Guide to Computer Forensics and Investigations Fourth Edition

Chapter 4
Data Acquisition

Objectives

- List digital evidence storage formats
- Explain ways to determine the best acquisition method
- Describe contingency planning for data acquisitions
- Explain how to use acquisition tools

Objectives (continued)

- Explain how to validate data acquisitions
- Describe RAID acquisition methods
- Explain how to use remote network acquisition tools
- List other forensic tools available for data acquisitions

Understanding Storage Formats for Digital Evidence

Understanding Storage Formats for Digital Evidence

- Two types of data acquisition
 - Static acquisition
 - Copying a hard drive from a powered-off system
 - Used to be the standard
 - Does not alter the data, so it's repeatable
 - Live acquisition
 - Copying data from a running computer
 - Now the preferred type, because of hard disk encryption
 - Cannot be repeated exactly—alters the data
 - Also, collecting RAM data is becoming more important
 - But RAM data has no timestamp, which makes it much harder to use

Understanding Storage Formats for Digital Evidence

- Terms used for a file containing evidence data
 - Bit-stream copy
 - Bit-stream image
 - Image
 - Mirror
 - Sector copy
- They all mean the same thing

Understanding Storage Formats for Digital Evidence

- Three formats
 - Raw format
 - Proprietary formats
 - Advanced Forensics Format (AFF)

Raw Format

- This is what the Linux dd command makes
- Bit-by-bit copy of the drive to a file
- Advantages
 - Fast data transfers
 - Can ignore minor data read errors on source drive
 - Most computer forensics tools can read raw format

Raw Format

- Disadvantages
 - Requires as much storage as original disk or data
 - Tools might not collect marginal (bad) sectors
 - Low threshold of retry reads on weak media spots
 - Commercial tools use more retries than free tools
 - Validation check must be stored in a separate file
 - Message Digest 5 (MD5)
 - Secure Hash Algorithm (SHA-1 or newer)
 - Cyclic Redundancy Check (CRC-32)

Proprietary Formats

- Features offered
 - Option to compress or not compress image files
 - Can split an image into smaller segmented files
 - Such as to CDs or DVDs
 - With data integrity checks in each segment
 - Can integrate metadata into the image file
 - Hash data
 - Date & time of acquisition
 - Investigator name, case name, comments, etc.

Proprietary Formats

- Disadvantages
 - Inability to share an image between different tools
 - File size limitation for each segmented volume
 - Typical segmented file size is 650 MB or 2 GB
- Expert Witness format is the unofficial standard
 - Used by EnCase, FTK, X-Ways Forensics, and SMART
 - Can produce compressed or uncompressed files
 - File extensions .E01, .E02, .E03, ...

Advanced Forensics Format

- Developed by Dr. Simson L. Garfinkel of Basis Technology Corporation
- Design goals
 - Provide compressed or uncompressed image files
 - No size restriction for disk-to-image files
 - Provide space in the image file or segmented files for metadata
 - Simple design with extensibility
 - Open source for multiple platforms and OSs

Advanced Forensics Format (continued)

- Design goals (continued)
 - Internal consistency checks for self-authentication
- File extensions include .afd for segmented image files and .afm for AFF metadata
- AFF is open source

Determining the Best Acquisition Method

Determining the Best Acquisition Method

- Types of acquisitions
 - Static acquisitions and live acquisitions
- Four methods
 - Bit-stream disk-to-image file
 - Bit-stream disk-to-disk
 - Logical
 - Sparse

Bit-stream disk-to-image file

- Most common method
- Can make more than one copy
- Copies are bit-for-bit replications of the original drive
- Tools: ProDiscover, EnCase, FTK, SMART, Sleuth Kit, X-Ways, iLook

Bit-stream disk-to-disk

- Used when disk-to-image copy is not possible
 - Because of hardware or software errors or incompatibilities
 - This problem is more common when acquiring older drives
- Adjusts target disk's geometry (cylinder, head, and track configuration) to match the suspect's drive
- Tools: EnCase, SafeBack (MS-DOS), Snap Copy

