

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

PHẠM HOÀNG DUY

BÀI GIẢNG

KỸ THUẬT VI XỬ LÝ

HÀ NỘI 2011

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

3

LỜI NÓI ĐẦU

Các bộ vi xử lý được sử dụng phổ biến trong các hệ thống số như hệ thống thông

tin liên lạc, hệ thống điều khiển... Tài liệu này tập trung giới thiệu bộ vi xử lý Intel 8086

và các ghép nối tiêu biểu để tạo nên hệ vi xử lý. Hệ vi xử lý dựa trên Intel 8086 tương đối

đơn giản và bổ ích cho việc tìm hiểu cũng như phát triển các hệ vi xử lý phức tạp.

Cấu trúc của tài liệu như sau.

Chương 1 giới thiệu các khái niệm tổng quan của hệ vi xử lý và các bộ phận căn

bản cấu thành hệ vi xử lý nói chung. Chương này cũng tóm tắt quá trình phát triển và

phân loại các bộ vi xử lý đến nay.

Chương 2 trình bày chi tiết về vi xử lý Intel 8086 bao gồm sơ đồ khối và cách tổ

chức bộ nhớ. Ngoài ra, chương này giới thiệu tập lệnh x86 và quá trình thực hiện lệnh.

Chương 3 cung cấp các kiến thức căn bản để lập trình với vi xử lý 8086 bằng cách

giới thiệu các cấu trúc chương trình và các cấu trúc rẽ nhánh và lặp tiêu biểu kết hợp với

các ví dụ.

Chương 4 tập trung giới thiệu cách thức ghép nối vi xử lý 8086 với các thiết bị

khác để tạo thành hệ vi xử lý căn bản. Chương này trình bày chu trình đọc/ghi của vi xử

lý 8086. Đây là cơ sở để tiến hành ghép nối dữ liệu với các thiết bị khác như bộ nhớ hay

các thiết bị vào/ra khác. Chương này giới thiệu cơ chế truyền thông nối tiếp và cách thức

ghép nối với vi xử lý 8086.

Chương 5 cung cấp các kiến thức căn bản về các kỹ thuật trao đổi dữ liệu với các

thiết bị ghép nối với hệ vi xử lý nói chung bao gồm vào/ra thăm dò (lập trình), vào/ra sử

dụng ngắt và vào/ra trực tiếp bộ nhớ. Trong ba phương pháp, vào/ra trực tiếp bộ nhớ cho

phép trao đổi khối lượng dữ liệu lớn với tốc độ cao và cần có vi mạch đặc biệt. Chương

này cũng giới thiệu vi mạch trợ giúp cho các phương pháp vào ra như vi mạch điều khiển

ngắt, vi mạch điều khiển vào ra trực tiếp bộ nhớ.

Chương 6 trình bày sơ bộ các khái niệm về các hệ vi điều khiển (hay hệ vi xử lý

trên một vi mạch). Chương này còn cung cấp các thông tin căn bản về hệ vi điều khiển

Intel 8051 và một số ứng dụng.

Chương 7, chương cuối cùng, giới thiệu một số bộ vi xử lý tiên tiến của Sun

Microsystems và Intel dựa trên kiến trúc IA-32 và IA-64.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

4

Tài liệu được biên soạn dựa trên cuốn “Kỹ thuật Vi xử lý” của tác giả Văn Thế

Minh, các tài liệu tham khảo khác, và dựa trên trao đổi kinh nghiệm giảng dạy với các

đồng nghiệp và phản hồi của sinh viên tại Học viện Công nghệ Bưu chính Viễn thông.

Tài liệu có thể được dùng làm tài liệu học tập cho sinh viên đại học, cao đẳng ngành công

nghệ thông tin. Trong quá trình biên soạn, dù đã có nhiều cố gắng song không tránh khỏi

thiếu sót, nhóm tác giả mong nhận được các góp ý cho các thiếu sót cũng như ý kiến cập

nhật và hoàn thiện nội dung của tài liệu.

