Virtual Functions

Ho Dac Hung

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Virtual Functions

* Virtual means existing in appearance but not in
reality. When virtual functions are used, a
program that appears to be calling a function of

one class may in reality be calling a function of a
different class.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 _ N
Normal Member Functions Accessed

with Pointers

class Base //base class

{
public:
void show() //normal function
{ cout << “Base\n’; }
}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 _ N
Normal Member Functions Accessed

with Pointers

class Dervl : public Base //derived class 1

{
public:
void show()
{ cout << “Dervi\n’; }
I3

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 _ N
Normal Member Functions Accessed

with Pointers

class Derv2 : public Base //derived class 2

{
public:
void show()
{ cout << “Derv2\n”; }
I3

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 _ N
Normal Member Functions Accessed

with Pointers

Int main()

{
Dervl dvl, //object of derived class 1
Derv2 dv2; //object of derived class 2
Base* ptr; //pointer to base class

otr = &dv1l,; //put address of dv1 in pointer

otr->show(); //execute show()

otr = &dv2; //put address of dv2 in pointer

otr->show(); //execute show()

return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 . N
Normal Member Functions Accessed

with Pointers

class Base //base class

{
public:
virtual void show() //normal function
{ cout << “Base\n”; }
I3

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

_ I
Abstract Classes and Pure Virtual

Functions

* When we will never want to instantiate objects of
a base class, we call it an abstract class. Such a
class exists only to act as a parent of derived
classes that will be used to instantiate objects. It
may also provide an Interface for the class
hierarchy.

 We create abstract class by placing at least one
pure virtual function in the base class. A pure
virtual function is one with the expression =0
added to the declaration.

Coubuongthantongcont https:7ocom/ toentt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

_ I
Abstract Classes and Pure Virtual

Functions

class Base //base class

{
public:

virtual void show() = O; //pure virtual function

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Abstract Classes and Pure Virtual

Functions
class Dervl : public Base //derived class 1

{
public:
void show()
{ cout << “Dervi\n’; }
I3

\

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Abstract Classes and Pure Virtual

Functions
class Derv2 : public Base //derived class 2

{
public:
void show()
{ cout << “Derv2\n”; }
I3

\

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Abstract Classes and Pure Virtual
Functions

Int main()

{

// Base bad; //can’t make object from abstract class
Base* arr[2]; //array of pointers to base class
Dervl dv1l; //object of derived class 1

Derv2 dv2; //object of derived class 2

arr
arr
arr
arr

0] =
1] =
0]

1]->show();

= &dv1l; //put address of dvl in array
= &dv2; //put address of dv2 in array
->show(); //execute show() in both objects

return O;

™~

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Virtual Base Classes

e In this arrangement a problem can arise if a
member function in the Grandchild class wants to
access data or functions in the Parent class.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Virtual Base Classes

Parent

T

Child1

Child2

\/‘7’

Grandchild

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class Parent
{
protected:
Int basedata;
I3
class Child1 : public Parent

{}
class Child2 : public Parent

{}
class Grandchild : public Child1, public Child2

{
public:
Int getdatal()
{ return basedata; } // ERROR: ambiguous

@};

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class Parent
{
protected:
Int basedata;
I3
class Child1 : virtual public Parent

{}

class Child2 : virtual public Parent

{}
class Grandchild : public Child1, public Child2

{
public:
Int getdatal()
{ return basedata; } // ERROR: ambiguous

@};

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Friend Functions

 The concepts of encapsulation and data hiding
dictate that nonmember functions should not be
able to access an object's private or protected
data. The policy is, If you're not a member, you
can’t get in. However, there are situations where
such rigid discrimination leads to considerable
Inconvenience.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Friends as Bridges

* Imagine that you want a function to operate on
objects of two different classes. Perhaps the
function will take objects of the two classes as
arguments, and operate on their private data. In
this situation there’s nothing like a friend function.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class beta; //needed for frifunc declaration
class alpha
{
private:
Int data;
public:
alpha() : data(3) { } //no-arg constructor
friend int frifunc(alpha, beta); //friend function

