Pointers

Ho Dac Hung

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers

e Pointers are an important feature of C++ (and C),
while many other languages, such as Visual
Basic and Java, have no pointers at all. However,

INn some situations pointers provide an essential
tool for increasing the power of C++.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Addresses and Pointers

e The ideas behind pointers are not complicated.
Here’s the first key concept. Every byte in the
computer's memory has an address. Addresses
are numbers, just as they are for houses on a
street. The numbers start at 0 and go up from
there—1, 2, 3, and so on. If you have 1MB of
memory, the highest address is 1,048,575.

e Your program, when it is loaded into memory,
occupies a certain range of these addresses.
That means that every variable and every
function In your program starts at a particular
address.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

System memory

0—

{ ineger
} Character
314,759, Float
Progam{ '

s

314,810 ’J\,, \\

Program
variables

var1 is at address 314,800
var2 is at address 314,802
var3 is at address 314,803
var4 is at address 314,807

i

655,359 —

S e e

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The Address-of Operator &

e You can find the address occupied by a variable
by using the address-of operator &.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The Address-of Operator &

Int main()
{
Int varl = 11; //define and initialize
Int var2 = 22; /lthree variables
Int var3 = 33;
cout << &varl << endl //print the addresses
<< &var2 << endl //of these variables
<< &var3 << endl;
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Variables

e The potential for increasing our programming
power requires an additional idea: variables that
hold address values. We've seen variable types
that store characters, integers, floating-point
numbers, and so on. Addresses are stored
similarly. A variable that holds an address value is
called a pointer variable, or simply a pointer.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int main()

{

Int varl = 11; //two integer variables

Int var2 = 22,

cout << &varl << endl //print addresses of variables
<< &var2 << end| << endl;

Int* ptr; //pointer to integers

ptr = &varl,; //pointer points to varl

cout << ptr << endl; //print pointer value

ptr = &var2; //pointer points to var2

cout << ptr << endl; //print pointer value

return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Accessing the Variable Pointed To

e Suppose that we don't know the name of a
variable but we do know its address. Can we
access the contents of the variable? There is a
special syntax to access the value of a variable
using its address instead of its name.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int main()

{

Int varl = 11; //two integer variables

Int var2 = 22,

Int* ptr; //pointer to integers

ptr = &varl,; //pointer points to varl

cout << *ptr << endl; //print contents of pointer (11)
ptr = &var2; //pointer points to var2

cout << *ptr << endl; //print contents of pointer (22)
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer to void

 Before we go on to see pointers at work, we
should note one peculiarity of pointer data types.
Ordinarily, the address that you put in a pointer
must be the same type as the pointer.

e However, there is an exception to this. There is a
sort of general-purpose pointer that can point to
any data type. This is called a pointer to void, and
IS defined like this:

void* ptr;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int main()

{

Int intvar; //integer variable

float flovar; //float variable

Int* ptrint; //define pointer to int
float* ptrflo; //define pointer to float
void* ptrvoid; //define pointer to void
/[ptrint = &flovar; //error, float* to int*
/I ptrflo = &intvar; //error, int* to float*
ptrvoid = &intvar; //ok, int* to void*
ptrvoid = &flovar; //ok, float* to void*
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer to void

e |If for some unusual reason you really need to
assign one kind of pointer type to another, you
can use the reinterpret_cast.

ptrint = reinterpret_cast<int*>(flovar);
ptrflo = reinterpret_cast<float*>(intvar);

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers and Arrays

intarray[0]

intarray[1]

intarray[2]

intarray[3]

intarrayl4]

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers and Arrays

Int main()
{ l/array
Int intarray[5] = { 31, 54, 77, 52, 93 },
for(int j=0; j<5; j++) //for each element,
cout << intarray[j] << endl; //print value
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers and Arrays

Int main()
{ l/array
Int intarray[5] = { 31, 54, 77, 52, 93 },
for(int j=0; j<5; j++) //for each element,
cout << *(intarray+) << endl; //print value
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Constants and Pointer
Variables

e Suppose that, instead of adding | to intarray to
step through the array addresses, you wanted to
use the increment operator. Could you write
*(intarray++)?

 The answer is no, and the reason is that you can't
Increment a constant The expression intarray Iis
the address where the system has chosen to
place your array, and it will stay at this address
until the program terminates.

e But while you can’t increment an address, you
can increment a pointer that holds an address.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Constants and Pointer
Variables

Int main()

{
Int intarray[] ={ 31, 54, 77, 52, 93 }, //array
Int* ptrint; //pointer to int
ptrint = intarray; //points to intarray
for(int j=0; j<5; j++) //for each element,

cout << *(ptrint++) << endl; //print value

return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers and Functions

* By value
* By reference
e By pointer

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

iInt main()

{
void centimize(double&); //prototype
double var = 10.0; //var has value of 10 inches
cout << “var =" << var << " inches” << endl;
centimize(var); //change var to centimeters

cout << “var = “ << var << “ centimeters” << endl:
return O;

}

void centimize(double& v)

{
v *= 2.54: //v IS the same as var
.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

iInt main()

{
void centimize(double*); //prototype
double var = 10.0; //var has value of 10 inches
cout << “var = " << var << “ inches” << endl;
centimize(&var); //change var to centimeters
cout << “var = " << var << “ centimeters” << end|;
return O;

}

void centimize(double* ptrd)

