBC, DDT, DTR, PID)
Condition Relay Ladder Action

rung-condition-in is false

end

compare.EN bit is cleared

rung-condition-out is set to
false

examine
compare.DN bit

compare.DN = 0

compare.DN = 1

compare DN bit is cleared

compare.POS value is cleared

result.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 485
Condition Relay Ladder Action

examine
compare.EN bit

compare.EN = 1

compare.EN = 0

rung-condition-in is true

examine
compare.DN bit

compare.DN = 1

compare.DN = 0

compare EN bit is set

compare.ER bit is cleared
compare.LEN ≤ 0

yes

no

compare.POS < 0
yes

no compare.ER bit is set

compare

page
end

rung-condition-out is set to
true

goto
exit

exit

goto
exit

goto
exit
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

486 Special Instructions (FBC, DDT, DTR, PID)
postscan The rung-condition-out is set to false.

Condition Relay Ladder Action

compare.POS ≥
compare.LEN

yes

no

compare.POS = compare.LEN

compare

goto
exit

source[compare.POS] =
reference[compare.POS]

no

yes

examine result.DN
bit

result.DN = 1

result.DN = 0

compare.POS =
compare.POS + 1

compare.FD bit is set
result.DN bit is cleared

result.POS < 0
yes

no

result.LEN ≤ 0
yes

no compare.ER bit is set

goto
exit

yes

no

major fault

result[result.POS] = compare.POS

result.POS >
result.LEN

no

yes

result.DN bit is set

page

page

result.POS >
size of result array
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 487
Example: When enabled, the FBC instruction compares the source array_dint1
to the reference array_dint2 and stores the locations of any
mismatches in the result array_dint3.

source
array_dint1

0 0

reference
array_dint2

0 1 0 1 0 0 0

result
array_dint3

5 3
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

488 Special Instructions (FBC, DDT, DTR, PID)
Diagnostic Detect (DDT) The DDT instruction compares bits in a Source array with bits in a
Reference array to determine changes of state.

Operands:

Relay Ladder

Operand Type Format Description

Source DINT array tag array to compare to the reference

do not use CONTROL.POS in the subscript

Reference DINT array tag array to compare to the source

do not use CONTROL.POS in the subscript

Result DINT array tag array to store the results

do not use CONTROL.POS in the subscript

Cmp control CONTROL structure control structure for the compare

Length DINT immediate number of bits to compare

Position DINT immediate current position in the source

initial value typically 0

Result
control

CONTROL structure control structure for the results

Length DINT immediate number of storage locations in the result

Position DINT immediate current position in the result

initial value typically 0

ATTENTION Use different tags for the compare control structure and the
result control structure. Using the same tag for both could
result in unpredictable operation, possibly causing equipment
damage and/or injury to personnel.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 489
COMPARE Structure

RESULT Structure

Description: When enabled, the DDT instruction compares the bits in the Source
array with the bits in the Reference array, records the bit number of
each mismatch in the Result array, and changes the value of the
Reference bit to match the value of the corresponding Source bit.

The difference between the DDT and FBC instructions is that each
time the DDT instruction finds a mismatch, the DDT instruction
changes the reference bit to match the source bit. The FBC instruction
does not change the reference bit.

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the DDT instruction is enabled.

.DN BOOL The done bit is set when the DDT instruction compares the last bit in the Source and
Reference arrays.

.FD BOOL The found bit is set each time the DDT instruction records a mismatch (one-at-a-time
operation) or after recording all mismatches (all-per-scan operation).

.IN BOOL The inhibit bit indicates the DDT search mode.

0 = all mode

1 = one mismatch at a time mode

.ER BOOL The error bit is set if the compare .POS < 0, the compare .LEN < 0, the result .POS < 0 or the
result .LEN < 0. The instruction stops executing until the program clears the .ER bit.

.LEN DINT The length value identifies the number of bits to compare.

.POS DINT The position value identifies the current bit.

Mnemonic Data Type Description

.DN BOOL The done bit is set when the Result array is full.

.LEN DINT The length value identifies the number of storage locations in the Result array.

.POS DINT The position value identifies the current position in the Result array.

IMPORTANT You must test and confirm that the instruction doesn’t change data that you don’t
want it to change.

The DDT instruction operates on contiguous memory. In some cases, the instruction
searches or writes past the array into other members of the tag. This happens if a
length is too big and the tag is a user-defined data type.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

490 Special Instructions (FBC, DDT, DTR, PID)
Selecting the search mode

Arithmetic Status Flags: not affected

Fault Conditions:

If You Want To Detect Select This Mode

One mismatch at a time Set the .IN bit in the compare CONTROL structure.

Each time the rung-condition-in goes from false to true, the DDT instruction searches for
the next mismatch between the Source and Reference arrays. Upon finding a mismatch,
the instruction sets the .FD bit, records the position of the mismatch, and stops
executing.

All mismatches Clear the .IN bit in the compare CONTROL structure.

Each time the rung-condition-in goes from false to true, the DDT instruction searches for
all mismatches between the Source and Reference arrays.

A Major Fault Will Occur If Fault Type: Fault Code

Result.POS > size of Result array 4 20
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 491
Execution:

Condition: Relay Ladder Action

prescan

end

compare.EN bit is cleared

rung-condition-out is set to
false

examine
compare.DN bit

compare.DN = 0

compare.DN = 1

compare.DN bit is cleared

compare.POS value is cleared

result.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

492 Special Instructions (FBC, DDT, DTR, PID)
Condition: Relay Ladder Action

rung-condition-in is false

end

compare.EN bit is cleared

rung-condition-out is set to
false

examine
compare.DN bit

compare.DN = 0

compare.DN = 1

compare DN bit is cleared

compare.POS value is cleared

result.DN bit is cleared
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 493
Condition: Relay Ladder Action

examine
compare.EN bit

compare.EN = 1

compare.EN = 0

rung-condition-in is true

examine
compare.DN bit

compare.DN bit = 1

compare.DN bit = 0

compare EN bit is set

compare.ER bit is cleared
compare.LEN ≤ 0

yes

no

compare.POS < 0
yes

no compare.ER bit is set

compare

page 14-494
end

rung-condition-out is set to
true

goto
exit

exit

goto
exit

goto
exit
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

494 Special Instructions (FBC, DDT, DTR, PID)
postscan The rung-condition-out is set to false.

Condition: Relay Ladder Action

compare.POS ≥
compare.LEN

yes

no

compare.POS = compare.LEN

compare

goto
exit

source[compare.POS] =
reference[compare.POS]

no

yes

examine result.DN
bit

result.DN = 1

result.DN = 0

compare.POS =
compare.POS + 1

compare.FD bit is set

reference[compare.POS]

result.DN bit is cleared

result.POS < 0
yes

no

result.LEN ≤ 0
yes

no compare.ER bit is set

goto
exit

yes

no

major fault

result[result.POS] = compare.POS

result.POS ≥
result.LEN

no

yes

result.DN bit is set

page 14-493

page

result.POS >
size of result array
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 495
Example: When enabled, the DDT instruction compares the source array_dint1
to the reference array_dint2 and stores the locations of any
mismatches in the result array_dint3. The controller also changes the
mismatched bits in the reference array_dint2 to match the source
array_dint1.

source

array_dint1

0 0

reference (before compare)

array_dint2

0 1 0 1 0 0 0

result

array_dint3

5 3

reference (after compare)

array_dint2

0 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

496 Special Instructions (FBC, DDT, DTR, PID)
Data Transitional (DTR) The DTR instruction passes the Source value through a Mask and
compares the result with the Reference value.

Operands:

Relay Ladder

Description: The DTR instruction passes the Source value through a Mask and
compares the result with the Reference value. The DTR instruction
also writes the masked Source value into the Reference value for the
next comparison. The Source remains unchanged.

A “1” in the mask means the data bit is passed. A “0” in the mask
means the data bit is blocked.

When the masked Source differs from the Reference, the
rung-condition-out goes true for one scan. When the masked Source
is the same as the Reference, the rung-condition-out is false.

Operand: Type Format Description

Source DINT immediate

tag

array to compare to the reference

Mask DINT immediate

tag

which bits to block or pass

Reference DINT tag array to compare to the source

ATTENTION Online programming with this instruction can be dangerous. If
the Reference value is different than the Source value, the
rung-condition-out goes true. Use caution if you insert this
instruction when the processor is in Run or Remote Run mode.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 497
Enter an immediate mask value

When you enter a mask, the programming software defaults to
decimal values. If you want to enter a mask using another format,
precede the value with the correct prefix.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Prefix Description:

16# hexadecimal

for example; 16#0F0F

8# octal

for example; 8#16

2# binary

for example; 2#00110011

Condition Relay Ladder Action

prescan The Reference = Source AND Mask.

The rung-condition-out is set to false.

rung-condition-in is false The Reference = Source AND Mask.

The rung-condition-out is set to false.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

masked source =
reference

no

yes

reference is set equal to masked source

rung-condition-out is set to true

rung-condition-out is set
to false
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

498 Special Instructions (FBC, DDT, DTR, PID)
Example: When enabled, the DTR instruction masks value_1. If there is a
difference in the two values, the rung-condition-out is set to true.

A 0 in the mask leaves the bit unchanged.

13385

The rung remains false as long as the input
value does not change.

The rung remains true for one scan when a
change is detected.

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 8 3 1 8 7

mask = 0FFF

1 8 7

source

reference

1 8 3

1 8 3

1 8 3

current scan

previous scan previous scan

current scan

example 1 example 2

97

0

0

0

0

Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 499
Proportional Integral
Derivative (PID)

The PID instruction controls a process variable such as flow, pressure,
temperature, or level.

Operands:

Relay Ladder

Operand Type Format Description

PID PID structure PID structure

Process
variable

SINT

INT

DINT

REAL

tag value you want to control

Tieback SINT

INT

DINT

REAL

immediate

tag

(optional) output of a hardware hand/auto station which is bypassing the output of the
controller

Enter 0 if you don’t want to use this parameter.

Control
variable

SINT

INT

DINT

REAL

tag value which goes to the final control device (valve, damper, etc.)

If you are using the deadband, the Control variable must be REAL or it will be forced to 0
when the error is within the deadband.

PID master
loop

PID structure (optional) PID tag for the master PID

If you are performing cascade control and this PID is a slave loop, enter the name of the
master PID. Enter 0 if you don’t want to use this parameter.

Inhold bit BOOL tag (optional) current status of the inhold bit from a 1756 analog output channel to support
bumpless restart

Enter 0 if you don’t want to use this parameter.

Inhold value SINT

INT

DINT

REAL

tag (optional) data readback value from a 1756 analog output channel to support bumpless
restart

Enter 0 if you don’t want to use this parameter.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

500 Special Instructions (FBC, DDT, DTR, PID)
Structured Text

The operands are the same as those for the relay ladder
PID instruction. However, you specify the Setpoint, Process Variable,
and Output % by accessing the .SP, .PV.and .OUT members of the PID
structure, rather than by including values in the operand list.

Setpoint displays current value of the setpoint

Process
variable

displays current value of the scaled Process Variable

Output % displays current output percentage value

Operand Type Format Description

PID(PID,ProcessVariable,
Tieback,ControlVariable,
PIDMasterLoop,InholdBit,
InHoldValue);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 501
PID Structure

Mnemonic: Data Type Description

.CTL DINT The .CTL member provides access to the status members (bits) in one, 32-bit word. The PID
instruction sets bits 07 -15.

This Bit Is This Member

31 .EN

30 .CT

29 .CL

28 .PVT

27 .DOE

26 .SWM

25 .CA

24 .MO

23 .PE

22 .NDF

21 .NOBC

20 .NOZC

This Bit: Is This Member, Which the PID Instruction Sets

15 .INI

14 .SPOR

13 .OLL

12 .OLH

11 .EWD

10 .DVNA

09 .DVPA

08 .PVLA

07 .PVHA

.SP REAL setpoint

.KP REAL independent proportional gain (unitless)

dependent controller gain (unitless)

.KI REAL independent integral gain (1/sec)

dependent reset time (minutes per repeat)

.KD REAL independent derivative gain (seconds)

dependent rate time (minutes)

.BIAS REAL feedforward or bias %

.MAXS REAL maximum engineering unit scaling value

.MINS REAL minimum engineering unit scaling value
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

502 Special Instructions (FBC, DDT, DTR, PID)
.DB REAL deadband engineering units

.SO REAL set output %

.MAXO REAL maximum output limit (% of output)

.MINO REAL minimum output limit (% of output)

.UPD REAL loop update time (seconds)

.PV REAL scaled PV value

.ERR REAL scaled error value

.OUT REAL output %

.PVH REAL process variable high alarm limit

.PVL REAL process variable low alarm limit

.DVP REAL positive deviation alarm limit

.DVN REAL negative deviation alarm limit

.PVDB REAL process variable alarm deadband

.DVDB REAL deviation alarm deadband

.MAXI REAL maximum PV value (unscaled input)

.MINI REAL minimum PV value (unscaled input)

.TIE REAL tieback value for manual control

.MAXCV REAL maximum CV value (corresponding to 100%)

.MINCV REAL minimum CV value (corresponding to 0%)

.MINTIE REAL minimum tieback value (corresponding to 100%)

.MAXTIE REAL maximum tieback value (corresponding to 0%)

Mnemonic: Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 503
.DATA REAL[17] The .DATA member stores:

Element: Description

.DATA[0] integral accumulation

.DATA[1] derivative smoothing temporary value

.DATA[2] previous .PV value

.DATA[3] previous .ERR value

.DATA[4] previous valid .SP value

.DATA[5] percent scaling constant

.DATA[6] .PV scaling constant

.DATA[7] derivative scaling constant

.DATA[8] previous .KP value

.DATA[9] previous .KI value

.DATA[10] previous .KD value

.DATA[11] dependent gain .KP

.DATA[12] dependent gain .KI

.DATA[13] dependent gain .KD

.DATA[14] previous .CV value

.DATA[15] .CV descaling constant

.DATA[16] tieback descaling constant

.EN BOOL enabled

.CT BOOL cascade type (0=slave; 1=master)

.CL BOOL cascade loop (0=no; 1=yes)

.PVT BOOL process variable tracking (0=no; 1=yes)

.DOE BOOL derivative of (0=PV; 1=error)

.SWM BOOL software manual mode (0=no-auto; 1=yes- sw manual)

.CA BOOL control action (0 means E=SP-PV; 1 means E=PV-SP)

.MO BOOL station mode (0=automatic; 1=manual)

.PE BOOL PID equation (0=independent; 1=dependent)

.NDF BOOL no derivative smoothing
(0=derivative smoothing filter enabled; 1=derivative smoothing filter disabled)

.NOBC BOOL no bias back calculation
(0=bias back calculation enabled; 1=bias back calculation disabled)

.NOZC BOOL no zero crossing deadband
(0=deadband is zero crossing; 1=deadband is not zero crossing)

.INI BOOL PID initialized (0=no; 1=yes)

.SPOR BOOL setpoint out of range (0=no; 1=yes)

.OLL BOOL CV is below minimum output limit (0=no; 1=yes)

.OLH BOOL CV is above maximum output limit (0=no; 1=yes)

Mnemonic: Data Type Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

504 Special Instructions (FBC, DDT, DTR, PID)
Description: The PID instruction typically receives the process variable (PV) from
an analog input module and modulates a control variable output (CV)
on an analog output module in order to maintain the process variable
at the desired setpoint.

The .EN bit indicates execution status. The .EN bit is set when the
rung-condition-in transitions from false to true. The .EN bit is cleared
when the rung-condition-in becomes false. The PID instruction does
not use a .DN bit. The PID instruction executes every scan as long as
the rung-condition-in is true.

Arithmetic Status Flags: not affected

Fault Conditions:

.EWD BOOL error is within deadband (0=no; 1=yes)

.DVNA BOOL deviation is alarmed low (0=no; 1=yes)

.DVPA BOOL deviation is alarmed high (0=no; 1=yes)

.PVLA BOOL PV is alarmed low (0=no; 1=yes)

.PVHA BOOL PV is alarmed high (0=no; 1=yes)

Mnemonic: Data Type Description

rung state

execution of the PID instruction

.EN bit

IMPORTANT These faults were major faults in the PLC-5 controller.

A Minor Fault Will Occur If Fault Type Fault Code

.UPD ≤ 0 4 35

setpoint out of range 4 36
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 505
Execution:

Configure a PID Instruction After you enter the PID instruction and specify the PID structure, you
use the configuration tabs to specify how the PID instruction
should function.

Condition Action Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction executes the PID loop. The instruction executes the PID loop.

postscan The rung-condition-out is set to false. No action taken.

Click here to configure the
PID instruction
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

506 Special Instructions (FBC, DDT, DTR, PID)
Specify tuning

Select the Tuning tab. Changes take affect as soon as you click on
another field, click OK, click Apply, or press Enter.

In This Field Specify:

Setpoint (SP) Enter a setpoint value (.SP).

Set output % Enter a set output percentage (.SO).

In software manual mode, this value is used for the output.

In auto mode, this value displays the output %.

Output bias Enter an output bias percentage (.BIAS).

Proportional gain (Kp) Enter the proportional gain (.KP).

For independent gains, it’s the proportional gain (unitless).

For dependent gains, it’s the controller gain (unitless).

Integral gain (Ki) Enter the integral gain (.KI).

For independent gains, it’s the integral gain (1/sec).

For dependent gains, it’s the reset time (minutes per repeat).

Derivative time (Kd) Enter the derivative gain (.KD).

For independent gains, it’s the derivative gain (seconds).

For dependent gains, it’s the rate time minutes).

Manual mode Select either manual (.MO) or software manual (.SWM).

Manual mode overrides software manual mode if both are selected.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 507
Specify configuration

Select the Configuration tab. You must click OK or Apply for any
changes to take effect.

Specifying Alarms

Select the Alarms tab. You must click OK or Apply for any changes to
take effect.

In this field Specify

PID equation Select independent gains or dependent gains (.PE).

Use independent when you want the three gains (P, I, and D) to operate independently.
Use dependent when you want an overall controller gain that affects all three terms
(P, I, and D).

Control action Select either E=PV-SP or E=SP-PV for the control action (.CA).

Derivative of Select PV or error (.DOE).

Use the derivative of PV to eliminate output spikes resulting from setpoint changes. Use
the derivative of error for fast responses to setpoint changes when the algorithm can
tolerate overshoots.

Loop update time Enter the update time (.UPD) for the instruction.

CV high limit Enter a high limit for the control variable (.MAXO).

CV low limit Enter a low limit for the control variable (.MINO).

Deadband value Enter a deadband value (.DB).

No derivative smoothing Enable or disable this selection (.NDF).

No bias calculation Enable or disable this selection (.NOBC).

No zero crossing in
deadband

Enable or disable this selection (.NOZC).

PV tracking Enable or disable this selection (.PVT).

Cascade loop Enable or disable this selection (.CL).

Cascade type If cascade loop is enabled, select either slave or master (.CT).

In This Field Specify

PV high Enter a PV high alarm value (.PVH).

PV low Enter a PV low alarm value (.PVL).

PV deadband Enter a PV alarm deadband value (.PVDB).

positive deviation Enter a positive deviation value (.DVP).

negative deviation Enter a negative deviation value (.DVN).

deviation deadband Enter a deviation alarm deadband value (.DVDB).
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

508 Special Instructions (FBC, DDT, DTR, PID)
Specifying Scaling

Select the Scaling tab. You must click OK or Apply for any changes to
take effect.

Using PID Instructions PID closed-loop control holds a process variable at a desired set
point. The following figure shows a flow-rate/fluid level example:

In the above example, the level in the tank is compared against the
setpoint. If the level is higher than the setpoint, the PID equation
increases the control variable and causes the outlet valve from the
tank to open; thereby decreasing the level in the tank.

In this field Specify

PV unscaled maximum Enter a maximum PV value (.MAXI) that equals the maximum unscaled value received
from the analog input channel for the PV value.

PV unscaled minimum Enter a minimum PV value (.MINI) that equals the minimum unscaled value received
from the analog input channel for the PV value.

PV engineering units
maximum

Enter the maximum engineering units corresponding to .MAXI (.MAXS)

PV engineering units
minimum

Enter the minimum engineering units corresponding to .MINI (.MINS)

CV maximum Enter a maximum CV value corresponding to 100% (.MAXCV).

CV minimum Enter a minimum CV value corresponding to 0% (.MINCV).

Tieback maximum Enter a maximum tieback value (.MAXTIE) that equals the maximum unscaled value
received from the analog input channel for the tieback value.

Tieback minimum Enter a minimum tieback value (.MINTIE) that equals the minimum unscaled value
received from the analog input channel for the tieback value.

PID Initialized If you change scaling constants during Run mode, turn this off to reinitialize internal
descaling values (.INI).

-

+

14271

setpoint

flow rate

error
PID equation

control variableprocess variable

level detector
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 509
The PID equation used in the PID instruction is a positional form
equation with the option of using either independent gains or
dependent gains. When using independent gains, the proportional,
integral, and derivative gains only affect their specific proportional,
integral, or derivative terms respectively. When using dependent
gains, the proportional gain is replaced with a controller gain which
affects all three terms. You can use either form of equation to perform
the same type of control. The two equation types are merely provided
to let you use the equation type with which you are most familiar.

Gains Option Derivative Of Equation

Dependent gains
(ISA standard)

error (E)

process variable (PV)

Independent gains error (E)

process variable (PV)

CV KC E 1
Ti
---- Edt Td

dE
dt
-------+

0

t

∫+ BIAS+=

CV KC E 1
Ti
---- Edt Td∠ dPV

dt

0

t

∫+ BIAS+=

E = SP - PV

CV KC E 1
Ti
---- Edt Td

dPV
dt

-----------+

0

t

∫+ BIAS+=

E = PV - SP

CV KPE Ki+ Edt Kd
dE
dt
-------+

0

t

∫ BIAS+=

CV KPE Ki+ Edt Kd∠ dPV
dt

0

t

∫ BIAS+=

E = SP - PV

CV KPE Ki+ Edt Kd
dPV
dt

-----------+

0

t

∫ BIAS+=

E = PV - SP
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

510 Special Instructions (FBC, DDT, DTR, PID)
Where:

If you do not want to use a particular term of the PID equation, just
set its gain to zero. For example if you want no derivative action, set
Kd or Td equal to zero.

Anti-reset Windup And Bumpless Transfer From Manual To Auto

The PID instruction automatically avoids reset windup by preventing
the integral term from accumulating whenever the CV output reaches
its maximum or minimum values, as set by .MAXO and .MINO. The
accumulated integral term remains frozen until the CV output drops
below its maximum limit or rises above its minimum limit. Then
normal integral accumulation automatically resumes.

Variable Description

KP proportional gain (unitless)

Kp = Kc unitless

Ki integral gain (seconds -1)

To convert between Ki (integral gain) and Ti (reset time), use:

Kd derivative gain (seconds)

To convert between Kd (derivative gain) and Td (rate time), use:

Kd = Kc (Td) 60

KC controller gain (unitless)

Ti reset time (minutes/repeat)

Td rate time (minutes)

SP setpoint

PV process variable

E error [(SP-PV) or (PV-SP)]

BIAS feedforward or bias

CV control variable

dt loop update time

Ki
KC

60Ti
-----------=
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 511
The PID instruction supports two manual modes of control:

The PID instruction also automatically provides bumpless transfers
from software manual mode to auto mode or from manual to auto
mode. The PID instruction back-calculates the value of the integral
accumulation term required to make the CV output track either the set
output (.SO) value in software manual mode or the tieback input in
manual mode. In this manner, when the loop switches to auto mode,
the CV output starts off from the set output or tieback value and no
“bump” in output value occurs.