Logical Acquisition and Sparse Acquisition

- When your time is limited, and evidence disk is large
- Logical acquisition captures only specific files of interest to the case
 - Such as Outlook .pst or .ost files
- Sparse acquisition collects only some of the data
 - I am finding contradictory claims about this—wait until we have a real example for clarity

Compressing Disk Images

- Lossless compression might compress a disk image by 50% or more
- But files that are already compressed, like ZIP files, won't compress much more
 - Error in textbook: JPEGs use lossy compression and degrade image quality (p. 104)
- Use MD5 or SHA-1 hash to verify the image

Tape Backup

- When working with large drives, an alternative is using tape backup systems
- No limit to size of data acquisition
 - Just use many tapes
- But it's slow

Returning Evidence Drives

- In civil litigation, a discovery order may require you to return the original disk after imaging it
- If you cannot retain the disk, make sure you make the correct type of copy (logical or bitstream)
 - Ask your client attorney or your supervisor what is required—you usually only have one chance

Contingency Planning for Image Acquisitions

Contingency Planning for Image Acquisitions

- Create a duplicate copy of your evidence image file
- Make at least two images of digital evidence
 - Use different tools or techniques
- Copy host protected area of a disk drive as well
 - Consider using a hardware acquisition tool that can access the drive at the BIOS level (link Ch 4c)
- Be prepared to deal with encrypted drives
 - Whole disk encryption feature in Windows Vista Ultimate and Enterprise editions

Encrypted Hard Drives

- Windows BitLocker
- TrueCrypt
- If the machine is on, a live acquisition will capture the decrypted hard drive
- Otherwise, you will need the key or passphrase
 - The suspect may provide it
 - There are some exotic attacks
 - Cold Boot (link Ch 4e)
 - Passware (Ch 4f)
 - Electron microscope (Ch 4g)

Using Acquisition Tools

- Acquisition tools for Windows
 - Advantages
 - Make acquiring evidence from a suspect drive more convenient
 - Especially when used with hot-swappable devices
 - Disadvantages
 - Must protect acquired data with a well-tested writeblocking hardware device
 - Tools can't acquire data from a disk's host protected area

Windows Write-Protection with USB Devices

- USB write-protection feature
 - Blocks any writing to USB devices
- Target drive needs to be connected to an internal PATA (IDE), SATA, or SCSI controller
- Works in Windows XP SP2, Vista, and Win 7

Acquiring Data with a Linux Boot CD

- Linux can read hard drives that are mounted as read-only
- Windows OSs and newer Linux automatically mount and access a drive
- Windows will write to the Recycle Bin, and sometimes to the NTFS Journal, just from booting up with a hard drive connected
- Linux kernel 2.6 and later write metadata to the drive, such as mount point configurations for an ext2 or ext3 drive
- All these changes corrupt the evidence

Acquiring Data with a Linux Boot CD

- Forensic Linux Live CDs mount all drives read-only
 - Which eliminates the need for a write-blocker
- Using Linux Live CD Distributions
 - Forensic Linux Live CDs
 - Contain additional utilities

Forensic Linux Live CDs

- Configured not to mount, or to mount as read-only, any connected storage media
- Well-designed Linux Live CDs for computer forensics
 - Helix
 - Penguin Sleuth
 - FCCU (French interface)
- Preparing a target drive for acquisition in Linux
 - Modern linux distributions can use Microsoft FAT and NTFS partitions

Acquiring Data with a Linux Boot CD (continued)

- Preparing a target drive for acquisition in Linux (continued)
 - fdisk command lists, creates, deletes, and verifies partitions in Linux
 - mkfs.msdos command formats a FAT file system from Linux
- Acquiring data with dd in Linux
 - dd ("data dump") command
 - Can read and write from media device and data file
 - Creates raw format file that most computer forensics analysis tools can read

