Objects and Classes

Ho Dac Hung

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Classes

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Objects

e An object is said to be an instance of a class.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A Simple Class

class smallobj //define a class
{
private:
INnt somedata; //class data
public:
void setdata(int d)
{ somedata =d; }
void showdata()
{ cout << "Data Is “ << somedata << endl; }

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A Simple Class

Int main()

{
smallobj s1, s2;
sl.setdata(1066);
s2.setdata(1776);
sl1.showdata();
s2.showdata();
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A Simple Class

Functions
func1()

func2()
func3()

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Defining the Class

e The definition starts with the keyword class,
followed by the class name.

e Like a structure, the body of the class is delimited
by braces and terminated by a semicolon.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Data Hiding

e A key feature of object-oriented programming Is
data hiding. This term does not refer to the
activities of particularly paranoid programmers;
rather it means that data iIs concealed within a
class so that it cannot be accessed mistakenly by
functions outside the class.

e The primary mechanism for hiding data is to put it
In a class and make it private. Private data or
functions can only be accessed from within the
class. Public data or functions, on the other hand,
are accessible from outside the class.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Data Hiding

Not accessible from
outside class

Accessible from

outside class

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class Data

e The data items within a class are called data
members (or sometimes member data). There
can be any number of data members in a class,
just as there can be any number of data items in
a structure.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Member Function

» Member functions are functions that are included
within a class. The function bodies of these
functions have been written on the same line as
the braces that delimit them.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Functions Are Public, Data Is Private

Keyword
r Mame of class

class foo
{
private: Keyword private and colon
int data; — ——————— Private functions and data
Braces —— public: Keyword public and colon

void memfunc (int d)

} Public functions and data
{ data = d; }

— 3

|— Semicolon

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Using the Class

 The definition of the class does not create any
objects. It only describes how they will look when
they are created, just as a structure definition
describes how a structure will look but doesn't
create any structure variables.

e Defining an object is similar to defining a variable
of any data type: Space Is set aside for it In
memory.

smallobj s1, s2;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Calling Member Functions

e To use a member function, the dot operator
connects the object name and the member
function. The syntax is similar to the way we refer
to structure members, but the parentheses signal
that we're executing a member function rather
than referring to a data item.

sl.setdata(1066);
s2.setdata(1776);

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

C++ ODbjects as Physical Objects

e In many programming situations, objects In
programs represent physical objects: things that
can be felt or seen. These situations provide vivid
examples of the correspondence between the
program and the real world.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class part //define class
{
private:
Int modelnumber; //ID number of widget
Int partnumber; //ID number of widget part
float cost; //cost of part
public:
void setpart(int mn, int pn, float c) //set data
{
modelnumber = mn;
partnumber = pn;
Cost = C;

@ }

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

void showpart() //display data

{
cout << “Model “ << modelnumber;
cout << “, part “ << partnumber;
cout << “, costs $” << cost << end];

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

C++ Objects as Data Types

e C++ objects can represent: variables of a user-
defined data type.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructors

e Sometimes, however, it's convenient If an object
can initialize itself when it's first created, without
requiring a separate call to a member function.
Automatic initialization Is carried out using a
special member function called a constructor. A
constructor is a member function that is executed
automatically whenever an object is created.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructors

class Counter

{

private:
unsigned int count; //count
public:
Counter() : count(0) //constructor
{ *empty body*/ }
void inc_count() //increment count
{ count++; }
Int get_count() //return count
{ return count; }

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Int main()

{

Counter cl, c2; //define and initialize

cout << “\nc1=" << cl.get_count(); //display

cout << “\nc2=" << c2.get_count();
cl.inc_count(); //increment cl1

c2.inc_count(); //increment c2

c2.inc_count(); //increment c2

cout << “\ncl=" << cl.get_count(); //display again
cout << “\nc2=" << c2.get_count();

cout << end];

return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructors

 We've seen that a special member function—the
constructor—is called automatically when an
object is first created. You might guess that
another function is called automatically when an
object is destroyed. This is indeed the case. Such
a function is called a destructor. A destructor has
the same name as the constructor (which is the
same as the class name) but Is preceded by a
tilde.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructors

class Foo
{
private:
int data;
public:
Foo() : data(0) //constructor

{}
~Fo0()

{1}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ODbjects as Function Arguments

e Next, we will demonstrates some new aspects of
classes: constructor overloading, defining
member functions outside the class, and perhaps
most importantly - objects as function arguments.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

/" class Distance //English Distance class
{
private:
Int feet;
float inches;
public: //constructor (no args)
Distance() : feet(0), inches(0.0)
{}

Distance(int ft, float in) : feet(ft), inches(in)

{}
void getdist() //get length from user

{

cout << “\nEnter feet: “; cin >> feet;
cout << “Enter inches: “; cin >> inches:

@ }

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

/
void showdist() //display distance

y)n

{ cout << feet << "\'-" << Iinches << \"’; }
void add_dist(Distance, Distance); //declaration

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

™~

void Distance::add_dist(Distance d2, Distance d3)
{
Inches = d2.inches + d3.inches; //add the inches
feet = 0; //(for possible carry)
If(inches >= 12.0) //if total exceeds 12.0,
{ /lthen decrease inches
Inches -=12.0; //by 12.0 and
feet++; //lincrease feet
} /by 1
feet += d2.feet + d3.feet; //add the feet

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Int main()

{

Distance distl, dist3; //define two lengths

Distance dist2(11, 6.25); //define and initialize dist2
distl.getdist(); //get distl from user
dist3.add_dist(distl, dist2); //dist3 = distl + dist2
//display all lengths

cout << “\ndistl = “; distl.showdist();

cout << “\ndist2 = “; dist2.showdist();

cout << “\ndist3 = “; dist3.showdist();

cout << end];
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The Default Copy Constructor

e default copy constructor initialize an object with
another object of the same type.

Distance dist2(distl);

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Structures and Classes

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Static Class Data

e |f a data item in a class is declared as static, only
one such item is created for the entire class, no
matter how many objects there are. A static data
item Is useful when all objects of the same class
must share a common item of information.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Static Class Data

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

class foo
{
private:
static int count; //note: “declaration” only!
public:
foo()
{ count++; }
Int getcount() //returns count
{ return count; }
I3

Int foo::count = O:; //*definition* of count

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Int main()

{
foo f1, f2, 3, //create three objects
cout << “count is “ << fl.getcount() << end
cout << “count Is * << f2.getcount() << end

cout << “count Is * << f3.getcount() << end
return O;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

const and Classes

e const Member Functions
e const Member Function Arguments
e const Objects

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