The PID instruction can also automatically provide a bumpless
transfer from manual to auto even if integral control is not used (that
is Ki = 0). In this case the instruction modifies the .BIAS term to make

the CV output track either the set output or tieback values. When
automatic control is resumed, the .BIAS term will maintain its last
value. You can disable back-calculation of the .BIAS term by setting
the .NOBC bit in the PID data structure. Be aware that if you set
.NOBC true, the PID instruction no longer provides a bumpless
transfer from manual to auto when integral control is not used.

PID instruction timing

The PID instruction and the sampling of the process variable need to
be updated at a periodic rate. This update time is related to the
physical process you are controlling. For very slow loops, such as
temperature loops, an update time of once per second or even longer
is usually sufficient to obtain good control. Somewhat faster loops,
such as pressure or flow loops, may require an update time such as
once every 250 milliseconds. Only rare cases, such as tension control

Manual Mode of Control Description

software manual (.SWM) also known as set output mode

lets the user set the output % from the software

The set output (.SO) value is used as the output of the loop. The set output value
typically comes from an operator input from an operator interface device.

manual (.MO) takes the tieback value, as an input, and adjusts its internal variables to generate the
same value at the output

The tieback input to the PID instruction is scaled to 0-100% according to the values of
.MINTIE and .MAXTIE and is used as the output of the loop. The tieback input typically
comes from the output of a hardware hand/auto station which is bypassing the output
from the controller.

Note: Manual mode overrides software manual mode if both mode bits are set on.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

512 Special Instructions (FBC, DDT, DTR, PID)
on an unwinder spool, require loop updates as fast as every 10
milliseconds or faster.

Because the PID instruction uses a time base in its calculation, you
need to synchronize execution of this instruction with sampling of the
process variable (PV).

The easiest way to execute the PID instruction is to put the PID
instruction in a periodic task. Set the loop update time (.UPD) equal
to the periodic task rate and make sure that the PID instruction is
executed every scan of the periodic task

Relay Ladder

Structured Text

PID(TIC101,Local:0:I.Ch0Data,Local:0:I.Ch1Data,
Local:1:O.Ch4Data,0,Local:1:I.Ch4InHold,
Local:1:I.Ch4Data);

When using a periodic task, make sure that the analog input used for
the process variable is updated to the processor at a rate that is
significantly faster than the rate of the periodic task. Ideally, the
process variable should be sent to the processor at least five to ten
times faster than the periodic task rate. This minimizes the time
difference between actual samples of the process variable and
execution of the PID loop. For example, if the PID loop is in a 250
millisecond periodic task, use a loop update time of 250 milliseconds
(.UPD = .25), and configure the analog input module to produce data
at least about every 25 to 50 msecs.

Another, somewhat less accurate, method of executing a PID
instruction is to place the instruction in a continuous task and use a
timer done bit to trigger execution of the PID instruction.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 513
Relay Ladder

Structured Text

PID_timer.pre := 1000

TONR(PID_timer);

IF PID_timer.DN THEN

PID(TIC101,Local:0:I.Ch0Data,Local:0:I.Ch1Data,
Local:1:O.Ch0Data,0,Local:1:I.Ch0InHold,
Local:1:I.Ch0Data);

END_IF;

In this method, the loop update time of the PID instruction should be
set equal to the timer preset. As in the case of using a periodic task,
you should set the analog input module to produce the process
variable at a significantly faster rate than the loop update time. You
should only use the timer method of PID execution for loops with
loop update times that are at least several times longer than the
worst-case execution time for your continuous task.

The most accurate way to execute a PID instruction is to use the real
time sampling (RTS) feature of the 1756 analog input modules. The
analog input module samples its inputs at the real time sampling rate
you configure when you set up the module. When the module’s real
time sample period expires, it updates its inputs and updates a rolling
timestamp (represented by the .RollingTimestamp member of the
analog input data structure) produced by the module.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

514 Special Instructions (FBC, DDT, DTR, PID)
The timestamp ranges from 0-32767 milliseconds. Monitor the
timestamp. When it changes, a new process variable sample has been
received. Every time a timestamp changes, execute the PID instruction
once. Because the process variable sample is driven by the analog
input module, the input sample time is very accurate, and the loop
update time used by the PID instruction should be set equal to the
RTS time of the analog input module.

To make sure that you do not miss samples of the process variable,
execute your logic at a rate faster than the RTS time. For example, if
the RTS time is 250 msecs, you could put the PID logic in a periodic
task that runs every 100 msecs to make sure that you never miss a
sample. You could even place the PID logic in a continuous task, as
long as you make sure that the logic would be updated more
frequently than once every 250 milliseconds.

An example of the RTS method of execution is shown below. The
execution of the PID instruction depends on receiving new analog
input data. If the analog input module fails or is removed, the
controller stops receiving rolling timestamps and the PID loop stops
executing. You should monitor the status bit of the PV analog input
and if it shows bad status, force the loop into software manual mode
and execute the loop every scan. This lets operator still manually
change the output of the PID loop.

Relay Ladder
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 515
Structured Text

IF (Local:0:I.Ch0Fault) THEN
TIC101.SWM [:=] 1;

ELSE
TIC101.SWM := 0;

END_IF;

IF (Local:0:I.RollingTimestamp<>PreviousTimestamp) OR
(Local:0:I.Ch0Fault) THEN

PreviousTimestamp := Local:0:I.RollingTimestamp;

PID(TIC101,Local:0:I.Ch0Data,Local:0:I.Ch1Data,
Local:1:O.Ch0Data,0,Local:1:I.Ch0InHold,
Local:1:I.Ch0Data);

END_IF;

Bumpless restart

The PID instruction can interact with the 1756 analog output modules
to support a bumpless restart when the controller changes from
Program to Run mode or when the controller powers up.

When a 1756 analog output module loses communications with the
controller or senses that the controller is in Program mode, the analog
output module sets its outputs to the fault condition values you
specified when you configured the module. When the controller then
returns to Run mode or re-establishes communications with the
analog output module, you can have the PID instruction automatically
reset its control variable output equal to the analog output by using
the Inhold bit and Inhold Value parameters on the PID instruction.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

516 Special Instructions (FBC, DDT, DTR, PID)
To set a bumpless restart:

Derivative Smoothing

The derivative calculation is enhanced by a derivative smoothing filter.
This first order, low pass, digital filter helps to minimize large
derivative term spikes caused by noise in the PV. This smoothing
becomes more aggressive with larger values of derivative gain. You
can disable derivative smoothing if your process requires very large
values of derivative gain (Kd > 10, for example). To disable derivative

smoothing, select the “No derivative smoothing” option on the
Configuration tab or set the .NDF bit in the PID structure.

Do This Details:

Configure the 1756 analog output module’s channel
which receives the control variable from the PID
instruction

Select the “hold for initialization” check box on the properties page for the specific
channel of the module.

This tells the analog output module that when the controller returns to Run mode or
re-establishes communications with the module, the module should hold the analog
output at its current value until the value sent from the controller matches (within
0.1% of span) the current value used by the output channel. The controller’s output
will ramp to the currently held output value by making use of the .BIAS term. This
ramping is similar to auto bumpless transfer.

Enter the Inhold bit tag and Inhold Value tag in the
PID instruction

The 1756 analog output module returns two values for each channel in its input data
structure. The InHold status bit (.Ch2InHold, for example), when true, indicates that
the analog output channel is holding its value. The Data readback value (.Ch2Data,
for example) shows the current output value in engineering units.

Enter the tag of the InHold status bit as the InHold bit parameter of the PID
instruction. Enter the tag of the Data readback value as the Inhold Value parameter.

When he Inhold bit goes true, the PID instruction moves the Inhold Value into the
Control variable output and re-initializes to support a bumpless restart at that value.
When the analog output module receives this value back from the controller, it turns
off the InHold status bit, which allows the PID instruction to start controlling
normally.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 517
Set the deadband

The adjustable deadband lets you select an error range above and
below the setpoint where output does not change as long as the error
remains within this range. This deadband lets you control how closely
the process variable matches the setpoint without changing the
output. The deadband also helps to minimize wear and tear on your
final control device.

Zero-crossing is deadband control that lets the instruction use the
error for computational purposes as the process variable crosses into
the deadband until the process variable crosses the setpoint. Once the
process variable crosses the setpoint (error crosses zero and changes
sign) and as long as the process variable remains in the deadband, the
output will not change.

The deadband extends above and below the setpoint by the value
you specify. Enter zero to inhibit the deadband. The deadband has the
same scaled units as the setpoint. You can use the deadband without
the zero-crossing feature by selecting the “no zero crossing for
deadband” option on the Configuration tab or set the .NOZC bit in the
PID structure.

If you are using the deadband, the Control variable must be REAL or it
will be forced to 0 when the error is within the deadband

Use output limiting

You can set an output limit (percentage of output) on the control
output. When the instruction detects that the output has reached a
limit, it sets an alarm bit and prevents the output from exceeding
either the lower or upper limit.

error within deadband range

+ deadband

setpoint

- deadband

time 41026
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

518 Special Instructions (FBC, DDT, DTR, PID)
Feedforward or output biasing

You can feedforward a disturbance from the system by feeding the
.BIAS value into the PID instruction’s feedforward/bias value.

The feedforward value represents a disturbance fed into the PID
instruction before the disturbance has a chance to change the process
variable. Feedforward is often used to control processes with a
transportation lag. For example, a feedforward value representing
“cold water poured into a warm mix” could boost the output value
faster than waiting for the process variable to change as a result of
the mixing.

A bias value is typically used when no integral control is used. In this
case, the bias value can be adjusted to maintain the output in the
range required to keep the PV near the setpoint.

Cascading loops

The PID cascades two loops by assigning the output in percent of the
master loop to the setpoint of the slave loop. The slave loop
automatically converts the output of the master loop into the correct
engineering units for the setpoint of the slave loop, based on the slave
loop’s values for .MAXS and .MINS.

Relay Ladder

Structured Text

PID(master,pv_master,0,cv_master,0,0,0);

PID (slave,pv_slave,0,cv_slave,master,0,0);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Special Instructions (FBC, DDT, DTR, PID) 519
Control a Ratio

You can maintain two values in a ratio by using these parameters:

• uncontrolled value

• controlled value (the resultant setpoint to be used by the
PID instruction)

• ratio between these two values

Relay Ladder

Structured Text

pid_2.sp := uncontrolled_flow * ratio

PID(pid_2,pv_2,tieback_2,cv_2,0,0,0);

For This Multiplication Parameter Enter This Value

destination controlled value

source A uncontrolled value

source B ratio
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

520 Special Instructions (FBC, DDT, DTR, PID)
PID Theory The following figures show the process flow for a PID instructions.

PID Process

PID Process With Master/slave Loops

+
-

-1
+

SP
Displayed

as EUs

Error
Displayed

as EUs

Software A/M
or

A/M Station Mode Control
Action

Auto SP-PV

(Error)

Manual

No

Yes

PVT

SP
PV-SP

Converts Binary to
Engineering Units

(PV-mini)(maxs-mins) + minsmaxi-mini

PV

PV
Displayed

as EUs

Converts Units
to %

Error X 100
maxs-mins

PID
Calculation

Output
Bias %

Software A/M
Mode

Auto

Auto(Out%)

Set
Output %

Converts Tieback Units
to %

tieback-mintie
maxtie-mintie

x 100

Manual
Manual

Output
Limiting

Set
Output %

A/M Station
Mode

Output (CV)
Displayed as %

of EU Scale

Convert % to CV Units

CV%(maxcv-mincv)
100

+ mincv
CV

+
-

-1
+

+
-

-1
+

SP

Auto

Manual

PVT
No

Yes

Converts Binary to
Engineering Units

(PV-mini)(maxs-mins)
maxi-mini

+ mins

PV

SP-PV

PV-SP

(Error)
Converts Units

to %
Error X 100
maxs-mins

PID
Calculation

Output
Bias %

Software A/M
Mode

Auto

Auto(Out%)

Output
Limiting

Set
Output %A/M Station

Mode

Set
Output %

Manual

Manual

(Master.Out)

SP

PV

Master
Loop Software A/M

or
A/M Station Mode

Control
Action

Slave
Loop

(Master.Out)

Converts Binary to
Engineering Units

(PV-mini)(maxs-mins)
maxi-mini

+ mins

(SP)

PV

Converts % to
Engineering Units

Converts Tieback Units
to %

tieback-mintie
maxtie-mintie

x 100

Converts Units
to %

Error X 100
maxs-mins

Converts Units
to %

Error X 100
maxs-mins

X (maxs-mins)
100

+ mins

Control
Action

SP-PV

PV-SP

PID
Calculation

Output
Bias %

Set
Output %

Auto

Auto

Manual

Manual

A/M Station
Mode

Output
Limiting

Software A/M
Mode

Set
Output %

Convert % to CV Units

CV%(maxcv-mincv)
100

+ mincv

Items referenced in this box are
parameters, units, and modes as they
pertain to the designated Slave loop.

Manual
Manual

Auto

Software
A/M Mode
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 15

Trigonometric Instructions
(SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)

Introduction The trigonometric instructions evaluate arithmetic operations using
trigonometric operations.

If You Want To Use This Instruction Available In These Languages See Page

Take the sine of a value. SIN relay ladder

structured text

function block

522

Take the cosine of a value. COS relay ladder

structured text

function block

525

Take the tangent of a value. TAN relay ladder

structured text

function block

529

Take the arc sine of a value. ASN

ASIN(1)

relay ladder

structured text

function block

532

Take the arc cosine of a value. ACS

ACOS(1)

relay ladder

structured text

function block

536

Take the arc tangent of a value. ATN

ATAN(1)

relay ladder

structured text

function block

540

(1) Structured text only.
521 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

522 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
You can mix data types, but loss of accuracy and rounding error
might occur and the instruction takes more time to execute. Check the
overflow status bit (S:V) to see whether the result was truncated.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

Sine (SIN) The SIN instruction takes the sine of the Source value (in radians) and
stores the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use SIN as a function. This function computes the sine of source and
stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the sine of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

dest := SIN(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 523
Function Block

FBD_MATH_ADVANCED Structure

Description: The Source must be greater than or equal to -205887.4 (-2πx215) and

less than or equal to 205887.4 (2πx215). The resulting value in the
Destination is always greater than or equal to -1 and less than or equal
to 1.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Operand Type Format Description

SIN tag FBD_MATH_ADVANCED structure SIN structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition: Action:

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the sine of the Source and places the result in the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

524 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Function Block

Example: Calculate the sine of value and place the result in result.

Relay Ladder

Structured Text

result := SIN(value);

Function Block

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 525
Cosine (COS) The COS instruction takes the cosine of the Source value (in radians)
and stores the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use COS as a function. This function computes the cosine of source
and stores the result in dest.

See for information on the syntax of expressions within structured
text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the cosine of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

COS tag FBD_MATH_ADVANCED structure COS structure

dest := COS(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

526 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
FBD_MATH_ADVANCED Structure

Description: The Source must be greater than or equal to -205887.4 (-2πx215) and

less than or equal to 205887.4 (2πx215). The resulting value in the
Destination is always greater than or equal to -1 and less than or equal
to 1.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the cosine of the Source and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 527
Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

528 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Example: Calculate the cosine of value and place the result in result.

Relay Ladder

Structured Text

result := COS(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 529
Tangent (TAN) The TAN instruction takes the tangent of the Source value (in radians)
and stores the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use TAN as a function. This function computes the tangent of source
and stores the result in dest.

See for information on the syntax of expressions within structured
text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the tangent of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

TAN tag FBD_MATH_ADVANCED structure TAN structure

dest := TAN(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

530 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
FBD_MATH_ADVANCED Structure

Description: The Source must be greater than or equal to -102943.7(-2πx214) and

less than or equal to 102943.7 (2πx214).

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the tangent of the Source and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 531
Example: Calculate the tangent of value and place the result in result.

Relay Ladder

Structured Text

result := TAN(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

532 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Arc Sine (ASN) The ASN instruction takes the arc sine of the Source value and stores
the result in the Destination (in radians).

Operands:

Relay Ladder

Structured Text

Use ASIN as a function. This function computes the arc sine of source
and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the arc sine of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

dest := ASIN(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 533
Function Block

FBD_MATH_ADVANCED Structure

Description: The Source must be greater than or equal to -1 and less than or equal
to 1. The resulting value in the Destination is always greater than or
equal to -π/2 and less than or equal to π/2 (where π = 3.141593).

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Operand Type Format Description

ASN tag FBD_MATH_ADVANCED structure ASN structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the arc sine of the Source and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

534 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 535
Example: Calculate the arc sine of value and place the result in result.

Relay Ladder

Structured Text

result := ASIN(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

536 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Arc Cosine (ACS) The ACS instruction takes the arc cosine of the Source value and
stores the result in the Destination (in radians).

Operands:

Relay Ladder

Structured Text

Use ACOS as a function. This function computes the arc cosine of
source and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the arc cosine of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

ACS tag FBD_MATH_ADVANCED structure ACS structure

dest := ACOS(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 537
FBD_MATH_ADVANCED Structure

Description: The Source must be greater than or equal to -1 and less than or equal
to 1. The resulting value in the Destination is always greater than or
equal to 0 or less than or equal to π (where π = 3.141593).

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description:

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the arc cosine of the Source and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition: Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

538 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

Condition: Action
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 539
Example: Calculate the arc cosine of value and place the result in result.

Relay Ladder

Structured Text

result := ACOS(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

540 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Arc Tangent (ATN) The ATN instruction takes the arc tangent of the Source value and
stores the result in the Destination (in radians).

Operands:

Relay Ladder

Structured Text

Use ATAN as a function. This function computes the arc tangent of
source and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand: Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the arc tangent of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

ATN tag FBD_MATH_ADVANCED structure ATN structure

dest := ATAN(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 541
FBD_MATH_ADVANCED Structure

Description: The resulting value in the Destination is always greater than or equal
to -π/2 and less than or equal to π/2 (where π = 3.141593).

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the arc tangent of the Source and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

542 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Example: Calculate the arc tangent of value and place the result in result.

Relay Ladder

Structured Text

result := ATAN(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN) 543
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

544 Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 16

Advanced Math Instructions
(LN, LOG, XPY)

Introduction The advanced math instructions include these instructions:

You can mix data types, but loss of accuracy and rounding error
might occur and the instruction takes more time to execute. Check the
S:V bit to see whether the result was truncated.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

If You Want To Use This Instruction Available In These Languages See Page

Take the natural log of a value. LN relay ladder

structured text

function block

546

Take the log base 10 of a value. LOG relay ladder

structured text

function block

549

Raise a value to the power of another value. XPY relay ladder

structured text(1)

function block

552

(1) There is no equivalent structured text instruction. Use the operator in an expression.
545 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

546 Advanced Math Instructions (LN, LOG, XPY)
Natural Log (LN) The LN instruction takes the natural log of the Source and stores the
result in the Destination.

Operands:

Relay Ladder

Structured Text

Use LN as a function. This function computes the natural log of source
and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

FBD_MATH_ADVANCED Structure

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the natural log of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

LN tag FBD_MATH_ADVANCED structure LN structure

dest := LN(source);

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Advanced Math Instructions (LN, LOG, XPY) 547
Description: The Source must be greater than zero, otherwise the overflow status
bit (S:V) is set. The resulting Destination is greater than or equal to
-87.33655 and less than or equal to 88.72284.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the natural log of the Source and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

548 Advanced Math Instructions (LN, LOG, XPY)
Example: Calculate the natural log of value and place the result in result.

Relay Ladder Example

Structured Text

result := LN(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Advanced Math Instructions (LN, LOG, XPY) 549
Log Base 10 (LOG) The LOG instruction takes the log base 10 of the Source and stores the
result in the Destination.

Operands:

Relay Ladder

Structured Text

Use LOG as a function. This function computes the log of source and
stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

find the log of this value

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

LOG tag FBD_MATH_ADVANCED structure LOG structure

dest := LOG(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

550 Advanced Math Instructions (LN, LOG, XPY)
FBD_MATH_ADVANCED Structure

Description: The Source must be greater than zero, otherwise the overflow status
bit (S:V) is set. The resulting Destination is greater than or equal to
-37.92978 and less than or equal to 38.53184.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to math instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller calculates the log of the Source and places the result in the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Advanced Math Instructions (LN, LOG, XPY) 551
Example: Calculate the log of value and place the result in result.

Relay Ladder

Structured Text

result := LOG(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

552 Advanced Math Instructions (LN, LOG, XPY)
X to the Power of Y (XPY) The XPY instruction takes Source A (X) to the power of Source B (Y)
and stores the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use two, adjacent multiply signs “∗∗” as an operator within an
expression. This expression takes sourceX to the power of sourceY
and stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source X SINT

INT

DINT

REAL

immediate

tag

base value

Source Y SINT

INT

DINT

REAL

immediate

tag

exponent

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

XPY tag FBD_MATH structure XPY structure

dest := sourceX ** sourceY;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Advanced Math Instructions (LN, LOG, XPY) 553
FBD_MATH Structure

Description: If Source X is negative, Source Y must be an integer value or a minor
fault will occur.

The XPY instruction uses this algorithm: Destination = X**Y

The controller evaluates x0=1 and 0x=0.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Execution:

Relay Ladder

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source X REAL Base value.

Valid = any float

Source Y REAL Exponent.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the math instruction. Arithmetic status flags are set for this output.

A Minor Fault Will Occur If Fault Type Fault Code

Source X is negative and Source Y is not an
integer value

4 4

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller takes Source X to the power of Source Y and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

554 Advanced Math Instructions (LN, LOG, XPY)
Function Block

Example: The XPY instruction takes value_1 to the power of value_2 and places
the result in result.

Relay Ladder

Structured Text

result := (value_1 ∗∗ value_2);

Function Block

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 17

Math Conversion Instructions
(DEG, RAD, TOD, FRD, TRN, TRUNC)

Introduction The math conversion instructions convert values.

You can mix data types, but loss of accuracy and rounding error
might occur and the instruction takes more time to execute. Check the
S:V bit to see whether the result was truncated.

For relay ladder instructions, bold data types indicate optimal data
types. An instruction executes faster and requires less memory if all
the operands of the instruction use the same optimal data type,
typically DINT or REAL.

If You Want To Use This Instruction Available In These Languages See Page

Convert radians to degrees. DEG relay ladder

structured text

function block

556

Convert degrees to radians. RAD relay ladder

structured text

function block

559

Convert an integer value to a BCD value. TOD relay ladder

function block

562

Convert a BCD value to an integer value. FRD relay ladder

function block

565

Remove the fractional part of a value TRN

TRUNC(1)

relay ladder

structured text

function block

567

(1) Structured text only.
555 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

556 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
Degrees (DEG) The DEG instruction converts the Source (in radians) to degrees and
stores the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use DEG as a function. This function converts source to degrees and
stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

value to convert to degrees

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

DEG tag FBD_MATH_ADVANCED structure DEG structure

dest := DEG(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC) 557
FBD_MATH_ADVANCED Structure

Description: The DEG instruction uses this algorithm:
Source*180/π (where π = 3.141593)

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the conversion instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the conversion instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller converts the Source to degrees and places the result in the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

558 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
Example: Convert value to degrees and place the result in result.