Acquiring data with dd in Linux

- Shortcomings of dd command
 - Requires more advanced skills than average user
 - Does not compress data
- dd command combined with the split command
 - Segments output into separate volumes
- dd command is intended as a data management tool
 - Not designed for forensics acquisitions

Acquiring data with dcfldd in Linux

- dcfldd additional functions
 - Specify hex patterns or text for clearing disk space
 - Log errors to an output file for analysis and review
 - Use several hashing options
 - Refer to a status display indicating the progress of the acquisition in bytes
 - Split data acquisitions into segmented volumes with numeric extensions
 - Verify acquired data with original disk or media data

Capturing an Image with ProDiscover Basic

- Connecting the suspect's drive to your workstation
 - Document the chain of evidence for the drive
 - Remove the drive from the suspect's computer
 - Configure the suspect drive's jumpers as needed
 - Connect the suspect drive to a write-blocker device
 - Create a storage folder on the target drive
- Using ProDiscover's Proprietary Acquisition Format
 - Image file will be split into segments of 650MB
 - Creates image files with an .eve extension, a log file (.log extension), and a special inventory file (.pds extension)

Capturing an Image with ProDiscover Basic (continued)

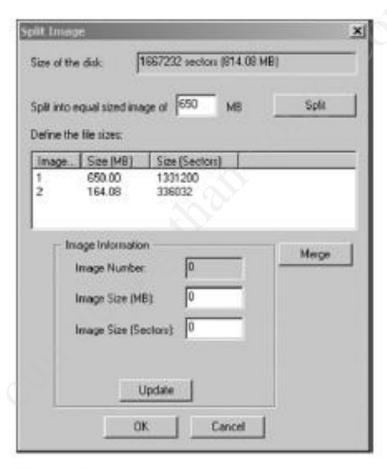


Figure 4-4 The Split Image dialog box

Capture Image X	
Source Drive	PhysicalDrive1 T
Destinations	C:\Work\InChp04p.eve >> Split
Image Format:	ProDiscover Format (recommended)
Total sectors to capture :	1667232 HPA
ProDiscover Image	
Technician Name: Joe Friday	
Image Number InCh	104
Description:	
In Chapter 4 exercise using ProDiscover Basic	
C Yes Password	
OK Cancel	

Figure 4-5 The Capture Image dialog box

Capturing an Image with ProDiscover Basic (continued)

- Using ProDiscover's Raw Acquisition Format
 - Select the UNIX style dd format in the Image Format list box
 - Raw acquisition saves only the image data and hash value

Capturing an Image with AccessData FTK Imager

- Included on AccessData Forensic Toolkit
- View evidence disks and disk-to-image files
- Makes disk-to-image copies of evidence drives
 - At logical partition and physical drive level
 - Can segment the image file
- Evidence drive must have a hardware writeblocking device
 - Or the USB write-protection Registry feature enabled
- FTK Imager can't acquire drive's host protected area (but ProDiscover can)

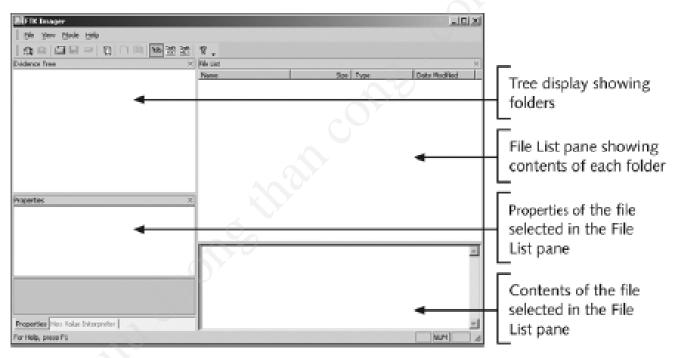


Figure 4-6 The FTK Imager main window

- Steps
 - Boot to Windows
 - Connect evidence disk to a write-blocker
 - Connect target disk
 - Start FTK Imager
 - Create Disk Image
 - Use Physical Drive option

