Inheritance

Ho Dac Hung



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance

 Inheritance is probably the most powerful feature
of object-oriented programming, after classes

* themselves. Inheritance is the process of creating
new classes, called derived classes, from

e existing or base classes. The derived class
Inherits all the capabilities of the base class but

e can add embellishments and refinements of its
own. The base class is unchanged by this

e process.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance

} Defined in derived class

Defined in base class
but accessible from
derived class

(-,

S e e


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance

nheritance is an essential part of OOP. Its big
payoff Is that it permits code reusability. Once a
pase class is written and debugged, it need not
pe touched again, but, using Inheritance, can
nevertheless be adapted to work in different
situations. Reusing existing code saves time
andmoney and Increases a program’s reliability.
Inheritance can also help iIn the original
conceptualization of a programming problem, and
In the overall design of the program.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance

 An important result of reusability is the ease of
distributing class libraries. A programmer can use
a class created by another person or company,
and, without modifying it, derive other classes
from it that are suited to particular situations.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Derived Class and Base Class

 We could insert a decrement routine directly into
the source code of the Counter class. However,

there are several reasons that we might not want
to do this.

e \We can use inheritance to create a new class
based on Counter, without modifying Counter
itself.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class Counter //base class

{
protected: /NOTE: not private

unsigned int count; //count

public:
Counter() : count(0) //no-arg constructor
{}
Counter(int ¢) : count(c) //1-arg constructor
{}

unsigned int get_count() const //return count
{ return count; }

Counter operator ++ () //incr count (prefix)

{ return Counter(++count); }



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class CountDn : public Counter //derived class
{
public:
Counter operator -- () //decr count (prefix)
{ return Counter(--count); }



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

Int main()

{
CountDn c1; //c1 of class CountDn
cout << “\nc1=" << cl.get_count(); //display c1
++cl; ++cl; ++cl; //increment c1, 3 times
cout << “\ncl=" << cl.get_count(); //display it
--c1; --c1; //[decrement c1, twice
cout << “\ncl=" << cl.get_count(); //display it
cout << end]l;
return O;



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Accessing Base Class Members

e An important topic in inheritance is knowing when
a member function in the base class can be used
by objects of the derived class. This is called
accessibility.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Accessing Base Class Members

Access Accessible Accessible Accessible
Specifier from Own Class | from Derived from Objects
Class Outside Class

public yes
protected yes yes no
private yes no no



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Derived Class Constructors

e To Initialize any variables, whether they're in the
derived class or the base class, before any
statements in either the derived or base-class
constructors are executed. By calling the
baseclass constructor before the derived-class
constructor starts to execute, we accomplish this.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class Counter

{
protected: /NOTE: not private

unsigned int count; //count

public:
Counter() : count() //constructor, no args
{}
Counter(int ¢) : count(c) //constructor, one arg
{}

unsigned int get_count() const //return count
{ return count; }

Counter operator ++ () //incr count (prefix)

{ return Counter(++count); }

(-}



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e

class CountDn : public Counter

{
public:
CountDn() : Counter() //constructor, no args
{}
CountDn(int c) : Counter(c) //constructor, 1 arg
{}

CountDn operator -- () //decr count (prefix)
{ return CountDn(--count); }



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overriding Member Functions

e You can use member functions in a derived class
that override—that is, have the same name as—
those in the base class. You might want to do this
so that calls in your program work the same way
for objects of both base and derived classes.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

e
{

(-}

class Stack

protected: /NOTE: can't be private
enum { MAX = 3 }; //size of stack array
Int stiMAX]; //stack: array of integers
Int top; //index to top of stack

public:
Stack() //constructor
{top=-1;}

void push(int var) //put number on stack
{ st[++top] = var,; }

Int pop() //take number off stack

{ return sttop--]; }



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 class Stack?2 : public Stack

{

(-

public:
void push(int var) //put number on stack
{
If(top >= MAX-1) //error if stack full
{ cout << “\nError: stack is full”; exit(1); }
Stack::push(var); //call push() in Stack class

}
Int pop() //take number off stack

{
If(top < 0) //error If stack empty
{ cout << “\nError: stack is empty\n”; exit(1); }
return Stack::pop(); //call pop() in Stack class

}



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

7 int main()

{

Stack?2 s1;

sl.pus
sl.pus
sl.pus

n(11); //push some values onto stack
N(22);

N(33);

cout << end| << s1.pop();
cout << end| << s1.pop();
cout << end| << s1.pop();
cout << end| << s1.pop();

cout << endl;

return O;



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Which Function Is Used?

e When the same function exists in both the base
class and the derived class, the function in the
derived class will be executed.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class Hierarchies

» We've simplified the situation so that only three
kinds of employees are represented. Managers
manage, scientists perform research to develop
better widgets, and laborers operate the
dangerous widget-stamping presses.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class Hierarchies

club dues

employee
name
number
i)
manager scientist
title publications

laborer



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

/~ class employee //lemployee class
{ .
private:
char name[LEN]; //employee name
unsigned long number; //femployee number
public:
void getdata()
{
cout << “\n Enter last name: “; cin >> name;
cout << “ Enter number: “; cin >> number;

}
void putdata() const
{
cout << “\n Name: “ << name;
cout << “\n Number: “ << number:
}

@};



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

/" class manager : public employee //management class
{
private:
char title[LEN]; //’vice-president” etc.
double dues; //golf club dues
public:
void getdata()
{
employee:.getdata();
cout << “ Enter title: “; cin >> title;
cout << “ Enter golf club dues: %, cin >> dues;

}

void putdata() const
{
employee::putdata();
cout << “\n Title: “ << title;
cout << “\n Golf club dues: “ << dues:

}

&



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

/" class scientist : public employee //scientist class
{
private:
Int pubs; //number of publications
public:
void getdata()
{
employee:.getdata();
cout << “ Enter number of pubs: %, cin >> pubs;

}

void putdata() const

{
employee::putdata();
cout << “\n Number of publications: “ << pubs;

}

(-



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

" class laborer : public employee //laborer class

{
%



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

“Abstract” Base Class

e Classes used only for deriving other classes, are
sometimes loosely called abstract classes,
meaning that no actual instances (objects) of this
class are created.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Public and Private Inheritance

class A

class C:
private A

class B:
public A



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

| evels of Inheritance

employee

manager scientist laborer

T

foreman



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Multiple Inheritance

e A class can be derived from more than one base
class. This is called multiple inheritance.

A B



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Ambiguity in Multiple Inheritance

e Two base classes have functions with the same
name, while a class derived from both base
classes has no function with this name. How do
objects of the derived class access the correct
base class function?



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

" class A
{
public:
void show() { cout << “Class A\n”; }
g
class B
{
public:
void show() { cout << “Class B\n”; }
2
class C : public A, public B
{
¢
o



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Ambiguity in Multiple Inheritance

e Another kind of ambiguity arises If you derive a
class from two classes that are each derived from
the same class. This creates a diamond-shaped
Inheritance tree.



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

4 class A

{
public:

void func();
I3
class B : public A

{}
class C : public A

{}
class D : public B, public C

{}

(-



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Aggregation: Classes Within Classes

e Aggregation is called a "has a” relationship. We
say a library has a book or an invoice has an item
line. Aggregation iIs also called a “part-whole”
relationship: the book is part of the library.

Library

O O

Publications Staff



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Composition: A Stronger Aggregation

e Composition is a stronger form of aggregation. It
has all the characteristics of aggregation, plus

two more: The part may belong to only one
whole, The lifetime of the part is the same as the

lifetime of the whole.

¢ *

Doors Engine



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