Relay Ladder

Structured Text

result := DEG(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC) 559
Radians (RAD) The RAD instruction converts the Source (in degrees) to radians and
stores the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use RAD as a function. This function converts source to radians and
stores the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

Operand Type Format Description

Source SINT

INT

DINT

REAL

immediate

tag

value to convert to radians

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

RAD tag FBD_MATH_ADVANCED structure RAD structure

dest := RAD(source);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

560 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
FBD_MATH_ADVANCED Structure

Description: The RAD instruction uses this algorithm:
Source*π/180 (where π = 3.141593)

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the conversion instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest REAL Result of the conversion instruction. Arithmetic status flags are set for this output.

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller converts the Source to radians and places the result in the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC) 561
Example Convert value to radians and place the result in result.

Relay Ladder

Structured Text

result := RAD(value);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

562 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
Convert to BCD (TOD) The TOD instruction converts a decimal value (0 ≤ Source ≤ 99,999,999) to
a BCD value and stores the result in the Destination.

Operands:

Relay Ladder

Function Block

FBD_CONVERT Structure

Description: BCD is the Binary Coded Decimal number system that expresses
individual decimal digits (0-9) in a 4-bit binary notation.

If you enter a negative Source, the instruction generates a minor fault
and clears the Destination.

Arithmetic Status Flags: Arithmetic status flags are affected.

Operand Type Format Description

Source SINT

INT

DINT

immediate

tag

value to convert to decimal

A SINT or INT tag converts to a DINT value by zero-fill.

Destination SINT

INT

DINT

tag stores the result

Operand Type Format Description

TOD tag FBD_CONVERT structure TOD structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source DINT Input to the conversion instruction.

Valid = any integer

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the conversion instruction. Arithmetic status flags are set for this output.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC) 563
Fault Conditions:

Execution:

Relay Ladder

Function Block

A Minor Fault Will Occur If Fault Type Fault Code

Source < 0 4 4

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller converts the Source to BCD and places the result in the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

rung-condition-in is true

end

source < 0
no

yes

source > 99,999,999
no

yes

convert source to BCD

S:V is set to 1

rung-condition-out is set
to true

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

564 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
Example: The TOD instruction converts value_1 to a BCD value and places the
result in result_a.

Relay Ladder

Function Block

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.

Condition Action
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC) 565
Convert to Integer (FRD) The FRD instruction converts a BCD value (Source) to a decimal value
and stores the result in the Destination.

Operands:

Relay Ladder

Function Block

FBD_CONVERT Structure

Description: The FRD instruction converts a BCD value (Source) to a decimal value
and stores the result in the Destination.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Operand Type Format Description

Source SINT

INT

DINT

immediate

tag

value to convert to decimal

A SINT or INT tag converts to a DINT value by zero-fill.

Destination SINT

INT

DINT

tag stores the result

Operand Type Format: Description

FRD tag FBD_CONVERT structure FRD structure

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source DINT Input to the conversion instruction.

Valid = any integer

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the conversion instruction. Arithmetic status flags are set for this output.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

566 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
Execution:

Relay Ladder

Function Block

Example: The FRD instruction converts value_a to a decimal value and places
the result in result_1.

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller converts the Source to a decimal value and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC) 567
Truncate (TRN) The TRN instruction removes (truncates) the fractional part of the
Source and stores the result in the Destination.

Operands:

Relay Ladder

Structured Text

Use TRUNC as a function. This function truncates source and stores
the result in dest.

See Appendix B for information on the syntax of expressions within
structured text.

Function Block

FBD_TRUNCATE Structure

Operand Type Format Description

Source REAL immediate

tag

value to truncate

Destination SINT

INT

DINT

REAL

tag tag to store the result

Operand Type Format Description

TRN tag FBD_TRUNCATE structure TRN structure

dest := TRUNC(source);

Input Parameter Data Type Description

EnableIn BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.

Default is set.

Source REAL Input to the conversion instruction.

Valid = any float

Output Parameter Data Type Description

EnableOut BOOL The instruction produced a valid result.

Dest DINT Result of the conversion instruction. Arithmetic status flags are set for this output.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

568 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
Description: Truncating does not round the value; rather, the non-fractional part
remains the same regardless of the value of the fractional part.

Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions: none

Execution:

Relay Ladder

Function Block

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true The controller removes the fractional part of the Source and places the result in
the Destination.

The rung-condition-out is set to true.

postscan The rung-condition-out is set to false.

Condition Action

prescan No action taken.

instruction first scan No action taken.

instruction first run No action taken.

EnableIn is cleared EnableOut is cleared.

EnableIn is set The instruction executes.

EnableOut is set.

postscan No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC) 569
Example: Remove the fractional part of float_value_1, leaving the non-fractional
part the same, and place the result in float_value_1_truncated.

Relay Ladder

Structured Text

float_value_1_truncated := TRUNC(float_value_1);

Function Block
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

570 Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 18

ASCII Serial Port Instructions
(ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)

Introduction Use the ASCII serial port instructions to read and write
ASCII characters.

IMPORTANT To use the ASCII serial port instructions, you must configure the
serial port of the controller. See the Logix5000 Controllers
Common Procedures, publication 1756-PM001.

If You Want To For Example Use This
Instruction

Available In These
Languages

See Page

determine when the buffer contains
termination characters

check for data that contains
termination characters

ABL relay ladder

structured text

575

count the characters in the buffer check for the required number of
characters before reading the buffer

ACB relay ladder

structured text

578

clear the buffer • remove old data from the buffer at
start-up

• synchronize the buffer with a
device

ACL relay ladder

structured text

581

clear out ASCII Serial Port
instructions that are currently
executing or are in the queue

obtain the status of the serial port
control lines

cause a modem to hang up AHL relay ladder

structured text

583

turn on or off the DTR signal

turn on or off the RTS signal

read a fixed number of characters read data from a device that sends
the same number of characters each
transmission

ARD relay ladder

structured text

587

read a varying number of characters,
up to and including the first set of
termination characters

read data from a device that sends a
varying number of characters each
transmission

ARL relay ladder

structured text

591

send characters and automatically
append one or two additional
characters to mark the end of the
data

send messages that always use the
same termination character(s)

AWA relay ladder

structured text

595

send characters send messages that use a variety of
termination characters

AWT relay ladder

structured text

600
571 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

572 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Instruction Execution

ASCII serial port instructions execute asynchronous to the scan of
the logic:

Each ASCII serial port instruction (except ACL) uses a
SERIAL_PORT_CONTROL structure to perform the following
functions:

• control the execution of the instruction

• provide status information about the instruction

Instruction enters the
ASCII queue.

ASCII Queue

Instruction 1 Instruction at the top
of the queue executes.

BufferSerial Port

Instruction 2

Instruction 3

Instruction 4

Rung-condition-in of
instruction transitions
from false to true

Data flows
between task and
buffer.

Data flows between
buffer and serial port.

Logic ASCII Task
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 573
The following timing diagram depicts the changes in the status bits as
an ABL instruction tests the buffer for termination characters.

The ASCII queue holds up to 16 instructions. When the queue is full,
an instruction tries to enter the queue on each subsequent scan of the
instruction, as depicted below:

scan scan scan scan

enters queue resets status bits

executes when scanned and .DN
or .ER are set, sets the
.EM bitin this example,

finds termination
characters

rung-condition-in false true false true false

.EN off on off on off

.EU off on

.RN off on off on off

.DN or .ER off on off on

.FD off on off on

.EM off on off on

scan scan scan scan

enters queue

attempts to enter queue but queue is full

rung-condition-in false true false

.EN off on

.EU off on
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

574 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
ASCII Error Codes

If an ASCII serial port instruction fails to execute, the ERROR member
of its SERIAL_PORT_CONTROL structure will contain one of the
following hexadecimal error codes:

String Data Types
You store ASCII characters in tags that use a string data type.

• You can use the default STRING data type. It stores up to 82
characters.

• You can create a new string data type that stores less or more
characters.

To create a new string data type, see Logix5000 Controllers Common
Procedures, publication 1756-PM001.

This Hex Code Indicates That the

16#2 Modem went offline.

16#3 CTS signal was lost during communication.

16#4 Serial port was in system mode.

16#A Before the instruction executed, the .UL bit was set. This prevents the execution of the instruction.

16#C The controller changed from Run mode to Program mode. This stops the execution of an ASCII serial port instruction
and clears the queue.

16#D In the Controller Properties dialog box, User Protocol tab, the buffer size or echo mode parameters were changed and
applied. This stops the execution of an ASCII serial port instruction and clears the queue.

16#E ACL instruction executed.

16#F Serial port configuration changed from User mode to System mode. This stops the execution of an ASCII serial port
instruction and clears the ASCII serial port instruction queue.

16#51 The LEN value of the string tag is either negative or greater than the DATA size of the string tag.

16#54 The Serial Port Control Length is greater than the size of the buffer.

16#55 The Serial Port Control Length is either negative or greater than the size of the Source or Destination.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 575
Each string data type contains the following members:

ASCII Test For Buffer Line
(ABL)

The ABL instruction counts the characters in the buffer up to and
including the first termination character.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
ABL instruction. You access the Character Count value via the .POS
member of the SERIAL_PORT_CONTROL structure.

Name Data Type Description Notes

LEN DINT number of characters
in the string

The LEN automatically updates to the new count of characters whenever you:

• use the String Browser dialog box to enter characters

• use instructions that read, convert, or manipulate a string

The LEN shows the length of the current string. The DATA member may contain
additional, old characters, which are not included in the LEN count.

DATA SINT array ASCII characters of
the string

• To access the characters of the string, address the name of the tag.

For example, to access the characters of the string_1 tag, enter string_1.

• Each element of the DATA array contains one character.

• You can create new string data types that store less or more characters.

Operand Type Format Description

Channel DINT immediate

tag

0

Serial Port

Control

SERIAL_PORT_

CONTROL

tag tag that controls the operation

Character
Count

DINT immediate 0

During execution, displays the number of
characters in the buffer, including the
first set of termination characters.

EN
DN
ER

ASCII Test For Buffer Line
Channel ?
SerialPort Control ?
Character Count ?

ABL

ABL(Channel
SerialPortControl);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

576 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
SERIAL_PORT_CONTROL Structure

Description The ABL instruction searches the buffer for the first set of termination
characters. If the instruction finds the termination characters, it:

• sets the .FD bit

• counts the characters in the buffer up to and including the first
set of termination characters

The Controller Properties dialog box, User Protocol tab, defines the
ASCII characters that the instruction considers as the termination
characters.

To program the ABL instruction, follow these guidelines:

1. Configure the serial port of the controller for user mode and
define the characters that serve as the termination characters.

2. This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition.

Arithmetic Status Flags: not affected

Fault Conditions: none

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit indicates that the instruction found the termination character or characters.

.POS DINT The position determines the number of characters in the buffer, up to and including the first
set of termination characters. The instruction only returns this number after it finds the
termination character or characters.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 577
Execution:

Example: Continuously test the buffer for the termination characters.

Relay Ladder

Structured Text

ABL(0,MV_line);

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes when rung-condition-in
toggles from cleared to set.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction counts the characters in the buffer.

The .EN bit is set.

The remaining status bits, except .UL, are cleared.

The instruction attempts to enter the ASCII queue.

postscan The rung-condition-out is set to false. No action taken.

/
MV_line.EN

EN
DN
ER

ASCII Test For Buffer Line
Channel 0
SerialPort Control MV_line
Character Count 0

ABL
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

578 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
ASCII Chars in Buffer (ACB) The ACB instruction counts the characters in the buffer.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
ACB instruction. However, you specify the Character Count value by
accessing the .POS member of the SERIAL_PORT_CONTROL structure,
rather than by including the value in the operand list.

SERIAL_PORT_CONTROL Structure

Operand Type Format Enter

Channel DINT immediate

tag

0

Serial Port

Control

SERIAL_PORT_

CONTROL

tag tag that controls the operation

Character
Count

DINT immediate 0

During execution, displays the number of
characters in the buffer.

EN
DN
ER

ASCII Chars in Buffer
Channel ?
SerialPort Control ?
Character Count ?

ACB

ACB(Channel
SerialPortControl);

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit indicates that the instruction found a character.

.POS DINT The position determines the number of characters in the buffer, up to and including the first
set of termination characters.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 579
Description: The ACB instruction counts the characters in the buffer.

To program the ACB instruction, follow these guidelines:

1. Configure the serial port of the controller for user mode.

2. This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Example: Continuously count the characters in the buffer.

Relay Ladder

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes when rung-condition-in
toggles from cleared to set.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction counts the characters in the buffer.

The .EN bit is set.

The remaining status bits, except .UL, are cleared.

The instruction attempts to enter the ASCII queue.

postscan The rung-condition-out is set to false. No action taken.

/
bar_code_count.EN

EN
DN
ER

ASCII Chars in Buffer
Channel 0
SerialPort Control bar_code_count
Character Count 0

ACB
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

580 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Structured Text

ACB(0,bar_code_count);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 581
ASCII Clear Buffer (ACL) The ACL instruction immediately clears the buffer and ASCII queue.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
ACL instruction.

Description: The ACL instruction immediately performs one or both of the
following actions:

• clears the buffer of characters and clears the ASCII queue of
read instructions

• clears the ASCII queue of write instructions

To program the ACL instruction, follow these guidelines:

1. Configure the serial port of the controller:

2. To determine if an instruction was removed from the queue or
aborted, examine the following of the appropriate instruction:

• .ER bit is set

• .ERROR member is 16#E

Arithmetic Status Flags: not affected

Fault Conditions: none

Operand Type Format Enter

Channel DINT immediate

tag

0

Clear Serial
Port Read

BOOL immediate

tag

To empty the buffer and remove ARD and
ARL instructions from the queue, enter Yes.

Clear Serial
Port Write

BOOL immediate

tag

To remove AWA and AWT instructions from
the queue, enter Yes.

ASCII Clear Buffer
Channel ?
Clear Serial Port Read ?
Clear Serial Port Write ?

ACL

ACL(Channel,
ClearSerialPortRead,
ClearSerialPortWrite);

If Your Application Then

uses ARD or ARL instructions Select User mode

does not use ARD or ARL
instructions

Select either System or User mode
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

582 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Execution:

Example: When the controller enters Run mode, clear the buffer and the
ASCII queue.

Relay Ladder

Structured Text

osri_1.InputBit := S:FS;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

ACL(0,0,1);

END_IF;

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction clears the specified instructions and buffer(s).

postscan The rung-condition-out is set to false. No action taken.

S:FS

ASCII Clear Buffer
Channel 0
Clear Serial Port Read 1
Clear Serial Port Write 1

ACL
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 583
ASCII Handshake Lines
(AHL)

The AHL instruction obtains the status of control lines and turns on or
off the DTR and RTS signals.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
AHL instruction. However, you specify the Channel Status value by
accessing the .POS member of the SERIAL_PORT_CONTROL structure,
rather than by including the value in the operand list.

EN

DN

ER

ASCII Handshake Lines
Channel ?
AND Mask ?

 ??
OR Mask ?

 ??
SerialPort Control ?
Channel Status(Decimal) ?

AHL

Operand Type Format Enter

Channel DINT immediate

tag

0

ANDMask DINT immediate

tag

 Refer to the description.

ORMask DINT immediate

tag

Serial Port Control SERIAL_PORT_CONTROL tag tag that controls the operation

Channel Status (Decimal) DINT immediate 0

During execution, displays the status of the control lines.

For the Status Of This Control
Line

Examine This Bit:

CTS 0

RTS 1

DSR 2

DCD 3

DTR 4

Received the XOFF character 5

AHL(Channel,ANDMask,ORMask,
SerialPortControl);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

584 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
SERIAL_PORT_CONTROL Structure

Description: The AHL instruction can:

• obtain the status of the control lines of the serial port

• turn on or off the data terminal ready (DTR) signal

• turn on or off the request to send signal (RTS)

To program the AHL instruction, follow these guidelines:

1. Configure the serial port of the controller:

2. Use the following table to select the correct values for the
ANDMask and ORMask operands:

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit does not apply to this instruction.

.POS DINT The position stores the status of the control lines.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.

If Your Application Then

uses ARD or ARL instructions Select User mode

does not use ARD or ARL
instructions

Select either System or User mode

To Turn DTR And Turn RTS: Enter This
ANDMask Value

And Enter This
ORMask Value

off off 3 0

on 1 2

unchanged 1 0

on off 2 1

on 0 3

unchanged 0 1

unchanged off 2 0

on 0 2

unchanged 0 0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 585
3. This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition. See .

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

Type Code Cause Recovery Method

4 57 The AHL instruction failed to execute because the serial
port is set to no handshaking.

Either:

• Change the Control Line setting of the serial port.

• Delete the AHL instruction.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes when rung-condition-in
toggles from cleared to set.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction obtains the control line status and turns on or off DTR and RTS signals.

The .EN bit is set.

The remaining status bits, except .UL, are cleared.

The instruction attempts to enter the ASCII queue.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

586 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Example: When get_control_line_status becomes set, obtain the status of the
control lines of the serial port and store the status in the Channel
Status operand. To view the status of a specific control line, monitor
the SerialPortControl tag and expand the POS member.

Relay Ladder

Structured Text

osri_1.InputBit := get_control_line_status;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

AHL(0,0,0,serial_port);

END_IF;

get_control_line_status

EN

DN

ER

ASCII Handshake Lines
Channel 0
AND Mask 0

OR Mask 0

SerialPort Control serial_port
Channel Status(Decimal) 29

AHL
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 587
ASCII Read (ARD) The ARD instruction removes characters from the buffer and stores
them in the Destination.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
ARD instruction. However, you specify the Serial Port Control Length
and the Characters Read values by accessing the .LEN and .POS
members of the SERIAL_PORT_CONTROL structure, rather than by
including the values in the operand list.

EN

DN

ER

ASCII Read
Channel ?
Destination ?

 ??
SerialPort Control ?
SerialPort Control Length ?
Characters Read ?

ARD

Operand Type Format Enter Notes

Channel DINT immediate

tag

0

Destination string

SINT

INT

DINT

tag tag into which the
characters are moved
(read):

• For a string data type,
enter the name of the
tag.

• For a SINT, INT, or DINT
array, enter the first
element of the array.

• If you want to compare, convert, or
manipulate the characters, use a string data
type.

• String data types are:

• default STRING data type

• any new string data type that you create

Serial Port

Control

SERIAL_PORT_

CONTROL

tag tag that controls the
operation

Serial Port

Control Length

DINT immediate number of characters to
move to the destination
(read)

• The Serial Port Control Length must be less
than or equal to the size of the Destination.

• If you want to set the Serial Port Control
Length equal to the size of the Destination,
enter 0.

Characters Read DINT immediate 0 During execution, displays the number of
characters that were read.

ARD(Channel,Destination,
SerialPortControl);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

588 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
SERIAL_PORT_CONTROL Structure

Description: The ARD instruction removes the specified number of characters from
the buffer and stores them in the Destination.

• The ARD instruction continues to execute until it removes the
specified number of characters (Serial Port Control Length).

• While the ARD instruction is executing, no other ASCII Serial
Port instruction executes.

To program the ARD instruction, follow these guidelines:

1. Configure the serial port of the controller for user mode.

2. Use the results of an ACB instruction to trigger the ARD
instruction. This prevents the ARD instruction from holding up
the ASCII queue while it waits for the required number of
characters.

3. This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition. See .

4. To trigger a subsequent action when the instruction is done,
examine the EM bit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit does not apply to this instruction.

.LEN DINT The length indicates the number of characters to move to the destination (read).

.POS DINT The position displays the number of characters that were read.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 589
Execution:

Example: A bar code reader sends bar codes to the serial port (channel 0) of the
controller. Each bar code contains 24 characters. To determine when
the controller receives a bar code, the ACB instruction continuously
counts the characters in the buffer. When the buffer contains at least
24 characters, the controller has received a bar code. The ARD
instruction moves the bar code to the DATA member of the
bag_bar_code tag, which is a string.

Relay Ladder

Structured Text

ACB(0,bar_code_count);

IF bar_code_count.POS >= 24 THEN

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes when rung-condition-in
toggles from cleared to set.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction removes characters from the buffer and stores them in the destination.

The .EN bit is set.

The remaining status bits, except .UL, are cleared.

The instruction attempts to enter the ASCII queue.

postscan The rung-condition-out is set to false. No action taken.

/
bar_code_count.EN

EN
DN
ER

ASCII Chars in Buffer
Channel 0
SerialPort Control bar_code_count
Character Count 0

ACB

Grtr Than or Eql (A>=B)
Source A bar_code_count.pos

0
Source B 24

GEQ
EN

DN

ER

ASCII Read
Channel 0
Destination bag_bar_code

 ''
SerialPort Control bar_code_read
SerialPort Control Length 24
Characters Read 0

ARD
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

590 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
bar_code_read.LEN := 24;

ARD(0,bag_bar_code,bar_code_read);

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 591
ASCII Read Line (ARL) The ARL instruction removes specified characters from the buffer and
stores them in the Destination.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
ARL instruction. However, you specify the Serial Port Control Length
and the Characters Read values by accessing the .LEN and .POS

EN

DN

ER

ASCII Read Line
Channel ?
Destination ?

 ??
SerialPort Control ?
SerialPort Control Length ?
Characters Read ?

ARL

Operand Type Format Enter Notes

Channel DINT immediate

tag

0

Destination string

SINT

INT

DINT

tag tag into which the
characters are moved
(read):

• For a string data type,
enter the name of the
tag.

• For a SINT, INT, or DINT
array, enter the first
element of the array.

• If you want to compare, convert, or
manipulate the characters, use a string data
type.

• String data types are:

• default STRING data type

• any new string data type that you create

Serial Port

Control

SERIAL_PORT_

CONTROL

tag tag that controls the
operation

Serial Port
Control Length

DINT immediate maximum number of
characters to read if no
termination characters are
found

• Enter the maximum number of characters
that any message will contain (that is, when
to stop reading if no termination characters
are found).

For example, if messages range from 3 to 6
characters in length, enter 6.

• The Serial Port Control Length must be less
than or equal to the size of the Destination.

• If you want to set the Serial Port Control
Length equal to the size of the Destination,
enter 0.

Characters Read DINT immediate 0 During execution, displays the number of
characters that were read.

ARL(Channel,Destination,
SerialPortControl);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

592 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
members of the SERIAL_PORT_CONTROL structure, rather than by
including the values in the operand list.

SERIAL_PORT_CONTROL Structure

Description: The ARL instruction removes characters from the buffer and stores
them in the Destination as follows:

• The ARL instruction continues to execute until it removes either
the:

– first set of termination characters

– specified number of characters (Serial Port Control Length)

• While the ARL instruction is executing, no other ASCII serial port
instruction executes.

To program the ARL instruction, follow these guidelines:

1. Configure the serial port of the controller:

a. Select User mode.

b. Define the characters that serve as the termination characters.

2. Use the results of an ABL instruction to trigger the ARL
instruction. This prevents the ARL instruction from holding up
the ASCII queue while it waits for the termination characters.

