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Functions

e A function groups a number of program
statements into a unit and gives it a name. This
unit can then be invoked from other parts of the
program.
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Functions

 The most important reason to use functions is to
ald In the conceptual organization of a program.
Dividing a program into functions is one of the
major principles of structured programming.

 Another reason to use functions is to reduce
program size. Any sequence of instructions that
appears in a program more than once is a
candidate for being made into a function.
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Functions

for all calls to function.
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void starline(); //function declaration
Int main()
{

starline(); //call to function

return O;

}

void starline() //function declarator
{
for(int j=0; j<45; j++) //function body
cout << ™*;
cout << endl;
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The Function Declaration

e The declaration tells the compiler that at some
later point we plan to present a function called
starline. The keyword void specifies that the
function has no return value, and the empty
parentheses indicate that it takes no arguments.

void starline();
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Calling the Function

e The syntax of the call is very similar to that of the
declaration, except that the return type is not
used. The call is terminated by a semicolon.

starline();
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The Function Definition

e The definition consists of a line called the
declarator, followed by the function body. The
function body Is composed of the statements that
make up the function, delimited by braces.

e The declarator must agree with the declaration: It
must use the same function name, have the
same argument types in the same order (if there
are arguments), and have the same return type.
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Comparison with Library Functions

e The declaration is in the header file specified at
the beginning of the. The is in a library file that's
linked automatically to your program when you
build it.

* When we use a library function we don’t need to
write the declaration or definition. But when we
write our own functions, the declaration and
definition are part of our source file.
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Eliminating the Declaration

 The second approach to inserting a function into
a program is to eliminate the function declaration
and place the function definition (the function
itself) in the listing before the first call to the

function.
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e

void starline()
{
for(int j=0; j<45; |++)
cout << ™*;
cout << endl;

iInt main() //main() follows function

{

starline();
return O;
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Passing Arguments to Functions

e An argument Is a piece of data passed from a
program to the function. Arguments allow a
function to operate with different values, or even
to do different things, depending on the
requirements of the program calling it.
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Passing Arguments to Functions

o Constants
e Variables
e Structures
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Passing Arguments to Functions

void repchar(char ch, int n) //function declarator
{
for(int j=0; j<n; j++) //function body
cout << ch;
cout << end|,
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Passing Arguments to Functions

Int main()
{
char chin;
It nin;
cout << “Enter a character: *;
cin >> chin;
cout << “Enter number of times to repeat it: “;
cin >> nin;
repchar(chin, nin);
return O;
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Passing Arguments to Functions

e Passing by value
e Passing by reference
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Returning Values from Functions

e When a function completes its execution, it can
return a single value to the calling program.
Usually this return value consists of an answer to
the problem the function has solved.
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Returning Values from Functions

float Ibstokg(float pounds)

{
float kilograms = 0.453592 * pounds;

return kilograms;

}
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Returning Values from Functions

Int main()
{
float Ibs, kgs;
cout << “\nEnter your weight in pounds:
cin >> Ibs;
kgs = Ibstokg(lbs);

cout << “Your weight in kilograms is “ << kgs <<
end;

return O;
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Overloaded Functions

e An overloaded function appears to perform
different activities depending on the kind of data
sent to it. Overloading is like the joke about the
famous scientist who Insisted that the thermos
bottle was the greatest invention of all time.
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Overloaded Functions

 Different Numbers of Arguments

void repchar(); //declarations
void repchar(char);
void repchar(char, int);
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Overloaded Functions

 Different Kinds of Arguments

void engldisp( Distance ); //declarations
void engldisp( float );
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Recursion

e The existence of functions makes possible a
programming technique called recursion.
Recursion involves a function calling itself.
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Recursion
unsigned long factfunc(unsigned long n)

{
if(n > 1)
return n * factfunc(n-1); //self call
else
return 1;
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Inline Functions

* We mentioned that functions save memory space
because all the calls to the function cause the
same code to be executed; the function body
need not be duplicated in memory.

e To save execution time In short functions, you
may elect to put the code in the function body
directly inline with the code in the calling program.
That Is, each time there's a function call in the
source file, the actual code from the function is
Inserted, instead of a jump to the function.

©
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Inline Functions

main()

main()

func1()

~
D
func1();
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a) Repeated code
placed in function
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Inline Functions

Inline float Ibstokg(float pounds)

{
return 0.453592 * pounds;
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Default Arguments

e Surprisingly, a function can be called without
specifying all its arguments. This won’t work on
just any function: The function declaration must
provide default values for those arguments that
are not specified.
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Default Arguments

void repchar(char=""", int=45);

Int main()

{
repc
repc
repc

nar(); //prints 45 asterisks
nar('="); //prints 45 equal signs

nar(‘+’, 30); //prints 30 plus signs

return O;



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Local Variables

e Variables defined within a function body are
called local variables because they have local
scope.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Global Variables

e Global variables are defined outside of any
function. A global variable is visible to all the
functions in a file.

* Global variables have storage class static, which
means they exist for the life of the program.
Memory space Is set aside for them when the
program begins, and continues to exist until the
program ends.
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Static Local Variables

e A static local variable has the visibility of an
automatic local variable (that Is, inside the
function containing it). However, its lifetime is the
same as that of a global variable, except that it
doesn’t come into existence until the first call to
the function containing it. Thereafter it remains in
existence for the life of the program.
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Static Local Variables

float getavg(float newdata)
{
static float total = O;
static int count = 0O;
count++;
total += newdata;
return total / count;
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Returning by Reference

» Besides passing values by reference, you can
also return a value by reference. One reason is to
avoid copying a large object. Another reason is to
allow you to use a function call on the left side of
the equal sign.
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4 Int X;
INt& setx();

Int main()

{
setx() = 92;
cout << “x=" << x << endl:
return O;

INt& setx()
{

@

return x;
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const Function Arguments

e Suppose you want to pass an argument by
reference for efficiency, but not only do you want
the function not to modify it, you want a
guarantee that the function cannot modify it.
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const Function Arguments

void aFunc(int& a, const int& b);

Int main()

{
Int alpha =7,
Int beta = 11;
aFunc(alpha, beta);
return O;
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