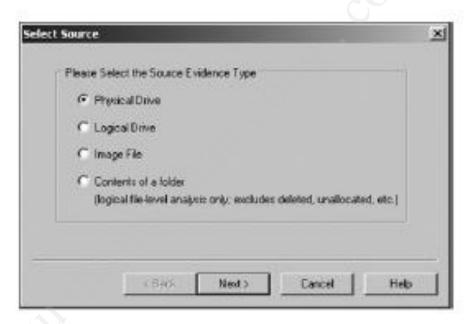


Figure 4-7 The Select Source dialog box

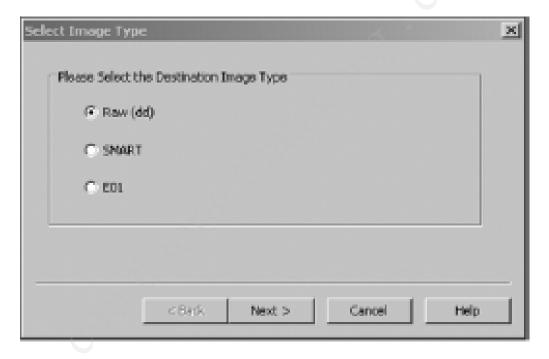


Figure 4-8 The Select Image Type dialog box

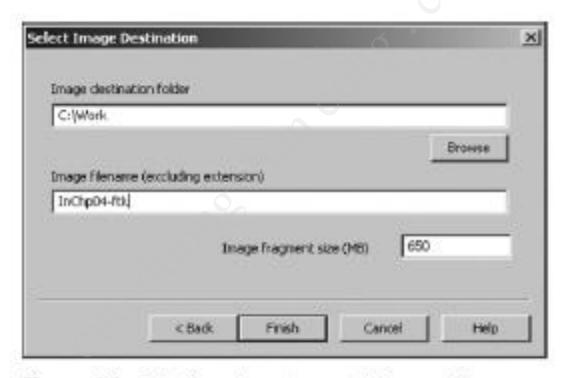


Figure 4-9 Selecting where to save the image file

Creating Image [100%]					
Image Source:	\\.\PHYSICALDF	UME1			
Destination:	C:\Work(InChp)	04-ftk			
Statusi	Image created successfully				
Progress					
124.00 of 124.00 MB (0.849 MB/sec)					
Elapsed time:		0:02:26			
Estimated time left: 0:00:00					
Image Summary Close					

Figure 4-10 A completed image save

Validating Data Acquisitions

Validating Data Acquisitions

- Most critical aspect of computer forensics
- Requires using a hashing algorithm utility
- Validation techniques
 - CRC-32, MD5, and SHA-1 to SHA-512
- MD5 has collisions, so it is not perfect, but it's still widely used
- SHA-1 has some collisions but it's better than MD5
- A new hashing function will soon be chosen by NIST

Linux Validation Methods

- Validating dd acquired data
 - You can use md5sum or sha1sum utilities
 - md5sum or sha1sum utilities should be run on all suspect disks and volumes or segmented volumes
- Validating dcfldd acquired data
 - Use the hash option to designate a hashing algorithm of md5, sha1, sha256, sha384, or sha512
 - hashlog option outputs hash results to a text file that can be stored with the image files
 - vf (verify file) option compares the image file to the original medium

Windows Validation Methods

- Windows has no built-in hashing algorithm tools for computer forensics
 - Third-party utilities can be used
- Commercial computer forensics programs also have built-in validation features
 - Each program has its own validation technique
- Raw format image files don't contain metadata
 - Separate manual validation is recommended for all raw acquisitions

Performing RAID Data Acquisitions

Performing RAID Data Acquisitions

- Size is the biggest concern
 - Many RAID systems now have terabytes of data

Understanding RAID

- Redundant array of independent (formerly "inexpensive") disks (RAID)
 - Computer configuration involving two or more disks
 - Originally developed as a data-redundancy measure
- RAID 0 (Striped)
 - Provides rapid access and increased storage
 - Lack of redundancy
- RAID 1 (Mirrored)
 - Designed for data recovery
 - More expensive than RAID 0