3. This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition. See .

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit does not apply to this instruction.

.LEN DINT The length indicates the maximum number of characters to move to the destination (that is,
when to stop reading if no termination characters are found).

.POS DINT The position displays the number of characters that were read.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 593
4. To trigger a subsequent action when the instruction is done,
examine the EM bit.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Example: Continuously test the buffer for a message from a MessageView
terminal. Since each message ends in a carriage return ($r), the
carriage return is configured as the termination character in the
Controller Properties dialog box, User Protocol tab. When the ABL
finds a carriage return, its sets the FD bit.

When the ABL instruction finds the carriage return (MV_line.FD is
set), the controller has received a complete message. The ARL
instruction removes the characters from the buffer, up to and
including the carriage return, and places them in the DATA member of
the MV_msg tag, which is a string.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes when rung-condition-in
toggles from cleared to set.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction removes the specified characters from the buffer and stores them in the destination.

The .EN bit is set.

The remaining status bits, except .UL, are cleared.

The instruction attempts to enter the ASCII queue.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

594 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Relay Ladder

Structured Text

ABL(0,MV_line);

osri_1.InputBit := MVLine.FD;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

mv_read.LEN := 12;

ARL(0,MV_msg,MV_read);

END_IF;

/
MV_line.EN

EN
DN
ER

ASCII Test For Buffer Line
Channel 0
SerialPort Control MV_line
Character Count 0

ABL

MV_line.FD

EN

DN

ER

ASCII Read Line
Channel 0
Destination MV_msg

 ''
SerialPort Control MV_read
SerialPort Control Length 12
Characters Read 0

ARL
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 595
ASCII Write Append (AWA) The AWA instruction sends a specified number of characters of the
Source tag to a serial device and appends either one or two
predefined characters.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
AWA instruction. However, you specify the Serial Port Control Length
and the Characters Sent values by accessing the .LEN and .POS
members of the SERIAL_PORT_CONTROL structure, rather than by
including the values in the operand list.

EN

DN

ER

ASCII Write Append
Channel ?
Source ?

 ??
SerialPort Control ?
SerialPort Control Length ?
Characters Sent ?

AWA

Operand Type Format Enter Notes

Channel DINT immediate

tag

0

Source string

SINT

INT

DINT

tag tag that contains the
characters to send:

• For a string data type,
enter the name of the
tag.

• For a SINT, INT, or DINT
array, enter the first
element of the array.

• If you want to compare, convert, or
manipulate the characters, use a string data
type.

• String data types are:

• default STRING data type

• any new string data type that you create

Serial Port

Control

SERIAL_PORT_

CONTROL

tag tag that controls the
operation

Serial Port
Control Length

DINT immediate number of characters to
send

• The Serial Port Control Length must be less
than or equal to the size of the Source.

• If you want to set the Serial Port Control
Length equal to the number of characters in
the Source, enter 0.

Characters Sent DINT immediate 0 During execution, displays the number of
characters that were sent.

AWA(Channel,Source,
SerialPortControl);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

596 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
SERIAL_PORT_CONTROL Structure

Description: The AWA instruction:

• sends the specified number of characters (Serial Port Control
Length) of the Source tag to the device that is connected to the
serial port of the controller

• adds to the end of the characters (appends) either one or two
characters that are defined in the Controller Properties dialog
box, User Protocol tab

To program the AWA instruction, follow these guidelines:

1. Configure the serial port of the controller:

a. Does your application also include ARD or ARL instructions?

b. Define the characters to append to the data.

2. This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition. See .

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit does not apply to this instruction.

.LEN DINT The length indicates the number of characters to send.

.POS DINT The position displays the number of characters that were sent.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.

If Then

Yes Select User mode

No Select either System or User mode
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 597
3. Each time the instruction executes, do you always send the same
number of characters?

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

If Then

Yes In the Serial Port Control Length, enter the number of characters to
send.

No Before the instruction executes, set the LEN member of the Source
tag to the LEN member of the Serial Port Control tag.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes when rung-condition-in
toggles from cleared to set.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction sends a specified number of characters and appends either one or two
predefined characters.

The .EN bit is set.

The remaining status bits, except .UL, are cleared.

The instruction attempts to enter the ASCII queue.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

598 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Example 1: When the temperature exceeds the high limit (temp_high is set), the
AWA instruction sends a message to a MessageView terminal that is
connected to the serial port of the controller. The message contains
five characters from the DATA member of the string[1] tag, which is a
string. (The $14 counts as one character. It is the hex code for the
Ctrl-T character.) The instruction also sends (appends) the characters
defined in the controller properties. In this example, the AWA
instruction sends a carriage return ($0D), which marks the end of the
message.

Relay Ladder

Structured Text

IF temp_high THEN

temp_high_write.LEN := 5;

AWA(0,string[1],temp_high_write);

temp_high := 0;

END_IF;

temp_high

EN

DN

ER

ASCII Write Append
Channel 0
Source string[1]

 '$1425\1'
SerialPort Control temp_high_write
SerialPort Control Length 5
Characters Sent 6

AWA
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 599
Example 2: When alarm is set, the AWA instruction sends the specified number of
characters in alarm_msg and appends a termination character (s).
Because the number of characters in alarm_msg varies, the rung first
moves the length of the string (alarm_msg.LEN) to the Serial Port
Control Length of the AWA instruction (alarm_write.LEN). In
alarm_msg, the $14 counts as one character. It is the hex code for the
Ctrl-T character.

Relay Ladder

Structured Text

osri_1.InputBit := alarm;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

alarm_write.LEN := alarm_msg.LEN;

AWA(0,alarm_msg,alarm_write);

END_IF;

alarm

Move
Source alarm_msg.LEN
 5
Dest alarm_write.LEN
 5

MOV
EN

DN

ER

ASCII Write Append
Channel 0
Source alarm_msg

 '$1425\1'
SerialPort Control alarm_write
SerialPort Control Length 5
Characters Sent 6

AWA
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

600 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
ASCII Write (AWT) The AWT instruction sends a specified number of characters of the
Source tag to a serial device.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
AWT instruction. However, you specify the Serial Port Control Length
and the Characters Sent values by accessing the .LEN and .POS
members of the SERIAL_PORT_CONTROL structure, rather than by
including the values in the operand list

EN

DN

ER

ASCII Write
Channel ?
Source ?

 ??
SerialPort Control ?
SerialPort Control Length ?
Characters Sent ?

AWT

Operand Type Format Enter Notes

Channel DINT immediate

tag

0

Source string

SINT

INT

DINT

tag tag that contains the
characters to send:

• For a string data type,
enter the name of the
tag.

• For a SINT, INT, or DINT
array, enter the first
element of the array.

• If you want to compare, convert, or
manipulate the characters, use a string data
type.

• String data types are:

• default STRING data type

• any new string data type that you create

Serial Port

Control

SERIAL_PORT_

CONTROL

tag tag that controls the
operation

Serial Port
Control Length

DINT immediate number of characters to
send

• The Serial Port Control Length must be less
than or equal to the size of the Source.

• If you want to set the Serial Port Control
Length equal to the number of characters in
the Source, enter 0.

Characters Sent DINT immediate 0 During execution, displays the number of
characters that were sent.

AWT(Channel,Source,
SerialPortControl);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 601
SERIAL_PORT_CONTROL Structure

Description: The AWT instruction sends the specified number of characters (Serial
Port Control Length) of the Source tag to the device that is connected
to the serial port of the controller.

To program the AWT instruction, follow these guidelines:

1. Configure the serial port of the controller:

2. This is a transitional instruction:

• In relay ladder, toggle the rung-condition-in from cleared to
set each time the instruction should execute.

• In structured text, condition the instruction so that it only
executes on a transition. See .

3. Each time the instruction executes, do you always send the same
number of characters?

Mnemonic Data Type Description

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit does not apply to this instruction.

.LEN DINT The length indicates the number of characters to send.

.POS DINT The position displays the number of characters that were sent.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.

If Your Application Then

uses ARD or ARL instructions Select User mode

does not use ARD or ARL
instructions

Select either System or User mode

If Then

Yes In the Serial Port Control Length, enter the number of characters to
send.

No Before the instruction executes, move the LEN member of the Source
tag to the LEN member of the Serial Port Control tag.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

602 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Example 1: When the temperature reaches the low limit (temp_low is set), the
AWT instruction sends a message to the MessageView terminal that is
connected to the serial port of the controller. The message contains
nine characters from the DATA member of the string[2] tag, which is a
string. (The $14 counts as one character. It is the hex code for the
Ctrl-T character.) The last character is a carriage return ($r), which
marks the end of the message.

Relay Ladder

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes when rung-condition-in
toggles from cleared to set.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction sends a specified number of characters.

The .EN bit is set.

The remaining status bits, except .UL, are cleared.

The instruction attempts to enter the ASCII queue.

postscan The rung-condition-out is set to false. No action taken.

temp_low

EN

DN

ER

ASCII Write
Channel 0
Source string[2]

 '$142224\01$r'
SerialPort Control temp_low_write
SerialPort Control Length 9
Characters Sent 9

AWT
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT) 603
Structured Text

osri_1.InputBit := temp_low;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

temp_low_write.LEN := 9;

AWT(0,string[2],temp_low_write);

END_IF;

Example 2: When MV_update is set, the AWT instruction sends the characters in
MV_msg. Because the number of characters in MV_msg varies, the
rung first moves the length of the string (MV_msg.LEN) to the Serial
Port Control Length of the AWT instruction (MV_write.LEN). In
MV_msg, the $16 counts as one character. It is the hex code for the
Ctrl-V character.

Relay Ladder

Structured Text

osri_1.InputBit := MV_update;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

MV_write.LEN := Mv_msg.LEN;

AWT(0,MV_msg,MV_write);

END_IF;

MV_update

Move
Source MV_msg.LEN

 10
Dest MV_write.LEN

 10

MOV
EN

DN

ER

ASCII Write
Channel 0
Source MV_msg

 '$161365\8\1$r'
SerialPort Control MV_write
SerialPort Control Length 10
Characters Sent 10

AWT
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

604 ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
Notes:
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 19

ASCII String Instructions
(CONCAT, DELETE, FIND, INSERT, MID)

Introduction Use the ASCII string instructions to modify and create strings of
ASCII characters.

You can also use the following instructions to compare or convert
ASCII characters:

If you want to For example Use this
instruction

Available in these
languages

See page

add characters to the end of a string add termination characters or
delimiters to a string

CONCAT relay ladder

structured text

608

delete characters from a string remove header or control characters
from a string

DELETE relay ladder

structured text

610

determine the starting character of a
sub-string

locate a group of characters within a
string

FIND relay ladder

structured text

612

insert characters into a string create a string that uses variables INSERT relay ladder

structured text

614

extract characters from a string extract information from a bar code MID relay ladder

structured text

616

If you want to Use this instruction See page

compare a string to another string CMP 207

see if the characters are equal to specific characters EQU 212

see if the characters are not equal to specific characters NEQ 243

see if the characters are equal to or greater than specific characters GEQ 212

see if the characters are greater than specific characters GRT 220

see if the characters are equal to or less than specific characters LEQ 224

see if the characters are less than specific characters LES 228

rearrange the bytes of a INT, DINT, or REAL tag SWPB 301

find a string in an array of strings FSC 349

convert characters to a SINT, INT, DINT, or REAL value STOD 622
605 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

606 ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
convert characters to a REAL value STOR 624

convert a SINT, INT, DINT, or REAL value to a string of ASCII characters DTOS 626

convert REAL value to a string of ASCII characters RTOS 629

If you want to Use this instruction See page
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID) 607
String Data Types

You store ASCII characters in tags that use a string data type.

• You can use the default STRING data type. It stores up to 82
characters.

• You can create a new string data type that stores less or more
characters.

To create a new string data type, see Logix5000 Controllers Common
Procedures, publication 1756-PM001.

Each string data type contains the following members:

Name Data Type Description Notes

LEN DINT number of characters
in the string

The LEN automatically updates to the new count of characters whenever you:

• use the String Browser dialog box to enter characters

• use instructions that read, convert, or manipulate a string

The LEN shows the length of the current string. The DATA member may contain
additional, old characters, which are not included in the LEN count.

DATA SINT array ASCII characters of
the string

• To access the characters of the string, address the name of the tag.

For example, to access the characters of the string_1 tag, enter string_1.

• Each element of the DATA array contains one character.

• You can create new string data types that store less or more characters.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

608 ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
String Concatenate
(CONCAT)

The CONCAT instruction adds ASCII characters to the end of a string.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
CONCAT instruction.

Description: The CONCAT instruction combines the characters in Source A with the
characters in Source B and places the result in the Destination.

• The characters from Source A are first, followed by the
characters from Source B.

• Unless Source A and the Destination are the same tag, Source A
remains unchanged.

Arithmetic Status Flags: not affected

Fault Conditions:

String Concatenate
Source A ?
 ??
Source B ?
 ??
Dest ?
 ??

CONCAT

Operand Type Format Enter Notes

Source A string tag tag that contains the initial
characters

String data types are:

• default STRING data type

• any new string data type that you create
Source B string tag tag that contains the end

characters

Destination string tag tag to store the result

CONCAT(SourceA,SourceB,
Dest);

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is
greater than the DATA size of the
string tag.

1. Check that no instruction is writing to the LEN member of the string tag.

2. In the LEN value, enter the number of characters that the string
contains.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID) 609
Execution:

Example: To trigger a message in a MessageView terminal, the controller must
send an ASCII string that contains a message number and node
number. String_1 contains the message number. When add_node is
set, the CONCAT instruction adds the characters in node_num_ascii
(node number) to the end of the characters in string_1 and then stores
the result in msg.

Relay Ladder

Structured Text

IF add_node THEN

CONCAT(string_1,node_num_ascii,msg);

add_node := 0;

END_IF;

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction concatenates the strings.

postscan The rung-condition-out is set to false. No action taken.

add_node

String Concatenate
Source A string_1

 '$1423\'
Source B node_num_ascii

 '1'
Dest msg

 '$1423\1'

CONCAT
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

610 ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
String Delete (DELETE) The DELETE instruction removes ASCII characters from a string.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
DELETE instruction.

Description: The DELETE instruction deletes (removes) a group of characters from
the Source and places the remaining characters in the Destination.

• The Start position and Quantity define the characters to remove.

• Unless the Source and Destination are the same tag, the Source
remains unchanged.

String Delete
Source ?
 ??
Qty ?
 ??
Start ?
 ??
Dest ?
 ??

DELETE

Operand Type Format Enter Notes

Source string tag tag that contains the string
from which you want to
delete characters

String data types are:

• default STRING data type

• any new string data type that you create

Quantity SINT

INT

DINT

immediate

tag

number of characters to
delete

The Start plus the Quantity must be less than or
equal to the DATA size of the Source.

Start SINT

INT

DINT

immediate

tag

position of the first
character to delete

Enter a number between 1 and the DATA size of
the Source.

Destination string tag tag to store the result

DELETE(Source,Qty,Start,
Dest);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID) 611
Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

Example: ASCII information from a terminal contains a header character. After
the controller reads the data (term_read.EM is set) the DELETE
instruction removes the header character.

Relay Ladder

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is
greater than the DATA size of the
string tag.

1. Check that no instruction is writing to the LEN member of the string tag.

2. In the LEN value, enter the number of characters that the string
contains.

4 56 The Start or Quantity value is invalid. 1. Check that the Start value is between 1 and the DATA size of the
Source.

2. Check that the Start value plus the Quantity value is less than or equal
to the DATA size of the Source.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction deletes the specified characters.

postscan The rung-condition-out is set to false. No action taken.

term_read.EM

String Delete
Source term_input

 '$0655'
Qty 1

Start 1

Dest term_text

 '55'

DELETE
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

612 ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
Structured Text

IF term_read.EM THEN

DELETE(term_input,1,1,term_text);

term_read.EM := 0;

END_IF;

Find String (FIND) The FIND instruction locates the starting position of a specified string
within another string

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
FIND instruction described above.

Find String
Source ?
 ??
Search ?
 ??
Start ?
 ??
Result ?
 ??

FIND

Operand Type Format Enter Notes

Source string tag string to search in String data types are:

• default STRING data type

• any new string data type that you create

Search string tag string to find

Start SINT

INT

DINT

immediate

tag

position in Source to start
the search

Enter a number between 1 and the DATA size of
the Source.

Result SINT

INT

DINT

tag tag that stores the starting
position of the string to find

FIND(Source,Search,Start,
Result);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID) 613
Description: The FIND instruction searches the Source string for the Search string.
If the instruction finds the Search string, the Result shows the starting
position of the Search string within the Source string.

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

Example: A message from a MessageView terminal contains several pieces of
information. The backslash character [\] separates each piece of
information. To locate a piece of information, the FIND instruction
searches for the backslash character and records its position in
find_pos.

Relay Ladder

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is
greater than the DATA size of the
string tag.

1. Check that no instruction is writing to the LEN member of the string tag.

2. In the LEN value, enter the number of characters that the string
contains.

4 56 The Start value is invalid. Check that the Start value is between 1 and the DATA size of the Source.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction searches for the specified characters.

postscan The rung-condition-out is set to false. No action taken.

MV_read.EM

Find String
Source MV_msg
 '$06324\12\1\$r'
Search find

 '\'
Start 1

Result find_pos

5

FIND
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

614 ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
Structured Text

IF MV_read.EM THEN

FIND(MV_msg,find,1,find_pos);

MV_read.EM := 0;

END_IF;

Insert String (INSERT) The INSERT instruction adds ASCII characters to a specified location
within a string.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
INSERT instruction.

Description: The INSERT instruction adds the characters in Source B to a
designated position within Source A and places the result in the
Destination:

• Start defines where in Source A that Source B is added.

• Unless SourceA and the Destination are the same tag, Source A
remains unchanged.

Insert String
Source A ?
 ??
Source B ?
 ??
Start ?
 ??
Dest ?
 ??

INSERT

Operand Type Format Enter Notes

Source A string tag string to add the characters
to

String data types are:

• default STRING data type

• any new string data type that you create
Source B string tag string containing the

characters to add

Start SINT

INT

DINT

immediate

tag

position in Source A to add
the characters

Enter a number between 1 and the DATA size of
the Source.

Result string tag string to store the result

INSERT(SourceA,SourceB,
Start,Dest);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID) 615
Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

Example: When temp_high is set, the INSERT instruction adds the characters in
string_2 to position 2 within string_1 and places the result in string_3:

Relay Ladder

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is
greater than the DATA size of the
string tag.

1. Check that no instruction is writing to the LEN member of the string tag.

2. In the LEN value, enter the number of characters that the string
contains.

4 56 The Start value is invalid. Check that the Start value is between 1 and the DATA size of the Source.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction inserts the specified characters.

postscan The rung-condition-out is set to false. No action taken.

temp_high

Insert String
Source A string_1

 'AD'
Source B string_2

 'BC'
Start 2

Dest string_3

 'ABCD'

INSERT
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

616 ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
Structured Text

IF temp_high THEN

INSERT(string_1,string_2,2,string_3);

temp_high := 0;

END_IF;

Middle String (MID) The MID instruction copies a specified number of ASCII characters
from a string and stores them in another string.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
MID instruction.

Middle String
Source ?
 ??
Qty ?
 ??
Start ?
 ??
Dest ?
 ??

MID

Operand Type Format Enter Notes

Source string tag string to copy characters
from

String data types are:

• default STRING data type

• any new string data type that you create

Quantity SINT

INT

DINT

immediate

tag

number of characters to
copy

The Start plus the Quantity must be less than or
equal to the DATA size of the Source.

Start SINT

INT

DINT

immediate

tag

position of the first
character to copy

Enter a number between 1 and the DATA size of
the Source.

Destination string tag string to copy the
characters to

MID(Source,Qty,Start,
Dest);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID) 617
Description: The MID instruction copies a group of characters from the Source and
places the result in the Destination.

• The Start position and Quantity define the characters to copy.

• Unless the Source and Destination are the same tag, the Source
remains unchanged.

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

Example: In a baggage handling conveyor of an airport, each bag gets a bar
code. Characters 9 - 17 of the bar code are the flight number and
destination airport of the bag. After the bar code is read (bag_read.EM
is set) the MID instruction copies the flight number and destination
airport to the bag_flt_and_dest string.

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is
greater than the DATA size of the
string tag.

1. Check that no instruction is writing to the LEN member of the string tag.

2. In the LEN value, enter the number of characters that the string
contains.

4 56 The Start or Quantity value is invalid. 1. Check that the Start value is between 1 and the DATA size of the
Source.

2. Check that the Start value plus the Quantity value is less than or equal
to the DATA size of the Source.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction copies the specified characters from a string and stores them in another string.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

618 ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
Relay Ladder

Structured Text

IF bag_read.EM THEN

MID(bar_barcode,9,9,bag_flt_and_dest);

bag_read.EM := 0;

END_IF;

bag_read.EM

Middle String
Source bag_barcode
 'NWA HOP 5058 AMS 01'

Qty 9

Start 9

Dest bag_flt_and_dest
 '5058 AMS '

MID
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Chapter 20

ASCII Conversion Instructions
(STOD, STOR, DTOS, RTOS, UPPER, LOWER)

Introduction Use the ASCII conversion instructions to alter the format of data.

If You Want To For Example Use This
Instruction

Available In These
Languages

See Page

convert the ASCII representation of
an integer value to a SINT, INT, DINT,
or REAL value

convert a value from a weight scale
or other ASCII device to an integer so
you can use it in your logic

STOD relay ladder

structured text

622

convert the ASCII representation of a
floating-point value to a REAL value

convert a value from a weight scale
or other ASCII device to a REAL value
so you can use it in your logic

STOR relay ladder

structured text

624

convert a SINT, INT, DINT, or REAL
value to a string of ASCII characters

convert a variable to an ASCII string
so you can send it to a MessageView
terminal

DTOS relay ladder

structured text

626

convert a REAL value to a string of
ASCII characters

convert a variable to an ASCII string
so you can send it to a MessageView
terminal

RTOS relay ladder

structured text

629

convert the letters in a string of ASCII
characters to upper case

convert an entry made by an operator
to all upper case so you can search
for it in an array

UPPER relay ladder

structured text

631

convert the letters in a string of ASCII
characters to lower case

convert an entry made by an operator
to all lower case so you can search
for it in an array

LOWER relay ladder

structured text

633
619 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

620 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
You can also use the following instructions to compare or manipulate
ASCII characters:

If You Want To Use This Instruction See Page

add characters to the end of a string CONCAT 608

delete characters from a string DELETE 610

determine the starting character of a sub-string FIND 612

insert characters into a string INSERT 614

extract characters from a string MID 616

rearrange the bytes of a INT, DINT, or REAL tag SWPB 301

compare a string to another string CMP 207

see if the characters are equal to specific characters EQU 212

see if the characters are not equal to specific characters NEQ 243

see if the characters are equal to or greater than specific characters GEQ 216

see if the characters are greater than specific characters GRT 220

see if the characters are equal to or less than specific characters LEQ 224

see if the characters are less than specific characters LES 228

find a string in an array of strings FSC 349
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER) 621
String Data Types

You store ASCII characters in tags that use a string data type.

• You can use the default STRING data type. It stores up to 82
characters.

• You can create a new string data type that stores less or more
characters.