{
*ptrd *= 2.54; /[*ptrd is the same as var
L.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int main()
{
void centimize(double*); //prototype
double varray[MAX] ={10.0, 43.1, 95.9, 59.7, 87.3 };
centimize(varray); //change elements of varray to cm
for(int j=0; |<MAX; j++) //display new array values
cout << “varray[" <<] << "]="

<< varray[j] << “ centimeters” << endl;
return O;

}

void centimize(double* ptrd)
{

for(int |=0; |<MAX; j++)
o

*ptrd++ *= 2.54; //ptrd points to elements of varray

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sorting Array Elements

void order(int* numb1, int* numb2)

{
If(*numbl > *numb?2) //if 1st larger than 2nd,

{
Int temp = *numb1; //swap them
*numbl = *numb?2;
*numb2 = temp;

}
}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sorting Array Elements

void bsort(int* ptr, int n)
{
void order(int*, int*); //prototype
Int j, k; //indexes to array
for(j=0; j<n-1; j++)
for(k=j+1; k<n; k++)
order(ptr+j, ptr+Kk);

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

iInt main()
{
void bsort(int*, int); //prototype
const int N = 10; //array size
/[test array
Int arr[N] ={ 37, 84, 62, 91, 11, 65, 57, 28, 19, 49 },
bsort(arr, N); //sort the array
for(int j=0; J<N; j++) //print out sorted array
cout << arrfj] << * %
cout << end];
return O;

}
©

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers to String Constants

Int main()

{
char strl[] = “Defined as an array’,
char* str2 = "Defined as a pointer”;
cout << strl << endl; // display both strings
cout << str2 << endl;
/[strl++; /[can’t do this; strl is a constant
str2++; // this i1s OK, str2 is a pointer

cout << str2 << endl; // now str2 starts “efined...

return O;

7

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The const Modifier and Pointers

e The use of the const modifier with pointer
declarations can be confusing, because It can
mean one of two things, depending on where it's
placed.

const int* cptrint; //cptrint is a pointer to constant int
Int* const ptrcint; //ptrcint is a constant pointer to int

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Arrays of Pointers to Strings

Int main()
{ //array of pointers to char

char* arrptrs[DAYS] = { "Sunday”, "Monday’,

“Tuesday”, “"Wednesday”, “Thursday”,
“Friday”, “Saturday” },
for(int j=0; |[<DAYS,; j++) //display every string
cout << arrptrs[j] << endl;

return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

arrptrs

283888888

SSS
E=3

Coubuongthantongcont

e

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Memory Management: new and
delete

e C++ provides a different approach to obtaining
blocks of memory: the new operator. This
versatile operator obtains memory from the
operating system and returns a pointer to its
starting point.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Memory Management: new and
delete

e If your program reserves many chunks of memory
using new, eventually all the available memory
will be reserved and the system will crash. To
ensure safe and efficient use of memory, the new
operator Is matched by a corresponding delete
operator that returns memory to the operating

system.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int main()

{

char* str = “Idle hands are the devil's workshop.”;

Int len = strlen(str); //get length of str

char* ptr; //make a pointer to char

ptr = new char[len+1]; //set aside memory: string +
\O’

strcpy(ptr, str); //copy str to new memory area ptr

cout << “ptr=" << ptr << endl; //show that ptr is now in
str

delete]] ptr; //release ptr's memory
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Memory Management: new and
delete

charx ptr;

t Data types
must agree | | \
y
ptr = new charllenl];
Pointer ~ Keyword Number of type c ha r variables

Data type of variables

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointers to Objects

e Pointers can point to objects as well as to simple
data types and arrays.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class Distance //English Distance class

{

private:
Int feet;
float inches;
public:
void getdist() //get length from user
{
cout << “\nEnter feet: “; cin >> feet;
cout << “Enter inches: “; cin >> inches:
}
void showdist() //display distance
{ cout << feet << \'-" << inches << \"; }

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int main()

{

Distance dist; //define a named Distance object
dist.getdist(); //access object members
dist.showdist(); // with dot operator

Distance* distptr; //pointer to Distance

distptr = new Distance; //points to new Distance
object

distptr->getdist(); //access object members
distptr->showdist(); // with -> operator

cout << endl;

return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Referring to Members

distptr.getdist(); // won’t work; distptr is not a
variable

(*distptr).getdist(); // ok but inelegant
distptr->getdist(); // better approach

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

An Array of Pointers to Objects

e A common programming construction is an array
of pointers to objects. This arrangement allows
easy access to a group of objects, and is more
flexible than placing the objects themselves in an

array.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 class person //class of persons
{
protected:
char name[40]; //person’s hame
public:
void setName() //set the name
{
cout << “Enter name: “;
cin >> name;

}

void printName() //get the name

{

cout << “\n Name Is: “ << name;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

iInt main()
{
person* persPtr[100]; //array of pointers to persons
Int n = 0; //number of persons in array
char choice;
do //put persons in array

{

persPtr[n] = new person; //make new object
persPtr[n]->setName(); //set person’s name
n++; //[count new person

cout << “Enter another (y/n)? “; //enter another
cin >> choice; //person?

}

while(choice=="y’);

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

for(int j=0; j<n; J++) //print names of

{ //all persons
cout << “\nPerson number “ << j+1;
persPtr(j]->printName();

}

cout << end];

return O;

} /lend main()

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