- RAID 2
 - Similar to RAID 1
 - Data is written to a disk on a bit level
 - Has better data integrity checking than RAID 0
 - Slower than RAID 0
- RAID 3
 - Uses data striping and dedicated parity
- RAID 4
 - Data is written in blocks

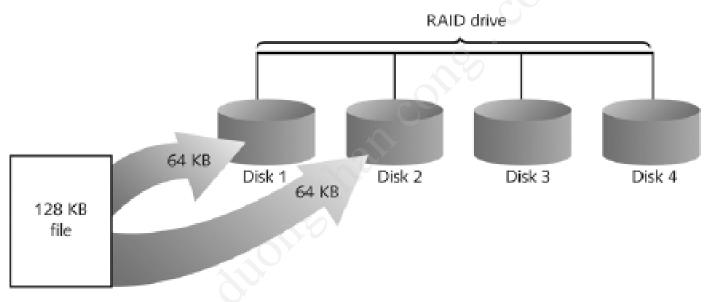


Figure 4-11 RAID 0: Striping

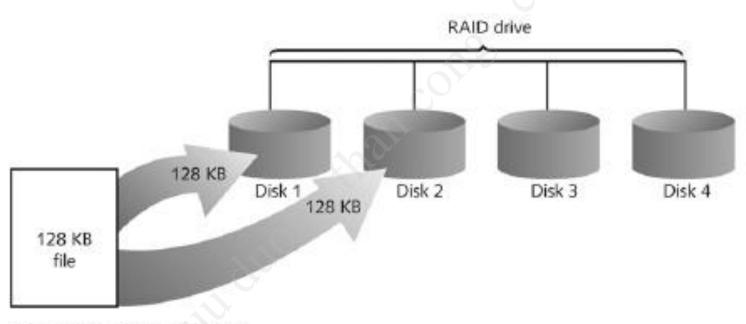


Figure 4-12 RAID 1: Mirroring

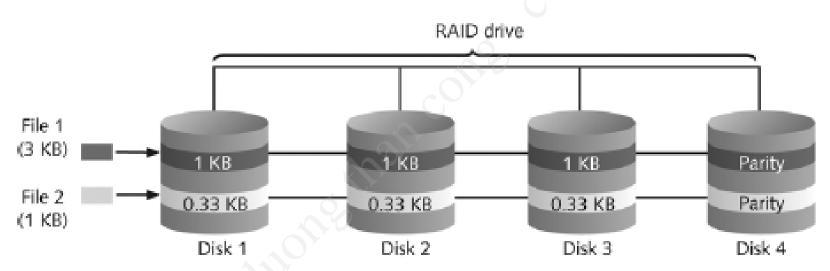


Figure 4-13 RAID 2: Striping (bit level)

- RAID 5
 - Similar to RAIDs 0 and 3
 - Places parity recovery data on each disk
- RAID 6
 - Redundant parity on each disk
- RAID 10, or mirrored striping
 - Also known as RAID 1+0
 - Combination of RAID 1 and RAID 0

Figure 4-14 RAID 5: Block-level striping with distributed parity

Acquiring RAID Disks

- Concerns
 - How much data storage is needed?
 - What type of RAID is used?
 - Do you have the right acquisition tool?
 - Can the tool read a forensically copied RAID image?
 - Can the tool read split data saves of each RAID disk?
- Older hardware-firmware RAID systems can be a challenge when you're making an image

Acquiring RAID Disks (continued)

- Vendors offering RAID acquisition functions
 - Technologies Pathways ProDiscover
 - Guidance Software EnCase
 - X-Ways Forensics
 - Runtime Software
 - R-Tools Technologies
- Occasionally, a RAID system is too large for a static acquisition
 - Retrieve only the data relevant to the investigation with the sparse or logical acquisition method