To create a new string data type, see Logix5000 Controllers Common
Procedures, publication 1756-PM001.

Each string data type contains the following members:

Name: Data Type: Description: Notes:

LEN DINT number of characters
in the string

The LEN automatically updates to the new count of characters whenever you:

• use the String Browser dialog box to enter characters

• use instructions that read, convert, or manipulate a string

The LEN shows the length of the current string. The DATA member may contain
additional, old characters, which are not included in the LEN count.

DATA SINT array ASCII characters of
the string

• To access the characters of the string, address the name of the tag.

For example, to access the characters of the string_1 tag, enter string_1.

• Each element of the DATA array contains one character.

• You can create new string data types that store less or more characters.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

622 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
String To DINT (STOD) The STOD instruction converts the ASCII representation of an integer
to an integer or REAL value.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
STOD instruction.

Description: The STOD converts the Source to an integer and places the result in
the Destination.

• The instruction converts positive and negative numbers.

• If the Source string contains non-numeric characters, the STOD
converts the first set of contiguous numbers:

– The instruction skips any initial control or non-numeric
characters (except the minus sign in front of a number).

– If the string contains multiple groups of numbers that are
separated by delimiters (for example, /), the instruction
converts only the first group of numbers.

Arithmetic Status Flags: Arithmetic status flags are affected.

String To DINT
Source ?
 ??
Dest ?
 ??

STOD

Operand Type Format Enter Notes

Source string tag tag that contains the value
in ASCII

String data types are:

• default STRING data type

• any new string data type that you create

Destination SINT

INT

DINT

REAL

tag tag to store the integer
value

If the Source value is a floating-point number,
the instruction converts only the non-fractional
part of the number (regardless of the
destination data type).

STOD(Source,Dest);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER) 623
Fault Conditions

Execution:

Example: When MV_read.EM is set, the STOD instruction converts the first set
of numeric characters in MV_msg to an integer value. The instruction
skips the initial control character ($06) and stops at the delimiter (\).

Relay Ladder

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is greater than the DATA
size of the string tag.

1. Check that no instruction is writing to the LEN
member of the string tag.

2. In the LEN value, enter the number of characters
that the string contains.

4 53 The output number is beyond the limits of the
destination data type.

Either:

• Reduce the size of the ASCII value.

• Use a larger data type for the destination.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution SC is set.

Destination is cleared.

The instruction converts the Source.

If the result is zero, then S:Z is set

postscan The rung-condition-out is set to false. No action taken.

MV_read.EM

String To DINT
Source MV_msg
 '$06324\12\1\$r'
Dest MV_msg_nmbr

 324

STOD
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

624 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
Structured Text

IF MV_read.EM THEN

STOD(MV_msg,MV_msg_nmbr);

MV_read.EM := 0;

END_IF;

String To REAL (STOR) The STOR instruction converts the ASCII representation of a
floating-point value to a REAL value.

Operands:

Relay Ladder Operands

Structured Text

The operands are the same as those for the relay ladder
STOR instruction.

Description: The STOR converts the Source to a REAL value and places the result in
the Destination.

• The instruction converts positive and negative numbers.

• If the Source string contains non-numeric characters, the STOR
converts the first set of contiguous numbers, including the
decimal point [.]:

– The instruction skips any initial control or non-numeric
characters (except the minus sign in front of a number).

– If the string contains multiple groups of numbers that are
separated by delimiters (for example, /), the instruction
converts only the first group of numbers.

String to Real
Source ?
 ??
Dest ?
 ??

STOR

Operand Type Format Enter Notes

Source string tag tag that contains the value
in ASCII

String data types are:

• default STRING data type

• any new string data type that you create

Destination REAL tag tag to store the REAL value

STOR(Source,Dest);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER) 625
Arithmetic Status Flags: Arithmetic status flags are affected.

Fault Conditions:

Execution:

Example: After reading the weight from a scale (weight_read.EM is set) the
STOR instruction converts the numeric characters in weight_ascii to a
REAL value.

You may see a slight difference between the fractional parts of the
Source and Destination.

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is greater than the DATA
size of the string tag.

1. Check that no instruction is writing to the LEN
member of the string tag.

2. In the LEN value, enter the number of characters
that the string contains.

4 53 The output number is beyond the limits of the
destination data type.

Either:

• Reduce the size of the ASCII value.

• Use a larger data type for the destination.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is ste na EnableIn is always set.

The instruction executes.

instruction execution S:C is set.

Destination is cleared.

The instruction converts the Source.

If the result is zero, then S:Z is set

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

626 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
Relay Ladder

Structured Text

IF weight_read.EM THEN

STOR(weight_ascii,weight);

weight_read.EM := 0;

END_IF;

DINT to String (DTOS) The DTOS instruction produces the ASCII representation of a value.

Operands:

Relay Ladder

weight_read.EM

String to Real
Source weight_ascii

 '428.259'
Dest weight

 428.259

STOR

DINT to String
Source ?
 ??
Dest ?
 ??

DTOS

Operand Type Format Enter Notes

Source SINT

INT

DINT

REAL

tag tag that contains the value If the Source is a REAL, the instruction converts
it to a DINT value. Refer to REAL to an integer
on page 640.

Destination string tag tag to store the ASCII value String data types are:

• default STRING data type

• any new string data type that you create
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER) 627
Structured Text

The operands are the same as those for the relay ladder
DTOS instruction.

Description: The DTOS converts the Source to a string of ASCII characters and
places the result in the Destination.

Arithmetic Status Flags: not affected

Fault Conditions:

Execution:

Example: When temp_high is set, the DTOS instruction converts the value in
msg_num to a string of ASCII characters and places the result in
msg_num_ascii. Subsequent rungs insert or concatenate
msg_num_ascii with other strings to produce a complete message for
a display terminal.

DTOS(Source,Dest);

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is greater than the DATA
size of the string tag.

1. Check that no instruction is writing to the LEN
member of the string tag.

2. In the LEN value, enter the number of characters
that the string contains.

4 52 The output string is larger than the destination. Create a new string data type that is large enough for
the output string. Use the new string data type as the
data type for the destination.

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction converts the Source.

postscan The rung-condition-out is set to false. No action taken.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

628 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
Relay Ladder

Structured Text

IF temp_high THEN

DTOS(msg_num,msg_num_ascii);

temp_high := 0;

END_IF;

temp_high

DINT to String
Source msg_num

 23
Dest msg_num_ascii

 '23'

DTOS
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER) 629
REAL to String (RTOS) The RTOS instruction produces the ASCII representation of a
REAL value.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
RTOS instruction.

Description: The RTOS converts the Source to a string of ASCII characters and
places the result in the Destination.

Arithmetic Status Flags: not affected

Fault Conditions:

Real to String
Source ?
 ??
Dest ?
 ??

RTOS

Operand Type Format Enter Notes

Source REAL tag tag that contains the REAL
value

Destination string tag tag to store the ASCII value String data types are:

• default STRING data type

• any new string data type that you create

RTOS(Source,Dest);

Type Code Cause Recovery Method

4 51 The LEN value of the string tag is greater than the DATA
size of the string tag.

1. Check that no instruction is writing to the LEN
member of the string tag.

2. In the LEN value, enter the number of characters
that the string contains.

4 52 The output string is larger than the destination. Create a new string data type that is large enough for
the output string. Use the new string data type as the
data type for the destination.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

630 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
Execution:

Example: When send_data is set, the RTOS instruction converts the value in
data_1 to a string of ASCII characters and places the result in
data_1_ascii. Subsequent rungs insert or concatenate data_1_ascii
with other strings to produce a complete message for a display
terminal.

You may see a slight difference between the fractional parts of the
Source and Destination.

Relay Ladder

Structured Text

IF send_data THEN

RTOS(data_1,data_1_ascii);

send_data := 0;

END_IF;

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction converts the Source.

postscan The rung-condition-out is set to false. No action taken.

send_data

Real to String
Source data_1

 15.3001
Dest data_1_ascii
 '15.3001003'

RTOS
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER) 631
Upper Case (UPPER) The UPPER instruction converts the alphabetical characters in a string
to upper case characters.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
UPPER instruction.

Description: The UPPER instruction converts to upper case all the letters in the
Source and places the result in the Destination.

• ASCII characters are case sensitive. Upper case “A” ($41) is not
equal to lower case “a” ($61).

• If operators directly enter ASCII characters, convert the
characters to all upper case or all lower case before you
compare them.

Any characters in the Source string that are not letters remain
unchanged.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

Source string tag tag that contains the characters that you
want to convert to upper case

Destination string tag tag to store the characters in upper case

UPPER(Source,Dest);

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

632 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
Example: To find information about a specific item, an operator enters the
catalog number of the item into an ASCII terminal. After the controller
reads the input from a terminal (terminal_read.EM is set), the UPPER
instruction converts the characters in catalog_number to all upper
case characters and stores the result in catalog_number_upper_case. A
subsequent rung then searches an array for characters that match
those in catalog_number_upper_case.

Relay Ladder

Structured Text

IF terminal_read.EM THEN

UPPER(catalog_number,catalog_number_upper_case);

terminal_read.EM := 0;

END_IF;

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction converts the Source to upper case.

postscan The rung-condition-out is set to false. No action taken.

Condition Relay Ladder Action Structured Text Action
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER) 633
Lower Case (LOWER) The LOWER instruction converts the alphabetical characters in a string
to lower case characters.

Operands:

Relay Ladder

Structured Text

The operands are the same as those for the relay ladder
LOWER instruction.

Description: The LOWER instruction converts to lower case all the letters in the
Source and places the result in the Destination.

• ASCII characters are case sensitive. Upper case “A” ($41) is not
equal to lower case “a” ($61).

• If operators directly enter ASCII characters, convert the
characters to all upper case or all lower case before you
compare them.

Any characters in the Source string that are not letters remain
unchanged.

Arithmetic Status Flags: not affected

Fault Conditions: none

Execution:

Operand Type Format Description

Source string tag tag that contains the characters that you
want to convert to lower case

Destination string tag tag to store the characters in lower case

LOWER(Source,Dest);

Condition Relay Ladder Action Structured Text Action

prescan The rung-condition-out is set to false. No action taken.

rung-condition-in is false The rung-condition-out is set to false. na

rung-condition-in is true The instruction executes.

The rung-condition-out is set to true.

na
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

634 ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
Example: To find information about a specific item, an operator enters the item
number into an ASCII terminal. After the controller reads the input
from a terminal (terminal_read.EM is set), the LOWER instruction
converts the characters in item_number to all lower case characters
and stores the result in item_number_lower_case. A subsequent rung
then searches an array for characters that match those in
item_number_lower_case.

Relay Ladder

Structured Text

IF terminal_read.EM THEN

LOWER(item_number,item_number_lower_case);

terminal_read.EM := 0;

END_IF;

EnableIn is set na EnableIn is always set.

The instruction executes.

instruction execution The instruction converts the Source to lower case.

postscan The rung-condition-out is set to false. No action taken.

Condition Relay Ladder Action Structured Text Action
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Appendix A

Common Attributes

Introduction This appendix describes attributes that are common to the
Logix instructions.

Immediate Values Whenever you enter an immediate value (constant) in decimal format
(for example, -2, 3) the controller stores the value using 32 bits. If you
enter a value in a radix other than decimal, such as binary or
hexadecimal, and do not specify all 32 bits, the controller places a
zero in the bits that you do not specify (zero-fill).

Data Conversions Data conversions occur when you mix data types in your
programming:

For Information About See Page

Immediate Values 635

Data Conversions 635

EXAMPLE Zero-filling of immediate values

If You Enter The Controller Stores

-1 16#ffff ffff (-1)

16#ffff (-1) 16#0000 ffff (65535)

8#1234 (668) 16#0000 029c (668)

2#1010 (10) 16#0000 000a (10)

When Programming in Conversions Can Occur When You

Relay Ladder Logic Mix data types for the parameters within one instruction

Function Block Wire two parameters that have different data types
635 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

636 Common Attributes
Instructions execute faster and require less memory if all the operands
of the instruction use:

• the same data type

• an optimal data type:

– In the “Operands” section of each instruction in this manual, a
bold data type indicates an optimal data type.

– The DINT and REAL data types are typically the optimal
data types.

– Most function block instruction only support one data type
(the optimal data type) for its operands.

If you mix data types and use tags that are not the optimal data type,
the controller converts the data according to these rules

• Are any of the operands a REAL value?

• After instruction execution, the result (a DINT or REAL value)
converts to the destination data type, if necessary.

You cannot specify a BOOL tag in an instruction that operates on
integer or REAL data types.

Because the conversion of data takes additional time and memory,
you can increase the efficiency of your programs by:

• using the same data type throughout the instruction

• minimizing the use of the SINT or INT data types

In other words, use all DINT tags or all REAL tags, along with
immediate values, in your instructions.

The following sections explain how the data is converted when you
use SINT or INT tags or when you mix data types.

If Then input operands (for example., source, tag in an expression,
limit) convert to

Yes REALs

No DINTs
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Common Attributes 637
SINT or INT to DINT

For those instructions that convert SINT or INT values to DINT values,
the “Operands” sections in this manual identify the conversion
method.

The following example shows the results of converting a value using
sign-extension and zero-fill.

Because immediate values are always zero-filled, the conversion of a
SINT or INT value may produce unexpected results. In the following
example, the comparison is false because Source A, an INT, converts
by sign-extension; while Source B, an immediate value, is zero-filled.

This Conversion Method Converts Data By Placing

Sign-extension the value of the left-most bit (the sign of the value) into
each bit position to the left of the existing bits until there
are 32 bits.

Zero-fill zeroes to the left of the existing bits until there are 32
bits

This value 2#1111_1111_1111_1111 (-1)

Converts to this
value by
sign-extension

2#1111_1111_1111_1111_1111_1111_1111_1111 (-1)

Converts to this
value by zero-fill

2#0000_0000_0000_0000_1111_1111_1111_1111 (65535)

dder Logic Listing - Total number of rungs: 3

Equal
Source A remote_rack_1:I.Data[0]
 2#1111_1111_1111_1111
Source B 2#1111_1111_1111_1111

EQU

42093
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

638 Common Attributes
If you use a SINT or INT tag and an immediate value in an instruction
that converts data by sign-extension, use one of these methods to
handle immediate values:

• Specify any immediate value in the decimal radix

• If you are entering the value in a radix other than decimal,
specify all 32 bits of the immediate value. To do so, enter the
value of the left-most bit into each bit position to its left until
there are 32 bits.

• Create a tag for each operand and use the same data type
throughout the instruction. To assign a constant value, either:

– Enter it into one of the tags

– Add a MOV instruction that moves the value into one of the
tags.

• Use a MEQ instruction to check only the required bits

The following examples show two ways to mix an immediate value
with an INT tag. Both examples check the bits of a 1771 I/O module
to determine if all the bits are on. Since the input data word of a 1771
I/O module is an INT tag, it is easiest to use a 16-bit constant value.

EXAMPLE Mixing an INT tag with an immediate value

Since remote_rack_1:I.Data[0] is an INT tag, the value to check
it against is also entered as an INT tag.

EXAMPLE Mixing an INT tag with an immediate value

Since remote_rack_1:I.Data[0] is an INT tag, the
value to check it against first moves into int_0, also
an INT tag. The EQU instruction then compares both
tags.

Equal
Source A remote_rack_1:I.Data[0]
 2#1111_1111_1111_1111
Source B int_0
 2#1111_1111_1111_1111

EQU

42093

 2#1111_1111_1111_1111

Move
Source 2#1111_1111_1111_1111

Dest int_0
 2#1111_1111_1111_1111

MOV
Equal
Source A remote_rack_1:I.Data[0]
 2#1111_1111_1111_1111
Source B int_0
 2#1111_1111_1111_1111

EQU

42093
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Common Attributes 639
Integer to REAL

The controller stores REAL values in IEEE single-precision,
floating-point number format. It uses one bit for the sign of the value,
23 bits for the base value, and eight bits for the exponent (32 bits
total). If you mix an integer tag (SINT, INT, or DINT) and a REAL tag
as inputs in the same instruction, the controller converts the integer
value to a REAL value before the instruction executes.

• A SINT or INT value always converts to the same REAL value.

• A DINT value may not convert to the same REAL value:

– A REAL value uses up to 24 bits for the base value (23 stored
bits plus a “hidden” bit).

– A DINT value uses up to 32 bits for the value (one for the
sign and 31 for the value).

– If the DINT value requires more than 24 significant bits, it
may not convert to the same REAL value. If it will not, the
controller rounds to the nearest REAL value using 24
significant bits.

DINT to SINT or INT

To convert a DINT value to a SINT or INT value, the controller
truncates the upper portion of the DINT and sets the overflow status
flag, if necessary. The following example shows the result of a DINT
to SINT or INT conversion.

EXAMPLE Conversion of a DINT to an INT and a SINT

This DINT Value Converts To This Smaller Value

16#0001_0081 (65,665) INT: 16#0081 (129)

SINT: 16#81 (-127)
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

640 Common Attributes
REAL to an integer

To convert a REAL value to an integer value, the controller rounds the
fractional part and truncates the upper portion of the non-fractional
part. If data is lost, the controller sets the overflow status flag.
Numbers round as follows:

• Numbers other than x.5 round to the nearest whole number.

• X.5 rounds to the nearest even number.

The following example show the result of converting REAL values to
DINT values.

EXAMPLE Conversion of REAL values to DINT values

IMPORTANT The arithmetic status flags are set based on the value being
stored. Instructions that normally do not affect arithmetic
status keywords might appear to do so if type conversion
occurs because of mixed data types for the instruction
parameters. The type conversion process sets the arithmetic
status keywords.

This REAL Value Converts To This DINT Value

-2.5 -2

-1.6 -2

-1.5 -2

-1.4 -1

1.4 1

1.5 2

1.6 2

2.5 2
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Appendix B

Function Block Attributes

Introduction This appendix describes issues that are unique with function block
instructions. Review the information in this appendix to make sure
you understand how your function block routines will operate.

Choose the Function Block
Elements

To control a device, use the following elements:

IMPORTANT When programming in function block, restrict the range of engineering units to
+/-10+/-15 because internal floating point calculations are done using single
precision floating point. Engineering units outside of this range may result in a
loss of accuracy if results approach the limitations of single precision floating
point (+/-10+/-38).

input reference (IREF) function block

output wire
connector
(OCON)

output reference (OREF)

input wire
connector

(ICON)
641 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

642 Function Block Attributes
Use the following table to choose your function block elements:z

Latching Data If you use an IREF to specify input data for a function block
instruction, the data in that IREF is latched for the scan of the function
block routine. The IREF latches data from program-scoped and
controller-scoped tags. The controller updates all IREF data at the
beginning of each scan.

In this example, the value of tagA is stored at the beginning of the
routine’s execution. The stored value is used when Block_01
executes. The same stored value is also used when Blcock_02
executes. If the value of tagA changes during execution of the routine,
the stored value of tagA in the IREF does not change until the next
execution of the routine.

If You Want To Use a

supply a value from an input device or tag input reference (IREF)

send a value to an output device or tag output reference (OREF)

perform an operation on an input value or values and
produce an output value or values

function block

transfer data between function blocks when they
are:

• far apart on the same sheet

• on different sheets within the same routine

output wire connector (OCON) and an input wire
connector (ICON)

disperse data to several points in the routine single output wire connector (OCON) and multiple
input wire connectors (ICON)

IREF

tagA

Block_01

Block_02
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 643
This example is the same as the one above. The value of tagA is
stored only once at the beginning of the routine’s execution. The
routine uses this stored value throughout the routine.

Starting with RSLogix 5000 software, version 11, you can use the same
tag in multiple IREFs and an OREF in the same routine. Because the
values of tags in IREFs are latched every scan through the routine, all
IREFs will use the same value, even if an OREF obtains a different tag
value during execution of the routine. In this example, if tagA has a
value of 25.4 when the routine starts executing this scan, and
Block_01 changes the value of tagA to 50.9, the second IREF wired
into Block_02 will still use a value of 25.4 when Block_02 executes
this scan. The new tagA value of 50.9 will not be used by any IREFs in
this routine until the start of the next scan.

tagA

Block_01

Block_02

tagA
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

644 Function Block Attributes
Order of Execution The RSLogix 5000 programming software automatically determines the
order of execution for the function blocks in a routine when you:

• verify a function block routine

• verify a project that contains a function block routine

• download a project that contains a function block routine

You define execution order by wiring function blocks together and
indicating the data flow of any feedback wires, if necessary.

If function blocks are not wired together, it does not matter which
block executes first. There is no data flow between the blocks.

If you wire the blocks sequentially, the execution order moves from
input to output. The inputs of a block require data to be available
before the controller can execute that block. For example, block 2 has
to execute before block 3 because the outputs of block 2 feed the
inputs of block 3.

Execution order is only relative to the blocks that are wired together.
The following example is fine because the two groups of blocks are
not wired together. The blocks within a specific group execute in the
appropriate order in relation to the blocks in that group.

1 2 3

1 3 5

2 4 6
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 645
Resolve a Loop

To create a feedback loop around a block, wire an output pin of the
block to an input pin of the same block. The following example is
OK. The loop contains only a single block, so execution order does
not matter.

If a group of blocks are in a loop, the controller cannot determine
which block to execute first. In other words, it cannot resolve the
loop.

To identify which block to execute first, mark the input wire that
creates the loop (the feedback wire) with the Assume Data Available
indicator. In the following example, block 1 uses the output from
block 3 that was produced in the previous execution of the routine.

The Assume Data Available indicator defines the data flow within the
loop. The arrow indicates that the data serves as input to the first
block in the loop.

This input pin uses an output that
the block produced on the

previous scan.

?? ?

1 2 3

This input pin uses the output
that block 3 produced on the

previous scan.

Assume Data Available indicator
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

646 Function Block Attributes
Do not mark all the wires of a loop with the Assume Data Available
indicator.

This is OK This is NOT OK

The Assume Data Available indicator defines the data flow within
the loop.

The controller cannot resolve the loop because all the wires use the
Assume Data Available indicator.

Assume Data Available
indicator

21 ??
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 647
Resolve Data Flow Between Two Blocks

If you use two or more wires to connect two blocks, use the same
data flow indicators for all of the wires between the two blocks.

This is OK This is NOT OK

Neither wire uses the Assume Data Available indicator.

Both wires use the Assume Data Available indicator.

One wire uses the Assume Data Available indicator while the other
wire does not.

Assume Data Available
indicator
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

648 Function Block Attributes
Create a One Scan Delay

To produce a one scan delay between blocks, use the Assume Data
Available indicator. In the following example, block 1 executes first. It
uses the output from block 2 that was produced in the previous scan
of the routine.

Summary

In summary, a function block routine executes in this order:

1. The controller latches all data values in IREFs.

2. The controller executes the other function blocks in the order
determined by how they are wired.

3. The controller writes outputs in OREFs.

2 1

Assume Data Available indicator
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 649
Function Block Responses
to Overflow Conditions

In general, the function block instructions that maintain history do not
update history with ±NAN, or ±INF values when an overflow occurs.
Each instruction has one of these responses to an overflow condition:

Response 1:

Blocks execute their algorithm and check
the result for ±NAN or ±INF. If ±NAN or
±INF, the block outputs ±NAN or ±INF.