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class beta
{

private:

int data;

public:
beta() : data(7) { } //no-arg constructor
friend int frifunc(alpha, beta); //friend function
I3
Int frifunc(alpha a, beta b) //function definition

{

return(a.data + b.data);

}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Int main()

{

alpha aa;

beta bb;

cout << frifunc(aa, bb) << endl; //call the function
return O;

}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Breaching the Walls

e We should note that friend functions are
controversial. During the development of C++,
arguments raged over the desirability of including
this feature. On the one hand, it adds flexibility to
the language; on the other, it is not in keeping
with data hiding, the philosophy that only member
functions can access a class’s private data.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

friends for Functional Notation

e Sometimes a friend allows a more obvious syntax
for calling a function than does a member
function.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class Distance //English Distance class

{

private:
Int feet;
float inches;
public:
Distance() : feet(0), inches(0.0)
{}

Distance(int ft, float in) : feet(ft), inches(in)

{}

void showdist() //display distance

{ cout << feet << “\'-" << inches << \"; }
friend float square(Distance); //friend function

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 float square(Distance d) //return square of

{ /lthis Distance
float fltfeet = d.feet + d.inches/12; //convert to float
float feetsqrd = fltfeet * fltfeet; //find the square
return feetsgrd; //return square feet

}

Int main()

{
Distance dist(3, 6.0); //two-arg constructor (3°-6")
float sqft;
sgft = square(dist); //return square of dist
cout << “\nDistance = “; dist.showdist();
cout << “\nSquare = “ << sgft << “ square feet\n”;
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

friend Classes

e The member functions of a class can all be made
friends at the same time when you make the
entire class a friend

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class alpha
{
private:
Int datal;
public:
alpha() : datal(99) { } //constructor
friend class beta; //beta is a friend class
I3
class beta
{ //all member functions can
public: //access private alpha data
void funcl(alpha a) { cout << “\ndatal=" << a.datal; }
void func2(alpha a) { cout << “\ndatal=" << a.datal; }

%

@

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Int main()

{

alpha a;

peta b;
n.funcl(a);
n.func2(a);
cout << end]l;
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Static Functions

e A static data member is not duplicated for each
object; rather a single data item is shared by all
objects of a class. Let's extend this concept by
showing how functions as well as data may be
static.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class gamma

{

private:
static int total; //total objects of this class
/I (declaration only)
Int id; //ID number of this object
public:
gammay() //no-argument constructor
{
total++; //add another object
Id = total; //id equals current total

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

~gammay() //destructor

{

total--;
cout << “Destroying ID number “ << id << end];

}

static void showtotal() //static function

{

cout << “Total Is “ << total << endl;

}

void showid() //non-static function

{

cout << “ID number is “ << 1d << end!;

@};

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Int gamma::total = O;

Int main()

{
gamma g1;
gamma::showtotal();
gamma g2, g3;
gamma::showtotal();
gl.showid();
g2.showid();
g3.showid();

return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Accessing static Functions

* We shouldn’t need to refer to a specific object
when we're doing something that relates to the
entire class. It's more reasonable to use the name
of the class itself with the scope-resolution
operator.

gamma::showtotal(); // more reasonable

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The this Pointer

e The member functions of every object have
access to a sort of magic pointer named this,
which points to the object itself.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class where
{
private:
char charray[10]; //loccupies 10 bytes
public:
void reveal()
{ cout << "\nMy object’s address is “ << this; }
I3
Int main()
{
where wl, w2;
wl.reveal(); //see where they are
w2.reveal();
return O;

!

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Accessing Member Data with this

* When you call a member function, it comes into
existence with the value of this set to the address
of the object for which it was called. The this
pointer can be treated like any other pointer to an
object, and can thus be used to access the data
In the object it points to.

™~

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class what

{

private:
Int alpha;
public:
void tester()
{
this->alpha = 11, //[same as alpha = 11,
cout << this->alpha; //same as cout << alpha;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