Using Remote Network Acquisition Tools

Using Remote Network Acquisition Tools

- You can remotely connect to a suspect computer via a network connection and copy data from it
- Remote acquisition tools vary in configurations and capabilities
- Drawbacks
 - LAN's data transfer speeds and routing table conflicts could cause problems
 - Gaining the permissions needed to access more secure subnets
 - Heavy traffic could cause delays and errors
 - Remote access tool could be blocked by antivirus

Remote Acquisition with ProDiscover Investigator

- Preview a suspect's drive remotely while it's in use
- Perform a live acquisition
 - Also called a "smear" because data is being altered
- Encrypt the connection
- Copy the suspect computer's RAM
- Use the optional stealth mode to hide the connection

Remote Acquisition with ProDiscover Incident Response

- All the functions of ProDiscover Investigator plus
 - Capture volatile system state information
 - Analyze current running processes
 - Locate unseen files and processes
 - Remotely view and listen to IP ports
 - Run hash comparisons to find Trojans and rootkits
 - Create a hash inventory of all files remotely

PDServer Remote Agent

- ProDiscover utility for remote access
- Needs to be loaded on the suspect computer
- PDServer installation modes
 - Trusted CD
 - Preinstallation
 - Pushing out and running remotely
- PDServer can run in a stealth mode
 - Can change process name to appear as OS function

Remote Connection Security Features

- Password Protection
- Encrypted communications
- Secure Communication Protocol
- Write Protected Trusted Binaries
- Digital Signatures

Remote Acquisition with EnCase Enterprise

- Remotely acquires media and RAM data
- Integration with intrusion detection system (IDS) tools
- Options to create an image of data from one or more systems
- Preview of systems
- A wide range of file system formats
- RAID support for both hardware and software

Other Remote Acquisition Tools

- R-Tools R-Studio
- WetStone LiveWire
- F-Response

Remote Acquisition with Runtime Software

- Compact Shareware Utilities
 - DiskExplorer for FAT
 - DiskExplorer for NTFS
 - HDHOST (Remote access program)
- Features for acquisition
 - Create a raw format image file
 - Segment the raw format or compressed image
 - Access network computers' drives

Using Other Forensics-Acquisition Tools

Using Other Forensics-Acquisition Tools

Tools

- SnapBack DatArrest
- SafeBack
- DIBS USA RAID
- ILook Investigator IXimager
- Vogon International SDi32
- ASRData SMART
- Australian Department of Defence PyFlag

SnapBack DatArrest

- Columbia Data Products
- Old MS-DOS tool
- Can make an image on three ways
 - Disk to SCSI drive
 - Disk to network drive
 - Disk to disk
- Fits on a forensic boot floppy
- SnapCopy adjusts disk geometry

NTI SafeBack

- Reliable MS-DOS tool
- Small enough to fit on a forensic boot floppy
- Performs an SHA-256 calculation per sector copied
- Creates a log file

NTI SafeBack (continued)

Functions

- Disk-to-image copy (image can be on tape)
- Disk-to-disk copy (adjusts target geometry)
 - Parallel port laplink can be used
- Copies a partition to an image file
- Compresses image files

DIBS USA RAID

- Rapid Action Imaging Device (RAID)
 - Makes forensically sound disk copies
 - Portable computer system designed to make disk-todisk images
 - Copied disk can then be attached to a write-blocker device

ILook Investigator IXimager

- Iximager
 - Runs from a bootable floppy or CD
 - Designed to work only with ILook Investigator
 - Can acquire single drives and RAID drives

ASRData SMART

- Linux forensics analysis tool that can make image files of a suspect drive
- Capabilities
 - Robust data reading of bad sectors on drives
 - Mounting suspect drives in write-protected mode
 - Mounting target drives in read/write mode
 - Optional compression schemes

Australian Department of Defence PyFlag

- PyFlag tool
 - Intended as a network forensics analysis tool
 - Can create proprietary format Expert Witness image files
 - Uses sgzip and gzip in Linux