Response 2:

Blocks with output limiting execute their
algorithm and check the result for ±NAN or
±INF. The output limits are defined by the
HighLimit and LowLimit input parameters.
If ±INF, the block outputs a limited result.
If ±NAN, the output limits are not used and
the block outputs ±NAN.

Response 3:

The overflow condition does not apply. These
instructions typically have a boolean output.

ALM NTCH

DEDT PMUL

DERV POSP

ESEL RLIM

FGEN RMPS

HPF SCRV

LDL2 SEL

LDLG SNEG

LPF SRTP

MAVE SSUM

MAXC TOT

MINC UPDN

MSTD

MUX

HLL

INTG

PI

PIDE

SCL

SOC

BAND OSRI

BNOT RESD

BOR RTOR

BXOR SETD

CUTD TOFR

D2SD TONR

D3SD

DFF

JKFF

OSFI
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

650 Function Block Attributes
Timing Modes These process control and drives instructions support different
timing modes.

There are three different timing modes:

DEDT

DERV

HPF

INTG

LDL2

LDLG

LPF

NTCH

PI

PIDE

RLIM

SCRV

SOC

TOT

Timing Mode Description

periodic Periodic mode is the default mode and is suitable for most control applications. We recommend that you place
the instructions that use this mode in a routine that executes in a periodic task. The delta time (DeltaT) for the
instruction is determined as follows:

If The Instruction
Executes In a

Then DeltaT Equals

periodic task period of the task

event or continuous
task

elapsed time since the previous execution

The controller truncates the elapsed time to whole milliseconds (ms). For example, if
the elapsed time = 10.5 ms, the controller sets DeltaT = 10 ms.

The update of the process input needs to be synchronized with the execution of the task or sampled 5-10 times
faster than the task executes in order to minimize the sampling error between the input and the instruction.

oversample In oversample mode, the delta time (DeltaT) used by the instruction is the value written into the OversampleDT
parameter of the instruction. If the process input has a time stamp value, use the real time sampling mode
instead.

Add logic to your program to control when the instruction executes. For example, you can use a timer set to the
OversampleDeltaT value to control the execution by using the EnableIn input of the instruction.

The process input needs to be sampled 5-10 times faster than the instruction is executed in order to minimize
the sampling error between the input and the instruction.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com
 https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 651
Time-based instructions require a constant value for DeltaT in order
for the control algorithm to properly calculate the process output. If
DeltaT varies, a discontinuity occurs in the process output. The
severity of the discontinuity depends on the instruction and range
over which DeltaT varies. A discontinuity occurs if the:

• instruction is not executed during a scan.

• instruction is executed multiple times during a task.

• task is running and the task scan rate or the sample time of the
process input changes.

• user changes the time base mode while the task is running.

• Order parameter is changed on a filter block while the task is
running. Changing the Order parameter selects a different
control algorithm within the instruction.

real time sampling In the real time sampling mode, the delta time (DeltaT) used by the instruction is the difference between two
time stamp values that correspond to the updates of the process input. Use this mode when the process input
has a time stamp associated with its updates and you need precise coordination.

The time stamp value is read from the tag name entered for the RTSTimeStamp parameter of the instruction.
Normally this tag name is a parameter on the input module associated with the process input.

The instruction compares the configured RTSTime value (expected update period) against the calculated
DeltaT to determine if every update of the process input is being read by the instruction. If DeltaT is not within
1 millisecond of the configuration time, the instruction sets the RTSMissed status bit to indicate that a
problem exists reading updates for the input on the module.

Timing Mode Description
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

652 Function Block Attributes
Common instruction parameters for timing modes

The instructions that support time base modes have these input and
output parameters:

Input parameters

Input Parameter Data Type Description

TimingMode DINT Selects timing execution mode.

Value: Description:

0 periodic mode

1 oversample mode

2 real time sampling mode

valid = 0 to 2

default = 0

When TimingMode = 0 and task is periodic, periodic timing is enabled and DeltaT is set to
the task scan rate. When TimingMode = 0 and task is event or continuous, periodic timing is
enabled and DeltaT is set equal to the elapsed time span since the last time the instruction
was executed.

When TimingMode = 1, oversample timing is enabled and DeltaT is set to the value of the
OversampleDT parameter.

When TimingMode = 2, real time sampling timing is enabled and DeltaT is the difference
between the current and previous time stamp values read from the module associated with
the input.

If TimingMode invalid, the instruction sets the appropriate bit in Status.

OversampleDT REAL Execution time for oversample timing. The value used for DeltaT is in seconds. If
TimingMode = 1, then OversampleDT = 0.0 disables the execution of the control algorithm. If
invalid, the instruction sets DeltaT = 0.0 and sets the appropriate bit in Status.

valid = 0 to 4194.303 seconds

default = 0.0
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 653
Output parameters

RTSTime DINT Module update period for real time sampling timing. The expected DeltaT update period is in
milliseconds. The update period is normally the value that was used to configure the
module’s update time. If invalid, the instruction sets the appropriate bit in Status and
disables RTSMissed checking.

valid = 1 to 32,767ms

default = 1

RTSTimeStamp DINT Module time stamp value for real time sampling timing. The time stamp value that
corresponds to the last update of the input signal. This value is used to calculate DeltaT. If
invalid, the instruction sets the appropriate bit in Status, disables execution of the control
algorithm, and disables RTSMissed checking.

valid =1 to 32,767ms (wraps from 32767 to 0)

1 count = 1 millisecond

default = 0

Input Parameter Data Type Description

Output Parameter Data Type Description

DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Periodic: DeltaT = task scan rate if task is Periodic task, DeltaT = elapsed time since previous
instruction execution if task is Event or Continuous task

Oversample: DeltaT = OversampleDT

Real Time Sampling: DeltaT = (RTSTimeStampn - RTSTimeStampn-1)

Status DINT Status of the function block.

TimingModeInv
(Status.27)

BOOL Invalid TimingMode value.

RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).

RTSTimeInv
(Status.29)

BOOL Invalid RTSTime value.

RTSTimeStampInv
(Status.30)

BOOL Invalid RTSTimeStamp value.

DeltaTInv (Status.31) BOOL Invalid DeltaT value.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

654 Function Block Attributes
Overview of timing modes

The following diagram shows how an instruction determines the
appropriate timing mode.

TimingMode = 2TimingMode = 1TimingMode = 0

Determine time base mode

Real time timingOversample timingPeriodic timing

Determine task type

Periodic task Event or Continuous task

DeltaT = OversampleDT

If DeltaT < 0 or DeltaT > 4194.303 secs.
the instruction sets DeltaT = 0.0 and sets
the appropriate bit in Status.

DeltaT = RTSTimeStampn - RTSTimeStampn-1

If DeltaT > 0, the instruction executes.

DeltaT = task scan time DeltaT = elapsed time since last execution
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 655
Program/Operator Control Several instructions support the concept of Program/Operator control.
These instructions include:

• Enhanced Select (ESEL)

• Totalizer (TOT)

• Enhanced PID (PIDE)

• Ramp/Soak (RMPS)

• Discrete 2-State Device (D2SD)

• Discrete 3-State Device (D3SD)

Program/Operator control lets you control these instructions
simultaneously from both your user program and from an operator
interface device. When in Program control, the instruction is
controlled by the Program inputs to the instruction; when in Operator
control, the instruction is controlled by the Operator inputs to
the instruction.

Program or Operator control is determined by using these inputs:

To determine whether an instruction is in Program or Control control,
examine the ProgOper output. If ProgOper is set, the instruction is in
Program control; if ProgOper is cleared, the instruction is in
Operator control.

Operator control takes precedence over Program control if both input
request bits are set. For example, if ProgProgReq and ProgOperReq
are both set, the instruction goes to Operator control.

Input Description

.ProgProgReq A program request to go to Program control.

.ProgOperReq A program request to go to Operator control.

.OperProgReq An operator request to go to Program control.

.OperOperReq An operator request to go to Operator control.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

656 Function Block Attributes
The Program request inputs take precedence over the Operator
request inputs. This provides the capability to use the ProgProgReq
and ProgOperReq inputs to “lock” an instruction in a desired control.
For example, let’s assume that a Totalizer instruction will always be
used in Operator control, and your user program will never control
the running or stopping of the Totalizer. In this case, you could wire a
literal value of 1 into the ProgOperReq. This would prevent the
operator from ever putting the Totalizer into Program control by
setting the OperProgReq from an operator interface device.

Because the ProgOperReq input is
always set, pressing the “Program”
button on the faceplate (which sets
the OperProgReg input) has no effect.
Normally, setting OperProgReq puts
the TOT in Program control.

Wiring a “1” into ProgOperReq means
the user program always wants the
TOT to be in Operator control
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Function Block Attributes 657
Likewise, constantly setting the ProgProgReq can “lock” the instruction
into Program control. This is useful for automatic startup sequences
when you want the program to control the action of the instruction
without worrying about an operator inadvertently taking control of the
instruction. In this example, you have the program set the
ProgProgReq input during the startup, and then clear the ProgProgReq
input once the startup was complete. Once the ProgProgReq input is
cleared, the instruction remains in Program control until it receives a
request to change. For example, the operator could set the
OperOperReq input from a faceplate to take over control of that
instruction. The following example shows how to lock an instruction
into Program control.

Operator request inputs to an instruction are always cleared by the
instruction when it executes. This allows operator interfaces to work
with these instructions by merely setting the desired mode request bit.
You don’t have to program the operator interface to reset the request
bits. For example, if an operator interface sets the OperAutoReq input
to a PIDE instruction, when the PIDE instruction executes, it
determines what the appropriate response should be and clears the
OperAutoReq.

When StartupSequenceActive
is set, the PIDE instruction is
placed in Program control and
Manual mode. The StartupCV
value is used as the loop output.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

658 Function Block Attributes
Program request inputs are not normally cleared by the instruction
because these are normally wired as inputs into the instruction. If the
instruction clears these inputs, the input would just get set again by
the wired input. There might be situations where you want to use
other logic to set the Program requests in such a manner that you
want the Program requests to be cleared by the instruction. In this
case, you can set the ProgValueReset input and the instruction will
always clear the Program mode request inputs when it executes.

In this example, a rung of ladder logic in another routine is used to
one-shot latch a ProgAutoReq to a PIDE instruction when a
pushbutton is pushed. Because the PIDE instruction automatically
clears the Program mode requests, you don’t have to write any ladder
logic to clear the ProgAutoReq after the routine executes, and the
PIDE instruction will receive only one request to go to Auto every
time the pushbutton is pressed.

When the TIC101AutoReq Pushbutton is pressed, one-shot latch ProgAutoReq for the PIDE instruction TIC101.
TIC101 has been configured with the ProgValueReset input set, so when the PIDE instruction executes, it
automatically clears ProgAutoReq.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Appendix C

Structured Text Programming

Introduction This appendix describes issues that are unique with structured text
programming. Review the information in this appendix to make sure
you understand how your structured text programming will execute.

Structured Text Syntax Structured text is a textual programming language that uses statements
to define what to execute.

• Structured text is not case sensitive.

• Use tabs and carriage returns (separate lines) to make your
structured text easier to read. They have no effect on the
execution of the structured text.

Structured text is not case sensitive. Structured text can contain these
components:

For Information About See Page

Structured Text Syntax 659

Assignments 661

Expressions 663

Instructions 670

Constructs 671

Comments 687

Term Definition Examples

assignment

(see page 661)

Use an assignment statement to assign values to tags.

The := operator is the assignment operator.

Terminate the assignment with a semi colon “;”.

tag := expression;
659 Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

660 Structured Text Programming
expression

(see page 28-663)

An expression is part of a complete assignment or construct statement.
An expression evaluates to a number (numerical expression) or to a true
or false state (BOOL expression).

An expression contains:

tags A named area of the memory where data is stored
(BOOL, SINT,INT,DINT, REAL, string).

value1

immediates A constant value. 4

operators A symbol or mnemonic that specifies an operation
within an expression.

tag1 + tag2

tag1 >= value1

functions When executed, a function yields one value. Use
parentheses to contain the operand of a function.

Even though their syntax is similar, functions differ
from instructions in that functions can only be used
in expressions. Instructions cannot be used in
expressions.

function(tag1)

instruction

(see page 28-670)

An instruction is a standalone statement.

An instruction uses parenthesis to contain its operands.

Depending on the instruction, there can be zero, one, or multiple
operands.

When executed, an instruction yields one or more values that are part of
a data structure.

Terminate the instruction with a semi colon “;”.

Even though their syntax is similar, instructions differ from functions in
that instructions cannot be used in expressions. Functions can only be
used in expressions.

instruction();

instruction(operand);

instruction(operand1,
operand2,operand3);

Term Definition Examples
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 661
Assignments Use an assignment to change the value stored within a tag. An
assignment has this syntax:

tag := expression ;

where:

construct

(see page 28-671)

A conditional statement used to trigger structured text code (i.e, other
statements).

Terminate the construct with a semi colon “;”.

IF...THEN

CASE

FOR...DO

WHILE...DO

REPEAT...UNTIL

EXIT

comment

(see page 687)

Text that explains or clarifies what a section of structured text does.

• Use comments to make it easier to interpret the structured text.

• Comments do not affect the execution of the structured text.

• Comments can appear anywhere in structured text.

//comment

(*start of comment . . .
end of comment*)

/*start of comment . . .
end of comment*/

Term Definition Examples

Component Description

tag represents the tag that is getting the new value

the tag must be a BOOL, SINT, INT, DINT, or REAL

:= is the assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT

INT

DINT

REAL

numeric expression

; ends the assignment
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

662 Structured Text Programming
The tag retains the assigned value until another assignment changes
the value.

The expression can be simple, such as an immediate value or another
tag name, or the expression can be complex and include several
operators and/or functions. See the next section “Expressions“on page
663 for details.

Specify a non-retentive assignment

The non-retentive assignment is different from the regular assignment
described above in that the tag in a non-retentive assignment is reset
to zero each time the controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

A non-retentive assignment has this syntax:

tag [:=] expression ;

where:

Component Description

tag represents the tag that is getting the new value

the tag must be a BOOL, SINT, INT, DINT, or REAL

[:=] is the non-retentive assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT

INT

DINT

REAL

numeric expression

; ends the assignment
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 663
Assign an ASCII character to a string

Use the assignment operator to assign an ASCII character to an
element of the DATA member of a string tag. To assign a character,
specify the value of the character or specify the tag name, DATA
member, and element of the character. For example:

To add or insert a string of characters to a string tag, use either of
these ASCII string instructions:

Expressions An expression is a tag name, equation, or comparison. To write an
expression, use any of the following:

• tag name that stores the value (variable)

• number that you enter directly into the expression
(immediate value)

• functions, such as: ABS, TRUNC

• operators, such as: +, -, <, >, And, Or

As you write expressions, follow these general rules:

• Use any combination of upper-case and lower-case letter. For
example, these three variations of "AND" are acceptable: AND,
And, and.

• For more complex requirements, use parentheses to group
expressions within expressions. This makes the whole
expression easier to read and ensures that the expression
executes in the desired sequence. See “Determine the order of
execution“on page 669.

This is OK This is not OK.

string1.DATA[0]:= 65; string1.DATA[0] := A;

string1.DATA[0]:= string2.DATA[0]; string1 := string2;

To Use This Instruction

add characters to the end of a string CONCAT

insert characters into a string INSERT
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

664 Structured Text Programming
In structured text, you use two types of expressions:

BOOL expression: An expression that produces either the BOOL
value of 1 (true) or 0 (false).

• A bool expression uses bool tags, relational operators, and
logical operators to compare values or check if conditions are
true or false. For example, tag1>65.

• A simple bool expression can be a single BOOL tag.

• Typically, you use bool expressions to condition the execution
of other logic.

Numeric expression: An expression that calculates an integer or
floating-point value.

• A numeric expression uses arithmetic operators, arithmetic
functions, and bitwise operators. For example, tag1+5.

• Often, you nest a numeric expression within a bool expression.
For example, (tag1+5)>65.

Use the following table to choose operators for your expressions:

If You Want To Then

Calculate an arithmetic value “Use arithmetic operators and functions“on page 665.

Compare two values or strings “Use relational operators“on page 666.

Check if conditions are true or false “Use logical operators“on page 668.

Compare the bits within values “Use bitwise operators“on page 669.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 665
Use arithmetic operators and functions

You can combine multiple operators and functions in arithmetic
expressions.

Arithmetic operators calculate new values.

Arithmetic functions perform math operations. Specify a constant, a
non-boolean tag, or an expression for the function.

To Use This Operator Optimal Data Type

add + DINT, REAL

subtract/negate - DINT, REAL

multiply * DINT, REAL

exponent (x to the power of y) ** DINT, REAL

divide / DINT, REAL

modulo-divide MOD DINT, REAL

For Use This Function Optimal Data Type

absolute value ABS (numeric_expression) DINT, REAL

arc cosine ACOS (numeric_expression) REAL

arc sine ASIN (numeric_expression) REAL

arc tangent ATAN (numeric_expression) REAL

cosine COS (numeric_expression) REAL

radians to degrees DEG (numeric_expression) DINT, REAL

natural log LN (numeric_expression) REAL

log base 10 LOG (numeric_expression) REAL

degrees to radians RAD (numeric_expression) DINT, REAL

sine SIN (numeric_expression) REAL

square root SQRT (numeric_expression) DINT, REAL

tangent TAN (numeric_expression) REAL

truncate TRUNC (numeric_expression) DINT, REAL
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

666 Structured Text Programming
For example:

Use relational operators

Relational operators compare two values or strings to provide a true
or false result. The result of a relational operation is a BOOL value:

Use the following relational operators:

Use This Format Example

For This Situation You’d Write

value1 operator value2 If gain_4 and gain_4_adj are DINT tags and your
specification says: "Add 15 to gain_4 and store the
result in gain_4_adj."

gain_4_adj :=
gain_4+15;

operator value1 If alarm and high_alarm are DINT tags and your
specification says: “Negate high_alarm and store
the result in alarm.”

alarm:=
-high_alarm;

function(numeric_expression) If overtravel and overtravel_POS are DINT tags and
your specification says: “Calculate the absolute
value of overtravel and store the result in
overtravel_POS.”

overtravel_POS :=
ABS(overtravel);

value1 operator
(function((value2+value3)/2)

If adjustment and position are DINT tags and
sensor1 and sensor2 are REAL tags and your
specification says: “Find the absolute value of the
average of sensor1 and sensor2, add the
adjustment, and store the result in position.”

position :=
adjustment +
ABS((sensor1 +
sensor2)/2);

If The Comparison Is The Result Is

true 1

false 0

For This Comparison Use This Operator Optimal Data Type

equal = DINT, REAL, string

less than < DINT, REAL, string

less than or equal <= DINT, REAL, string

greater than > DINT, REAL, string

greater than or equal >= DINT, REAL, string

not equal <> DINT, REAL, string
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 667
For example:

How Strings Are Evaluated

The hexadecimal values of the ASCII characters determine if one
string is less than or greater than another string.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

• Strings are equal if their characters match.

• Characters are case sensitive. Upper case “A” ($41) is not equal
to lower case “a” ($61).

For the decimal value and hex code of a character, see the back cover
of this manual.

Use This Format Example

For This Situation You’d Write

value1 operator value2 If temp is a DINT tag and your specification
says: “If temp is less than 100° then…”

IF temp<100 THEN...

stringtag1 operator
stringtag2

If bar_code and dest are string tags and your
specification says: “If bar_code equals dest
then…”

IF bar_code=dest THEN...

char1 operator char2

To enter an ASCII character directly into
the expression, enter the decimal value of
the character.

If bar_code is a string tag and your
specification says: “If bar_code.DATA[0] equals
’A’ then…”

IF bar_code.DATA[0]=65
THEN...

bool_tag :=
bool_expressions

If count and length are DINT tags, done is a
BOOL tag, and your specification says ”If count
is greater than or equal to length, you are done
counting.”

done := (count >= length);

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

668 Structured Text Programming
Use logical operators

Logical operators let you check if multiple conditions are true or false.
The result of a logical operation is a BOOL value:

Use the following logical operators:

For example:

If The Comparison Is The Result Is

true 1

false 0

For Use This Operator Data Type

logical AND &, AND BOOL

logical OR OR BOOL

logical exclusive OR XOR BOOL

logical complement NOT BOOL

Use This Format Example

For This Situation You’d Write

BOOLtag If photoeye is a BOOL tag and your specification
says: “If photoeye is on then…”

IF photoeye THEN...

NOT BOOLtag If photoeye is a BOOL tag and your specification
says: “If photoeye is off then…”

IF NOT photoeye THEN...

expression1 & expression2 If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
and temp is less than 100° then…”.

IF photoeye & (temp<100)
THEN...

expression1 OR expression2 If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
or temp is less than 100° then…”.

IF photoeye OR (temp<100)
THEN...

expression1 XOR expression2 If photoeye1 and photoeye2 are BOOL tags and
your specification says: “If:

• photoeye1 is on while photoeye2 is off or

• photoeye1 is off while photoeye2 is on

then…"

IF photoeye1 XOR
photoeye2 THEN...

BOOLtag := expression1 &
expression2

If photoeye1 and photoeye2 are BOOL tags,
open is a BOOL tag, and your specification says:
“If photoeye1 and photoeye2 are both on, set
open to true”.

open := photoeye1 &
photoeye2;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 669
Use bitwise operators

Bitwise operators manipulate the bits within a value based on
two values.

For example:

Determine the order of execution

The operations you write into an expression are performed in a
prescribed order, not necessarily from left to right.

• Operations of equal order are performed from left to right.

• If an expression contains multiple operators or functions, group
the conditions in parenthesis "()" . This ensures the correct
order of execution and makes it easier to read the expression.

For Use This Operator Optimal Data Type

bitwise AND &, AND DINT

bitwise OR OR DINT

bitwise exclusive OR XOR DINT

bitwise complement NOT DINT

Use This Format Example

For This Situation You’d Write

value1 operator value2 If input1, input2, and result1 are DINT tags and your
specification says: “Calculate the bitwise result of
input1 and input2. Store the result in result1.”

result1 := input1 AND
input2;

Order Operation

1. ()

2. function (…)

3. **

4. − (negate)

5. NOT

6. *, /, MOD

7. +, - (subtract)

8. <, <=, >, >=

9. =, <>

10. &, AND

11. XOR

12. OR
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

670 Structured Text Programming
Instructions Structured text statements can also be instructions. See the Locator
Table at the beginning of this manual for a list of the instructions
available in structured text. A structured text instruction executes each
time it is scanned. A structured text instruction within a construct
executes every time the conditions of the construct are true. If the
conditions of the construct are false, the statements within the
construct are not scanned. There is no rung-condition or state
transition that triggers execution.

This differs from function block instructions that use EnableIn to
trigger execution. Structured text instructions execute as if EnableIn is
always set.

This also differs from relay ladder instructions that use
rung-condition-in to trigger execution. Some relay ladder instructions
only execute when rung-condition-in toggles from false to true. These
are transitional relay ladder instructions. In structured text, instructions
will execute each time they are scanned unless you pre-condition the
execution of the structured text instruction.

For example, the ABL instruction is a transitional instruction in relay
ladder. In this example, the ABL instruction only executes on a scan
when tag_xic transitions from cleared to set. The ABL instruction does
not execute when tag_xic stays set or when tag_xic is cleared.

In structured text, if you write this example as:

IF tag_xic THEN ABL(0,serial_control);

END_IF;

the ABL instruction will execute every scan that tag_xic is set, not just
when tag_xic transitions from cleared to set.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 671
If you want the ABL instruction to execute only when tag_xic
transitions from cleared to set, you have to condition the structured
text instruction. Use a one shot to trigger execution.

Constructs Constructs can be programmed singly or nested within other
constructs.

Some key words are reserved for future use

These constructs are not available:

• GOTO

• REPEAT

RSLogix 5000 software will not let you use them as tag names or
constructs.

osri_1.InputBit := tag_xic;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

ABL(0,serial_control);

END_IF;

If You Want To Use This Construct Available In These Languages See Page

do something if or when specific
conditions occur

IF...THEN structured text 672

select what to do based on a numerical value CASE...OF structured text 675

do something a specific number of times before
doing anything else

FOR...DO structured text 678

keep doing something as long as certain
conditions are true

WHILE...DO structured text 681

keep doing something until a condition is true REPEAT...UNTIL structured text 684
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

672 Structured Text Programming
IF...THEN Use IF…THEN to do something if or when specific conditions occur.

Operands:

Structured Text

Description: The syntax is:

To use ELSIF or ELSE, follow these guidelines:

1. To select from several possible groups of statements, add one or
more ELSIF statements.

• Each ELSIF represents an alternative path.

• Specify as many ELSIF paths as you need.

• The controller executes the first true IF or ELSIF and skips the
rest of the ELSIFs and the ELSE.

2. To do something when all of the IF or ELSIF conditions are false,
add an ELSE statement.

Operand Type Format Enter

bool_
expression

BOOL tag

expression

BOOL tag or expression that evaluates to
a BOOL value (BOOL expression)

IF bool_expression THEN

<statement>;

END_IF;

IF bool_expression1 THEN

<statement >; statements to execute when
bool_expression1 is true

.

.

.

optional
ELSIF bool_expression2 THEN

<statement>; statements to execute when
bool_expression2 is true

.

.

.

optional
ELSE

<statement>; statements to execute when
both expressions are false

.

.

.

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 673
The following table summarizes different combinations of IF, THEN,
ELSIF, and ELSE.

Arithmetic Status Flags not affected

Fault Conditions: none

Example 1: IF…THEN

Example 2: IF…THEN…ELSE

The [:=] tells the controller to clear light whenever the controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

If You Want To And Use This Construct

do something if or when conditions
are true

do nothing if conditions are false IF…THEN

do something else if conditions are false IF…THEN…ELSE

choose from alternative statements
(or groups of statements) based on
input conditions

do nothing if conditions are false IF…THEN…ELSIF

assign default statements if all
conditions are false

IF…THEN…ELSIF…ELSE

If You Want This Enter This Structured Text

IF rejects > 3 then IF rejects > 3 THEN

conveyor = off (0) conveyor := 0;

alarm = on (1) alarm := 1;

END_IF;

If You Want This Enter This Structured Text

If conveyor direction contact = forward (1) then IF conveyor_direction THEN

light = off light := 0;

Otherwise light = on ELSE

light [:=] 1;

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

674 Structured Text Programming
Example 3: IF…THEN…ELSIF

The [:=] tells the controller to clear Sugar.Inlet whenever the
controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

Example 4: IF…THEN…ELSIF…ELSE

If You Want This Enter This Structured Text

If sugar low limit switch = low (on) and sugar high limit
switch = not high (on) then

IF Sugar.Low & Sugar.High THEN

inlet valve = open (on) Sugar.Inlet [:=] 1;

Until sugar high limit switch = high (off) ELSIF NOT(Sugar.High) THEN

Sugar.Inlet := 0;

END_IF;

If You Want This Enter This Structured Text

If tank temperature > 100 IF tank.temp > 200 THEN

then pump = slow pump.fast :=1; pump.slow :=0; pump.off :=0;

If tank temperature > 200 ELSIF tank.temp > 100 THEN

then pump = fast pump.fast :=0; pump.slow :=1; pump.off :=0;

otherwise pump = off ELSE

pump.fast :=0; pump.slow :=0; pump.off :=1;

END_IF;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 675
CASE...OF Use CASE to select what to do based on a numerical value.

Operands:

Structured Text

Description: The syntax is:

Operand Type Format Enter

numeric_

expression

SINT

INT

DINT

REAL

tag

expression

tag or expression that evaluates to a
number (numeric expression)

selector SINT

INT

DINT

REAL

immediate same type as numeric_expression

IMPORTANT If you use REAL values, use a range of values for a selector
because a REAL value is more likely to be within a range of
values than an exact match of one, specific value.

CASE numeric_expression OF

selector1: statement;

selectorN: statement;

ELSE

statement;

END_CASE;

CASE numeric_expression OF

specify as many
alternative selector

values (paths) as you
need

selector1 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector1

selector2 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector2

selector3 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector3
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

676 Structured Text Programming
See the table on the next page for valid selector values.

The syntax for entering the selector values is:

The CASE construct is similar to a switch statement in the C or C++
programming languages. However, with the CASE construct the
controller executes only the statements that are associated with the
first matching selector value. Execution always breaks after the
statements of that selector and goes to the END_CASE statement.

Arithmetic Status Flags: not affected

Fault Conditions: none

optional

ELSE

<statement>;
.
.
.

statements to execute when
numeric_expression ≠ any
selector

END_CASE;

When Selector Is Enter

one value value: statement

multiple, distinct values value1, value2, valueN : <statement>

Use a comma (,) to separate each value.

a range of values value1..valueN : <statement>

Use two periods (..) to identify the range.

distinct values plus a range
of values

valuea, valueb, value1..valueN : <statement>
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 677
Example

The [:=] tells the controller to also clear the outlet tags whenever the
controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

If You Want This Enter This Structured Text

If recipe number = 1 then CASE recipe_number OF

Ingredient A outlet 1 = open (1) 1: Ingredient_A.Outlet_1 :=1;

Ingredient B outlet 4 = open (1) Ingredient_B.Outlet_4 :=1;

If recipe number = 2 or 3 then 2,3: Ingredient_A.Outlet_4 :=1;

Ingredient A outlet 4 = open (1) Ingredient_B.Outlet_2 :=1;

Ingredient B outlet 2 = open (1)

If recipe number = 4, 5, 6, or 7 then 4..7: Ingredient_A.Outlet_4 :=1;

Ingredient A outlet 4 = open (1) Ingredient_B.Outlet_2 :=1;

Ingredient B outlet 2 = open (1)

If recipe number = 8, 11, 12, or 13 then 8,11..13 Ingredient_A.Outlet_1 :=1;

Ingredient A outlet 1 = open (1) Ingredient_B.Outlet_4 :=1;

Ingredient B outlet 4 = open (1)

Otherwise all outlets = closed (0) ELSE

Ingredient_A.Outlet_1 [:=]0;

Ingredient_A.Outlet_4 [:=]0;

Ingredient_B.Outlet_2 [:=]0;

Ingredient_B.Outlet_4 [:=]0;

END_CASE;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

678 Structured Text Programming
FOR…DO Use the FOR…DO loop to do something a specific number of times
before doing anything else.

Operands:

Structured Text

Operand Type Format Description

count SINT

INT

DINT

tag tag to store count position as the
FOR…DO executes

initial_
value

SINT

INT

DINT

tag

expression

immediate

must evaluate to a number

specifies initial value for count

final_
value

SINT

INT

DINT

tag

expression

immediate

specifies final value for count, which
determines when to exit the loop

increment SINT

INT

DINT

tag

expression

immediate

(optional) amount to increment count
each time through the loop

If you don’t specify an increment, the
count increments by 1.

FOR count:= initial_value TO
final_value BY increment DO

<statement>;

END_FOR;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 679
Description: The syntax is:

The following diagrams show how a FOR...DO loop executes and
how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

FOR count := initial_value

TO final_value

optional { BY increment If you don’t specify an increment, the loop
increments by 1.

DO

<statement>;

optional

IF bool_expression THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

END_FOR;

statement 1

statement 2

statement 3

Done x number
of times?

no

yes

rest of the routine

statement 1

statement 2

statement 3

Done x number
of times?

no

yes

rest of the routine

yes

no

The FOR…DO loop executes a specific
number of times.

To stop the loop before the count reaches the last
value, use an EXIT statement.

A Major Fault Will Occur If Fault Type Fault Code

the construct loops too long 6 1
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

680 Structured Text Programming
Example 1:

Example 2:

If You Want This Enter This Structured Text

Clear bits 0 - 31 in an array of BOOLs:

1. Initialize the subscript tag to 0.

2. Clear array[subscript] . For example, when subscript
= 5, clear array[5].

3. Add 1 to subscript.

4. If subscript is ≤ to 31, repeat 2 and 3.

Otherwise, stop.

For subscript:=0 to 31 by 1 do

array[subscript] := 0;

End_for;

If You Want This Enter This Structured Text

A user-defined data type (structure) stores the following
information about an item in your inventory:

• Barcode ID of the item (string data type)

• Quantity in stock of the item (DINT data type)

An array of the above structure contains an element for each
different item in your inventory. You want to search the array
for a specific product (use its bar code) and determine the
quantity that is in stock.

1. Get the size (number of items) of the Inventory array and
store the result in Inventory_Items (DINT tag).

2. Initialize the position tag to 0.

3. If Barcode matches the ID of an item in the array, then:

a. Set the Quantity tag = Inventory[position].Qty. This
produces the quantity in stock of the item.

b. Stop.

Barcode is a string tag that stores the bar code of the item
for which you are searching. For example, when position =
5, compare Barcode to Inventory[5].ID.

4. Add 1 to position.

5. If position is ≤ to (Inventory_Items -1), repeat 3 and 4.
Since element numbers start at 0, the last element is 1
less than the number of elements in the array.

Otherwise, stop.

SIZE(Inventory,0,Inventory_Items);

For position:=0 to Inventory_Items - 1 do

If Barcode = Inventory[position].ID then

Quantity := Inventory[position].Qty;

Exit;

End_if;

End_for;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 681
WHILE…DO Use the WHILE…DO loop to keep doing something as long as certain
conditions are true.

Operands:

Structured Text

Description: The syntax is:

Operand Type Format Enter

bool_
expression

BOOL tag

expression

BOOL tag or expression that evaluates to
a BOOL value

WHILE bool_expression DO

<statement>;

END_WHILE;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

WHILE bool_expression1 DO

<statement>; statements to execute while
bool_expression1 is true

optional

IF bool_expression2 THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

END_WHILE;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

682 Structured Text Programming
The following diagrams show how a WHILE...DO loop executes and
how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

While the bool_expression is true, the
controller executes only the statements within
the WHILE…DO loop.

To stop the loop before the conditions are true, use an
EXIT statement.

statement 1

statement 2

statement 3

BOOL expression

true

false

rest of the routine

yes

no

statement 1

statement 2

statement 3

BOOL expression

true

false

rest of the routine

A Major Fault Will Occur If Fault Type Fault Code

the construct loops too long 6 1

If You Want This Enter This Structured Text

The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop.

This differs from the REPEAT...UNTIL loop because the
REPEAT...UNTIL loop executes the statements in the construct
and then determines if the conditions are true before
executing the statements again. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := 0;

While ((pos <= 100) & structarray[pos].value
<> targetvalue)) do

pos := pos + 2;

String_tag.DATA[pos] := SINT_array[pos];

end_while;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 683
Example 2:

If You Want This Enter This Structured Text

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.

2. Count the number of elements in SINT_array (array that
contains the ASCII characters) and store the result in
SINT_array_size (DINT tag).

3. If the character at SINT_array[element_number] = 13
(decimal value of the carriage return), then stop.

4. Set String_tag[element_number] = the character at
SINT_array[element_number].

5. Add 1 to element_number. This lets the controller check
the next character in SINT_array.

6. Set the Length member of String_tag = element_number.
(This records the number of characters in String_tag so
far.)

7. If element_number = SINT_array_size, then stop. (You are
at the end of the array and it does not contain a carriage
return.)

8. Go to 3.

element_number := 0;

SIZE(SINT_array, 0, SINT_array_size);

While SINT_array[element_number] <> 13 do

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number + 1;

String_tag.LEN := element_number;

If element_number = SINT_array_size then

exit;

end_if;

end_while;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

684 Structured Text Programming
REPEAT…UNTIL Use the REPEAT…UNTIL loop to keep doing something until
conditions are true.

Operands:

Structured Text

Description: The syntax is:

Operand Type Format Enter

bool_
expression

BOOL tag

expression

BOOL tag or expression that evaluates to
a BOOL value (BOOL expression)

REPEAT

<statement>;

UNTIL bool_expression

END_REPEAT;

IMPORTANT Make sure that you do not iterate within the loop too many times in a single scan.

• The controller does not execute any other statements in the routine until it completes the
loop.

• If the time that it takes to complete the loop is greater than the watchdog timer for the
task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

REPEAT

<statement>; statements to execute while
bool_expression1 is false

optional

IF bool_expression2 THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

UNTIL bool_expression1

END_REPEAT;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 685
The following diagrams show how a REPEAT...UNTIL loop executes
and how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

While the bool_expression is false, the
controller executes only the statements within the
REPEAT…UNTIL loop.

To stop the loop before the conditions are false, use
an EXIT statement.

statement 1

statement 2

statement 3
BOOL expression

false

true

rest of the routine
BOOL expression

false

true

rest of the routine

statement 1

statement 2

statement 3 yes

no

A Major Fault Will Occur If Fault Type Fault Code

the construct loops too long 6 1

If You Want This Enter This Structured Text

The REPEAT...UNTIL loop executes the statements in the
construct and then determines if the conditions are true before
executing the statements again.

This differs from the WHILE...DO loop because the WHILE...DO
The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := -1;

REPEAT

pos := pos + 2;

UNTIL ((pos = 101) OR
(structarray[pos].value = targetvalue))

end_repeat;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

686 Structured Text Programming
Example 2:

If You Want This Enter This Structured Text

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.

2. Count the number of elements in SINT_array (array that
contains the ASCII characters) and store the result in
SINT_array_size (DINT tag).

3. Set String_tag[element_number] = the character at
SINT_array[element_number].

4. Add 1 to element_number. This lets the controller check
the next character in SINT_array.

5. Set the Length member of String_tag = element_number.
(This records the number of characters in String_tag so
far.)

6. If element_number = SINT_array_size, then stop. (You are
at the end of the array and it does not contain a carriage
return.)

7. If the character at SINT_array[element_number] = 13
(decimal value of the carriage return), then stop.

Otherwise, go to 3.

element_number := 0;

SIZE(SINT_array, 0, SINT_array_size);

Repeat

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number + 1;

String_tag.LEN := element_number;

If element_number = SINT_array_size then

exit;

end_if;

Until SINT_array[element_number] = 13

end_repeat;
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structured Text Programming 687
Comments To make your structured text easier to interpret, add comments to it.

• Comments let you use plain language to describe how your
structured text works.

• Comments do not affect the execution of the structured text.

To add comments to your structured text:

To Add A Comment Use One Of These Formats

on a single line //comment

(*comment*)

/*comment*/

at the end of a line of structured
text

within a line of structured text (*comment*)

/*comment*/

that spans more than one line (*start of comment . . . end of
comment*)

/*start of comment . . . end of
comment*/
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

688 Structured Text Programming
For example:

Format Example

//comment At the beginning of a line

//Check conveyor belt direction

IF conveyor_direction THEN...

At the end of a line

ELSE //If conveyor isn’t moving, set alarm light

light := 1;

END_IF;

(*comment*) Sugar.Inlet[:=]1;(*open the inlet*)

IF Sugar.Low (*low level LS*)& Sugar.High (*high level
LS*)THEN...

(*Controls the speed of the recirculation pump. The
speed depends on the temperature in the tank.*)

IF tank.temp > 200 THEN...

/*comment*/ Sugar.Inlet:=0;/*close the inlet*/

IF bar_code=65 /*A*/ THEN...

/*Gets the number of elements in the Inventory array
and stores the value in the Inventory_Items tag*/

SIZE(Inventory,0,Inventory_Items);
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ASCII Character Codes
Character Dec Hex

[ctrl-@] NUL 0 $00

[ctrl-A] SOH 1 $01

[ctrl-B] STX 2 $02

[ctrl-C] ETX 3 $03

[ctrl-D] EOT 4 $04

[ctrl-E] ENQ 5 $05

[ctrl-F] ACK 6 $06

[ctrl-G] BEL 7 $07

[ctrl-H] BS 8 $08

[ctrl-I] HT 9 $09

[ctrl-J] LF 10 $l ($0A)

[ctrl-K] VT 11 $0B

[ctrl-L] FF 12 $0C

[ctrl-M] CR 13 $r ($0D)

[ctrl-N] SO 14 $0E

[ctrl-O] SI 15 $0F

[ctrl-P] DLE 16 $10

[ctrl-Q] DC1 17 $11

[ctrl-R] DC2 18 $12

[ctrl-S] DC3 19 $13

[ctrl-T] DC4 20 $14

[ctrl-U] NAK 21 $15

[ctrl-V] SYN 22 $16

[ctrl-W] ETB 23 $17

[ctrl-X] CAN 24 $18

[ctrl-Y] EM 25 $19

[ctrl-Z] SUB 26 $1A

ctrl-[ESC 27 $1B

[ctrl-\] FS 28 $1C

ctrl-] GS 29 $1D

[ctrl-^] RS 30 $1E

[ctrl-_] US 31 $1F

SPACE 32 $20

! 33 $21

“ 34 $22

35 $23

$ 36 $24

% 37 $25

& 38 $26

‘ 39 $27

(40 $28

) 41 $29

* 42 $2A

+ 43 $2B

, 44 $2C

- 45 $2D

. 46 $2E

/ 47 $2F

0 48 $30

1 49 $31

2 50 $32

3 51 $33

4 52 $34

5 53 $35

6 54 $36

7 55 $37

8 56 $38

9 57 $39

: 58 $3A

; 59 $3B

< 60 $3C

= 61 $3D

> 62 $3E

? 63 $3F

Character Dec Hex

@ 64 $40

A 65 $41

B 66 $42

C 67 $43

D 68 $44

E 69 $45

F 70 $46

G 71 $47

H 72 $48

I 73 $49

J 74 $4A

K 75 $4B

L 76 $4C

M 77 $4D

N 78 $4E

O 79 $4F

P 80 $50

Q 81 $51

R 82 $52

S 83 $53

T 84 $54

U 85 $55

V 86 $56

W 87 $57

X 88 $58

Y 89 $59

Z 90 $5A

[91 $5B

\ 92 $5C

] 93 $5D

^ 94 $5E

_ 95 $5F

Character Dec Hex

‘ 96 $60

a 97 $61

b 98 $62

c 99 $63

d 100 $64

e 101 $65

f 102 $66

g 103 $67

h 104 $68

i 105 $69

j 106 $6A

k 107 $6B

l 108 $6C

m 109 $6D

n 110 $6E

o 111 $6F

p 112 $70

q 113 $71

r 114 $72

s 115 $73

t 116 $74

u 117 $75

v 118 $76

w 119 $77

x 120 $78

y 121 $79

z 122 $7A

{ 123 $7B

| 124 $7C

} 125 $7D

~ 126 $7E

DEL 127 $7F

Character Dec Hex
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Index

A
ABL instruction 575
ABS instruction 279
absolute value 279
ACB instruction 578
ACL instruction 581
ACS instruction 536
ADD instruction 253
addition 253
advanced math instructions

introduction 545
LN 546
LOG 549
XPY 552

AFI instruction 458
AHL instruction 583
alarm instruction 31, 47
alarms 507
all mode 332
ALMA instruction 47
ALMD instruction 31
always false instruction 458
analog alarm 47
AND instruction 305
arc cosine 536
arc sine 532
arc tangent 540
ARD instruction 587
arithmetic operators

structured text 665
arithmetic status flags

overflow 649
ARL instruction 591
array instructions

AVE 368
BSL 388
BSR 392
COP 358
CPS 358
DDT 488
FAL 337
FBC 480
FFL 396
FFU 402
file/misc. 331
FLL 364
FSC 349
LFL 408
LFU 414
mode of operation 332
RES 136

sequencer 421
shift 387
SIZE 384
SQI 422
SQL 430
SQO 426
SRT 373
STD 378

ASCII
structured text assignment 663

ASCII chars in buffer 578
ASCII clear buffer 581
ASCII handshake lines 583
ASCII instructions

ABL 575
ACB 578
ACL 581
AHL 583
ARD 587
ARL 591
AWA 595
AWT 600
CONCAT 608
DELETE 610
DTOS 626
FIND 612
INSERT 614
LOWER 633
MID 616
RTOS 629
STOD 622
STOR 624
SWPB 301
UPPER 631

ASCII read 587
ASCII read line 591
ASCII test for buffer line 575
ASCII write 600
ASCII write append 595
ASN instruction 532
assignment

ASCII character 663
non-retentive 662
retentive 661

assume data available 645, 647, 648
ATN instruction 540
attributes

converting data types 635
immediate values 635

AVE instruction 368
average 368
AWA instruction 595
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

692 Index
AWT instruction 600

B
BAND 319
bit field distribute 293
bit field distribute with target 296
bit instructions

introduction 69
ONS 80
OSF 86
OSFI 92
OSR 83
OSRI 89
OTE 74
OTL 76
OTU 78
XIO 72

bit shift left 388
bit shift right 392
bitwise AND 305
bitwise exclusive OR 311
bitwise NOT 315
bitwise operators

structured text 669
bitwise OR 308
BNOT 328
BOOL expression

structured text 663
Boolean AND 319
Boolean Exclusive OR 325
Boolean NOT 328
Boolean OR 322
BOR 322
break 475
BRK instruction 475
BSL instruction 388
BSR instruction 392
BTD instruction 293
BTDT instruction 296
BXOR 325

C
cache

connection 170
CASE 675
clear 299
CLR instruction 299
CMP instruction 207
comments

structured text 687
common attributes 635

converting data types 635
immediate values 635

compare 207
compare instructions

CMP 207
EQU 212
expression format 210, 355
GEQ 216
GRT 220
introduction 205
LEQ 224
LES 228
LIM 232
MEQ 238
NEQ 243
order of operation 210, 356
valid operators 209, 355

COMPARE structure 481, 489
compute 249
compute instructions

ABS 279
ADD 253
CPT 249
DIV 263
expression format 251, 347
introduction 247
MOD 268
MUL 260
NEG 276
order of operation 252, 348
SQR 272
SUB 257
valid operators 251, 347

CONCAT instruction 608
configuring 155

MSG instruction 155
PID instruction 505

connection
cache 170

connector
function block diagram 641

construct
structured text 671

CONTROL structure 338, 349, 369, 373,
378, 388, 392, 397, 403, 408, 409,
415, 422, 426, 430

control structure 450
CONTROLLER object 177
CONTROLLERDEVICE object 177
conversion instructions
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Index 693
DEG 556
FRD 565
introduction 555
RAD 559
TOD 562
TRN 567

convert to BCD 562
convert to integer 565
converting data types 635
COP instruction 358
copy 358
COS instruction 525
cosine 525
count down 127
count up 123
count up/down 131
counter instructions

CTD 127
CTU 123
CTUD 131
introduction 95
RES 136

COUNTER structure 123, 127
CPS instruction 358
CPT instruction 249
CST object 181
CTD instruction 127
CTU instruction 123
CTUD instruction 131

D
data transitional 496
DDT instruction

operands 488
search mode 490

deadband 517
DEG instruction 556
degree 556
DELETE instruction 610
description

structured text 687
DF1 object 182
diagnostic detect 488
digital alarm 31
DINT to String 626
DIV instruction 263
division 263
document

structured text 687
DTOS instruction 626

DTR instruction 496

E
elements

SIZE instruction 384
end of transition instruction 460
EOT instruction 460
EQU instruction 212
equal to 212
error codes

ASCII 574
MSG instruction 148

EVENT instruction 466
event task

configure 194
trigger via consumed tag 200
trigger via EVENT instruction 466

examine if open 72
execution order 644
exponential 552
expression

BOOL expression
structured text 663

numeric expression
structured text 663

order of execution
structured text 669

structured text
arithmetic operators 665
bitwise operators 669
functions 665
logical operators 668
overview 663
relational operators 666

expressions
format 210, 251, 347, 355
order of operation 210, 252, 348, 356
valid operators 209, 251, 347, 355

F
FAL instruction

mode of operation 332
operands 337

FAULTLOG object 185
FBC instruction

operands 480
search mode 482

FBD_BIT_FIELD_DISTRIBUTE structure
296

FBD_BOOLEAN_AND structure 319
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

694 Index
FBD_BOOLEAN_NOT structure 328
FBD_BOOLEAN_OR structure 322
FBD_BOOLEAN_XOR structure 325
FBD_COMPARE structure 213, 217, 221,

225, 229, 244
FBD_CONVERT structure 562, 565
FBD_COUNTER structure 131
FBD_LIMIT structure 233
FBD_LOGICAL structure 306, 309, 312, 316
FBD_MASK_EQUAL structure 239
FBD_MASKED_MOVE structure 290
FBD_MATH structure 254, 258, 261, 264,

269, 277, 553
FBD_MATH_ADVANCED structure 273,

280, 523, 526, 530, 533, 537, 541,
546, 550, 557, 560

FBD_ONESHOT structure 89, 92
FBD_TIMER structure 110, 114, 118
FBD_TRUNCATE structure 567
feedback loop

function block diagram 645
feedforward 518
FFL instruction 396
FFU instruction 402
FIFO load 396
FIFO unload 402
file arithmetic and logic 337
file bit comparison 480
file fill 364
file instructions. See array instructions
file search and compare 349
FIND instruction 612
Find String 612
FLL instruction 364
FOR instruction 472
for/break instructions

BRK 475
FOR 472
introduction 471
RET 476

FOR…DO 678
FRD instruction 565
FSC instruction

mode of operation 332
operands 349

function block diagram
choose elements 641
create a scan delay 648
resolve a loop 645
resolve data flow between blocks 647

functions
structured text 665

G
GEQ instruction 216
get system value 173
greater than 220
greater than or equal to 216
GRT instruction 220
GSV instruction

objects 176
operands 173

I
ICON 641
IF...THEN 672
immediate output instruction 200
immediate values 635
incremental mode 335
inhibit

task 194
input reference 641
input wire connector 641
input/output instructions

GSV 173
introduction 139
IOT 200
MSG 140
SSV 173

INSERT instruction 614
Insert String 614
instructions

advanced math 545
analog alarm 47
array
ASCII conversion 619
ASCII serial port 571
ASCII string manipulation 605
bit 69
compare 205
compute 247
conversion 555
counter 95
digital alarm 31
for/break 471
input/output 139
logical 283
math conversion 555
move 283
program control 435
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Index 695
sequencer 421
serial port 571
shift 387
special 479
string conversion 619
string manipulation 605
timer 95
trigonometric 521

IOT instruction 200
IREF 641

J
JMP instruction 436
JSR instruction 438
jump 436
jump to subroutine 438
JXR instruction

control structure 450

L
label 436
latching data 642
LBL instruction 436
LEQ instruction 224
LES instruction 228
less than 228
less than or equal to 224
LFL instruction 408
LFU instruction 414
LIFO load 408
LIFO unload 414
LIM instruction 232
limit 232
LN instruction 546
log

base 10 549
natural 546

log base 10 549
LOG instruction 549
logical instructions

AND 305
introduction 283
NOT 315
OR 308
XOR 311

logical operators
structured text 668

lower case 633
LOWER instruction 633

M
masked equal to 238
masked move 287
masked move with target 290
masks 497
master control reset 454
math conversion instructions

DEG 556
FRD 565
introduction 555
RAD 559
TOD 562
TRN 567

math operators
structured text 665

MCR instruction 454
MEQ instruction 238
message 140

cach connections 170
programming guidelines 172

MESSAGE object 186
MESSAGE structure 140
MID instruction 616
Middle String 616
mixing data types 635
MOD instruction 268
mode of operation 332
MODULE object 188
modulo division 268
MOTIONGROUP object 189
MOV instruction 285
move 285
move instructions

BTD 293
BTDT 296
CLR 299
introduction 283
MOV 285
MVM 287
MVMT 290

move/logical instructions
BAND 319
BNOT 328
BOR 322
BXOR 325

MSG instruction 155
cache connection 170
communication method 169
error codes 148
operands 140
programming guidelines 172
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

696 Index
structure 140
MUL instruction 260
multiplication 260
MVM instruction 287
MVMT instruction 290

N
natural log 546
NEG instruction 276
negate 276
NEQ instruction 243
no operation 459
NOP instruction 459
not equal to 243
NOT instruction 315
numeric expression 663
numerical mode 333

O
objects

CONTROLLER 177
CONTROLLERDEVICE 177
CST 181
DF1 182
FAULTLOG 185
GSV/SSV instruction 176
MESSAGE 186
MODULE 188
MOTIONGROUP 189
PROGRAM 190
ROUTINE 192
SERIALPORT 192
TASK 194
WALLCLOCKTIME 196

OCON 641
one shot 80
one shot falling 86
one shot falling with input 92
one shot rising 83
one shot rising with input 89
ONS instruction 80
operators 209, 251, 347, 355

order of execution
structured text 669

OR instruction 308
order of execution 644

structured text expression 669
order of operation 210, 252, 348, 356
OREF 641
OSF instruction 86

OSFI instruction 92
OSR instruction 83
OSRI instruction 89
OTE instruction 74
OTL instruction 76
OTU instruction 78
output

enable or disable end-of-task processing
194

update immediately 200
output biasing 518
output energize 74
output latch 76
output reference 641
output unlatch 78
output wire connector 641
overflow conditions 649
overlap

check for task overlap 194

P
pause SFC instruction 462
PID instruction

alarms 507
configuring 505
deadband 517
feedforward 518
operands 499
output biasing 518
scaling 508
tuning 506

PID structure 501
postscan

structured text 662
product codes 177
program control instructions

AFI 458
EOT 460
EVENT 466
introduction 435
JMP 436
JSR 438
LBL 436
MCR 454
NOP 459
RET 438
SBR 438
TND 452
UID 456
UIE 456

PROGRAM object 190
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Index 697
program/operator control
overview 655

proportional, integral, and derivative 499

R
RAD instruction 559
radians 559
REAL to String 629
relational operators

structured text 666
REPEAT…UNTIL 684
RES instruction 136
reset 136
reset SFC instruction 464
RESULT structure 481, 489
RET instruction 438, 476
retentive timer on 105
retentive timer on with reset 118
return 438, 476
ROUTINE object 192
RTO instruction 105
RTOR instruction 118
RTOS instruction 629

S
SBR instruction 438
scaling 508
scan delay

function block diagram 648
search mode 482, 490
search string 612
sequencer input 422
sequencer instructions

introduction 421
SQI 422
SQL 430
SQO 426

sequencer load 430
sequencer output 426
serial port instructions

ABL 575
ACB 578
ACL 581
AHL 583
ARD 587
ARL 591
AWA 595
AWT 600
introduction 571

SERIAL_PORT_CONTROL structure 572,
574, 576, 578, 584, 588, 592, 596,
601

SERIALPORT object 192
set system value 173
SFP instruction 462
SFR instruction 464
shift instructions

BSL 388
BSR 392
FFL 396
FFU 402
introduction 387
LFL 408
LFU 414

SIN instruction 522
sine 522
size in elements 384
SIZE instruction 384
sort 373
special instructions

DDT 488
DTR 496
FBC 480
introduction 479
PID 499
SFP 462
SFR 464

SQI instruction 422
SQL instruction 430
SQO instruction 426
SQR instruction 272
square root 272
SRT instruction 373
SSV instruction

objects 176
operands 173

standard deviation 378
status

task 194
STD instructions 378
STOD instruction 622
STOR instruction 624
string

evaluation in structured text 667
String Concatenate 608
string conversion instructions

DTOS 626
introduction 619
LOWER 633
RTOS 629
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

698 Index
STOD 622
STOR 624
SWPB 301
UPPER 631

string data type 573, 607, 621
String Delete 610
string manipulation instructions

CONCAT 608
DELETE 610
FIND 612
INSERT 614
introduction 605
MID 616

STRING structure 573, 607, 621
String To DINT 622
String To REAL 624
structured text

arithmetic operators 665
assign ASCII character 663
assignment 661
bitwise operators 669
CASE 675
comments 687
components 659
contructs 671
evaluation of strings 667
expression 663
FOR…DO 678
functions 665
IF...THEN 672
logical operators 668
non-retentive assignment 662
numeric expression 663
relational operators 666
REPEAT…UNTIL 684
WHILE…DO 681

structures
COMPARE 481, 489
CONTROL 338, 349, 369, 373, 378, 388,

392, 397, 403, 408, 409, 415,
422, 426, 430

COUNTER 123, 127
FBD_BIT_FIELD_DISTRIBUTE 296
FBD_BOOLEAN_AND 319
FBD_BOOLEAN_NOT 328
FBD_BOOLEAN_OR 322
FBD_BOOLEAN_XOR 325
FBD_COMPARE 213, 217, 221, 225, 229,

244
FBD_CONVERT 562, 565
FBD_COUNTER 131
FBD_LIMIT 233
FBD_LOGICAL 306, 309, 312, 316

FBD_MASK_EQUAL 239
FBD_MASKED_MOVE 290
FBD_MATH 254, 258, 261, 264, 269,

277, 553
FBD_MATH_ADVANCED 273, 280, 523,

526, 530, 533, 537, 541, 546,
550, 557, 560

FBD_ONESHOT 89, 92
FBD_TIMER 110, 114, 118
FBD_TRUNCATE 567
MESSAGE 140
PID 501
RES instruction 136
RESULT 481, 489
SERIAL_PORT_CONTROL 572, 574, 576,

578, 584, 588, 592, 596, 601
STRING 573, 607, 621
string 573, 607, 621
TIMER 96, 100, 105

SUB instruction 257
subroutine 438
subtraction 257
swap byte 301
SWPB instruction 301
synchronous copy 358

T
TAN instruction 529
tangent 529
task

configure programmatically 194
inhibit 194
monitor 194
trigger event task 466
trigger via consumed tag 200

TASK object 194
temporary end 452
timeout

configure for event task 194
timer instructions

introduction 95
RES 136
RTO 105
RTOR 118
TOF 100
TOFR 114
TON 96
TONR 110

timer off delay 100
timer off delay with reset 114
timer on delay 96
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Index 699
timer on delay with reset 110
TIMER structure 96, 100, 105
timing modes 650
TND instruction 452
TOD instruction 562
TOF instruction 100
TOFR instruction 114
TON instruction 96
TONR instruction 110
trigger event task 466
trigger event task instruction 466
trigonometric instructions

ACS 536
ASN 532
ATN 540
COS 525
introduction 521
SIN 522
TAN 529

TRN instruction 567
truncate 567
tuning 506

U
UID instruction 456
UIE instruction 456
unresolved loop

function block diagram 645
update output 200
upper case 631
UPPER instruction 631
user interrupt disable 456
user interrupt enable 456

W
WALLCLOCKTIME object 196
WHILE…DO 681

X
X to the power of Y 552
XIO instruction 72
XOR instruction 311
XPY instruction 552
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

700 Index
Publication 1756-RM003I-EN-P - January 2007

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

How Are We Doing?
Your comments on our technical publications will help us serve you better in the future.
Thank you for taking the time to provide us feedback.

You can complete this form and mail it back to us, visit us online at www.ab.com/manuals, or

email us at RADocumentComments@ra.rockwell.com

Please complete the sections below. Where applicable, rank the feature (1=needs improvement, 2=satisfactory, and 3=outstanding).

Pub. Title/Type Logix5000™ Controllers General Instructions

Cat. No. Pub. No. 1756-RM003I-EN-P Pub. Date January 2007 Part No. ____________

Overall Usefulness 1 2 3 How can we make this publication more useful for you?

Completeness
(all necessary information

is provided)

1 2 3 Can we add more information to help you?

procedure/step illustration feature

example guideline other

explanation definition

Technical Accuracy
(all provided information

is correct)

1 2 3 Can we be more accurate?

text illustration

Clarity
(all provided information is

easy to understand)

1 2 3 How can we make things clearer?

Other Comments You can add additional comments on the back of this form.

Your Name Location/Phone

Your Title/Function Would you like us to contact you regarding your comments?

___No, there is no need to contact me

___Yes, please call me

___Yes, please email me at __________________________

___Yes, please contact me via ________________________

Return this form to: Allen-Bradley Marketing Communications, 1 Allen-Bradley Dr., Mayfield Hts., OH 44124-9705

Phone: 440-646-3176 Fax: 440-646-3525 Email: RADocumentComments@ra.rockwell.com
Publication ICCG-5.21- January 2001 PN 955107-82

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

1 ALLEN-BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

PLEASE FASTEN HERE (DO NOT STAPLE)

PL
EA

SE
 R

EM
OV

E

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ö

Publication 1756-RM003I-EN-P - January 2007 705 PN 953014-68
Supersedes Publication 1756-RM003H-EN-P - May 2005 Copyright © 2007 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Rockwell Automation
Support

Rockwell Automation provides technical information on the web to assist you
in using its products. At http://support.rockwellautomation.com, you can find
technical manuals, a knowledge base of FAQs, technical and application
notes, sample code and links to software service packs, and a MySupport
feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation,
configuration and troubleshooting, we offer TechConnect Support programs.
For more information, contact your local distributor or Rockwell Automation
representative, or visit http://support.rockwellautomation.com.

Installation Assistance

If you experience a problem with a hardware module within the first 24
hours of installation, please review the information that's contained in this
manual. You can also contact a special Customer Support number for initial
help in getting your module up and running:

New Product Satisfaction Return

Rockwell tests all of its products to ensure that they are fully operational
when shipped from the manufacturing facility. However, if your product is
not functioning and needs to be returned:

Back Cover

United States 1.440.646.3223
Monday – Friday, 8am – 5pm EST

Outside United
States

Please contact your local Rockwell Automation representative for any
technical support issues.

United States Contact your distributor. You must provide a Customer Support case
number (see phone number above to obtain one) to your distributor in
order to complete the return process.

Outside United
States

Please contact your local Rockwell Automation representative for
return procedure.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://suppport.rockwellautomation.com
http://suppport.rockwellautomation.com
http://support.rockwellautomation.com
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Logix5000™
 Controllers G

eneral Instructions
Reference M

anual

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

	1756-RM003I-EN-P, Logix5000 Controllers General Instructions Reference Manual
	Important User Information
	Table of Contents
	Summary of Changes
	Introduction
	Updated Information

	Preface
	Introduction
	Who Should Use This Manual
	Purpose of This Manual
	Common Information for All Instructions
	Conventions and Related Terms

	Instruction Locator
	Where to Find an Instruction

	1 - Digital Alarm Instruction (ALMD)
	Introduction
	Digital Alarm Operands
	Structure Definition for ALARM_DIGITAL Tag
	Example
	Execution
	Digital State Timing Diagrams

	2 - Analog Alarm Instruction (ALMA)
	Introduction
	Analog Alarm Operands
	Structure Definition For ALARM_ANALOG Tag
	Example
	Execution
	Analog State Timing Diagrams

	3 - Bit Instructions (XIC, XIO, OTE, OTL, OTU, ONS, OSR, OSF, OSRI, OSFI)
	Introduction
	Examine If Closed (XIC)
	Examine If Open (XIO)
	Output Energize (OTE)
	Output Latch (OTL)
	Output Unlatch (OTU)
	One Shot (ONS)
	One Shot Rising (OSR)
	One Shot Falling (OSF)
	One Shot Rising with Input (OSRI)
	One Shot Falling with Input (OSFI)

	4 - Timer and Counter Instructions (TON, TOF, RTO, TONR, TOFR, RTOR, CTU, CTD, CTUD, RES)
	Introduction
	Timer On Delay (TON)
	Timer Off Delay (TOF)
	Retentive Timer On (RTO)
	Timer On Delay with Reset (TONR)
	Timer Off Delay with Reset (TOFR)
	Retentive Timer On with Reset (RTOR)
	Count Up (CTU)
	Count Down (CTD)
	Count Up/Down (CTUD)
	Reset (RES)

	5 - Input/Output Instructions (MSG, GSV, SSV, IOT)
	Introduction
	Message (MSG)
	MSG Error Codes
	Specify the Configuration Details
	MSG Configuration Examples
	Specify the Communication Details
	Get System Value (GSV) and Set System Value (SSV)
	GSV/SSV Objects
	GSV/SSV Programming Example
	Immediate Output (IOT)

	6 - Compare Instructions (CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ)
	Introduction
	Compare (CMP)
	Equal to (EQU)
	Greater than or Equal to (GEQ)
	Greater Than (GRT)
	Less Than or Equal to (LEQ)
	Less Than (LES)
	Limit (LIM)
	Mask Equal to (MEQ)
	Not Equal to (NEQ)

	7 - Compute/Math Instructions (CPT, ADD, SUB, MUL, DIV, MOD, SQR, SQRT, NEG, ABS)
	Introduction
	Compute (CPT)
	Add (ADD)
	Subtract (SUB)
	Multiply (MUL)
	Divide (DIV)
	Modulo (MOD)
	Square Root (SQR)
	Negate (NEG)
	Absolute Value (ABS)

	8 - Move/Logical Instructions (MOV, MVM, BTD, MVMT, BTDT, CLR, SWPB, AND, OR, XOR, NOT, BAND, BOR, BXOR, BNOT)
	Introduction
	Move (MOV)
	Masked Move (MVM)
	Masked Move with Target (MVMT)
	Bit Field Distribute (BTD)
	Bit Field Distribute with Target (BTDT)
	Clear (CLR)
	Swap Byte (SWPB)
	Bitwise AND (AND)
	Bitwise OR (OR)
	Bitwise Exclusive OR (XOR)
	Bitwise NOT (NOT)
	Boolean AND (BAND)
	Boolean OR (BOR)
	Boolean Exclusive OR (BXOR)
	Boolean NOT (BNOT)

	9 - Array (File)/Misc. Instructions (FAL, FSC, COP, CPS, FLL, AVE, SRT, STD, SIZE)
	Introduction
	Selecting Mode of Operation
	File Arithmetic and Logic (FAL)
	File Search and Compare (FSC)
	Copy File (COP) Synchronous Copy File (CPS)
	File Fill (FLL)
	File Average (AVE)
	File Sort (SRT)
	File Standard Deviation (STD)
	Size In Elements (SIZE)

	10 - Array (File)/Shift Instructions (BSL, BSR, FFL, FFU, LFL, LFU)
	Introduction
	Bit Shift Left (BSL)
	Bit Shift Right (BSR)
	FIFO Load (FFL)
	FIFO Unload (FFU)
	LIFO Load (LFL)
	LIFO Unload (LFU)

	11 - Sequencer Instructions (SQI, SQO, SQL)
	Introduction
	Sequencer Input (SQI)
	Sequencer Output (SQO)
	Sequencer Load (SQL)

	12 - Program Control Instructions (JMP, LBL, JSR, RET, SBR, JXR, TND, MCR, UID, UIE, AFI, NOP, EOT, SFP, SFR, EVENT)
	Introduction
	Jump to Label (JMP) Label (LBL)
	Jump to Subroutine (JSR) Subroutine (SBR) Return (RET)
	Jump to External Routine (JXR)
	Temporary End (TND)
	Master Control Reset (MCR)
	User Interrupt Disable (UID) User Interrupt Enable (UIE)
	Always False Instruction (AFI)
	No Operation (NOP)
	End of Transition (EOT)
	SFC Pause (SFP)
	SFC Reset (SFR)
	Trigger Event Task (EVENT)

	13 - For/Break Instructions (FOR, FOR...DO, BRK, EXIT, RET)
	Introduction
	For (FOR)
	Break (BRK)
	Return (RET)

	14 - Special Instructions (FBC, DDT, DTR, PID)
	Introduction
	File Bit Comparison (FBC)
	Diagnostic Detect (DDT)
	Data Transitional (DTR)
	Proportional Integral Derivative (PID)
	Configure a PID Instruction
	Using PID Instructions
	PID Theory

	15 - Trigonometric Instructions (SIN, COS, TAN, ASN, ASIN, ACS, ACOS, ATN, ATAN)
	Introduction
	Sine (SIN)
	Cosine (COS)
	Tangent (TAN)
	Arc Sine (ASN)
	Arc Cosine (ACS)
	Arc Tangent (ATN)

	16 - Advanced Math Instructions (LN, LOG, XPY)
	Introduction
	Natural Log (LN)
	Log Base 10 (LOG)
	X to the Power of Y (XPY)

	17 - Math Conversion Instructions (DEG, RAD, TOD, FRD, TRN, TRUNC)
	Introduction
	Degrees (DEG)
	Radians (RAD)
	Convert to BCD (TOD)
	Convert to Integer (FRD)
	Truncate (TRN)

	18 - ASCII Serial Port Instructions (ABL, ACB, ACL, AHL, ARD, ARL, AWA, AWT)
	Introduction
	ASCII Test For Buffer Line (ABL)
	ASCII Chars in Buffer (ACB)
	ASCII Clear Buffer (ACL)
	ASCII Handshake Lines (AHL)
	ASCII Read (ARD)
	ASCII Read Line (ARL)
	ASCII Write Append (AWA)
	ASCII Write (AWT)

	19 - ASCII String Instructions (CONCAT, DELETE, FIND, INSERT, MID)
	Introduction
	String Concatenate (CONCAT)
	String Delete (DELETE)
	Find String (FIND)
	Insert String (INSERT)
	Middle String (MID)

	20 - ASCII Conversion Instructions (STOD, STOR, DTOS, RTOS, UPPER, LOWER)
	Introduction
	String To DINT (STOD)
	String To REAL (STOR)
	DINT to String (DTOS)
	REAL to String (RTOS)
	Upper Case (UPPER)
	Lower Case (LOWER)

	A - Common Attributes
	Introduction
	Immediate Values
	Data Conversions

	B - Function Block Attributes
	Introduction
	Choose the Function Block Elements
	Latching Data
	Order of Execution
	Function Block Responses to Overflow Conditions
	Timing Modes
	Program/Operator Control

	C - Structured Text Programming
	Introduction
	Structured Text Syntax
	Assignments
	Expressions
	Instructions
	Constructs
	IF...THEN
	CASE...OF
	FOR…DO
	WHILE…DO
	REPEAT…UNTIL
	Comments

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

	Back Cover