 Hà nội, 2011

 Tác giả

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

MỤC LỤC

5

MỤC LỤC

LỜI NÓI ĐẦU ... 3

Chương 1. TỔNG QUAN VỀ VI XỬ LÝ VÀ HỆ VI XỬ LÝ 10

1. GIỚI THIỆU VỀ VI XỬ LÍ .. 10

2. HỆ VI XỬ LÍ .. 11

3. CÁC ĐẶC ĐIỂM CẤU TRÚC CỦA VI XỬ LÍ .. 13

3.1 Cấu trúc căn bản ... 13

3.1.1 Các thanh ghi .. 13

3.1.2 Đơn vị xử lý số học và lô-gíc ALU .. 15

3.1.3 Đơn vị điều khiển CU .. 15

3.1.4 Kiến trúc RISC và CISC .. 16

4. LỊCH SỬ PHÁT TRIỂN VÀ PHÂN LOẠI CÁC BỘ VI XỬ LÍ 17

4.1 Giai đoạn 1971-1973 .. 17

4.2 Giai đoạn 1974-1977 .. 17

4.3 Giai đoạn 1978-1982 .. 18

4.4 Giai đoạn 1983-1999 .. 18

4.5 Giai đoạn 2000-2006 .. 19

4.6 Giai đoạn 2007-nay ... 20

Chương 2. BỘ XỬ LÝ INTEL 8086 ... 21

1. CẤU TRÚC BÊN TRONG CỦA 8086 .. 21

1.1 Sơ đồ khối ... 21

1.1.1 Đơn vị giao tiếp buýt và thực thi EU .. 22

1.1.2 Các thanh ghi .. 22

1.2 Phân đoạn bộ nhớ của 8086 .. 25

2. BỘ ĐỒNG XỬ LÍ TOÁN HỌC 8087 .. 27

3. TẬP LỆNH CỦA 8086 ... 28

3.1 Khái niệm lệnh, mã hoá lệnh và quá trình thực hiện lệnh 28

3.2 Các chế độ địa chỉ của 8086 ... 29

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

MỤC LỤC

6

3.2.1 Chế độ địa chỉ thanh ghi ... 30

3.2.2 Chế độ địa chỉ tức thì .. 30

3.2.3 Chế độ địa chỉ trực tiếp ... 30

3.2.4 Chế độ gián tiếp qua thanh ghi ... 31

3.2.5 Chế độ địa chỉ tương đối cơ sở ... 31

3.2.6 Chế độ địa chỉ tương đối chỉ số cơ sở ... 32

3.2.7 Phương pháp bỏ ngầm định thanh ghi đoạn ... 32

3.3 Tập lệnh của 8086 ... 33

3.3.1 Các lệnh trao đổi dữ liệu. ... 33

3.3.2 Các lệnh tính toán số học và lô gíc. .. 35

3.3.3 Điều khiển, rẽ nhánh và lặp. ... 38

3.3.4 Điều khiển vi xử lý. ... 39

4. NGẮT VÀ XỬ LÍ NGẮT TRONG 8086 ... 40

4.1 Sự cần thiết phải ngắt CPU ... 40

4.2 Các loại ngắt trong hệ 8086 .. 40

4.3 Đáp ứng của CPU khi có yêu cầu ngắt ... 41

4.4 Xử lý ưu tiên khi ngắt ... 43

Chương 3. LẬP TRÌNH HỢP NGỮ VỚI 8086 ... 45

1. GIỚI THIỆU KHUNG CỦA CHƯƠNG TRÌNH HỢP NGỮ 45

1.1 Cú pháp của chương trình hợp ngữ ... 45

1.2 Dữ liệu cho chương trình .. 46

1.2.1 Biến và hằng.. 47

1.2.2 Khung của một chương trình hợp ngữ .. 50

2. CÁCH TẠO VÀ CHẠY CHƯƠNG TRÌNH HỢP NGỮ 58

3. CÁC CẤU TRÚC LẬP TRÌNH CƠ BẢN ... 59

3.1 Cấu trúc tuần tự ... 60

3.1.1 Cấu trúc IF - THEN .. 60

3.1.2 Cấu trúc IF - THEN - ELSE .. 61

3.1.3 Cấu trúc CASE .. 62

3.1.4 Cấu trúc lặp FOR - DO... 63

3.1.5 Cấu trúc lặp WHILE - DO .. 65

3.1.6 Cấu trúc lặp REPEAT - UNTIL .. 65

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

MỤC LỤC

7

4. MỘT SỐ VÍ DỤ ... 66

4.1 Ví dụ 1 .. 67

4.2 Ví dụ 2 .. 68

4.3 Ví dụ 3 .. 70

4.4 Ví dụ 4 .. 72

4.5 Ví dụ 5 .. 73

Chương 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA . 75

1. CÁC TÍN HIỆU CỦA VI XỬ LÍ VÀ CÁC MẠCH PHỤ TRỢ 75

1.1 Các tín hiệu của 8086 .. 75

1.2 Phân kênh để tách thông tin và việc đệm cho các buýt 79

1.3 Mạch tạo xung nhịp 8284. .. 80

1.4 Mạch điều khiển buýt 8288 .. 82

1.5 Biểu đồ thời gian của các lệnh ghi/đọc ... 83

2. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ .. 86

2.1 Giới thiệu bộ nhớ .. 86

2.2 Giải mã địa chỉ cho bộ nhớ ... 88

2.2.1 Giới thiệu .. 88

2.2.2 Thực hiện mạch giải mã bằng các mạch lô-gíc đơn giản 90

2.2.3 Thực hiện bộ giải mã dùng mạch giải mã tích hợp................................. 91

2.2.4 Thực hiện bộ giải mã dùng PROM ... 93

3. PHỐI GHÉP VI XỬ LÍ VỚI THIẾT BỊ VÀO RA ... 94

3.1 Giới thiệu về thiết bị vào/ra .. 94

3.2 Giải mã địa chỉ thiết bị vào ra ... 95

3.2.1 Giới thiệu .. 95

3.2.2 Các mạch cổng đơn giản... 96

4. GIỚI THIỆU MỘT SỐ VI MẠCH HỖ TRỢ VÀO RA 98

4.1 Ghép nối song song dùng 8255A .. 98

4.1.1 Giới thiệu .. 98

4.1.2 Lập trình 8255A .. 102

4.2 Truyền thông nối tiếp .. 104

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

MỤC LỤC

8

4.2.1 Mạch USART 8251A ... 105

Chương 5. TỔNG QUAN VỀ CÁC PHƯƠNG PHÁP VÀO RA DỮ LIỆU 112

1. GIỚI THIỆU ... 112

2. VÀO/RA BẰNG PHƯƠNG PHÁP THĂM DÒ .. 113

3. VÀO/RA BẰNG NGẮT ... 114

3.1 Giới thiệu .. 114

3.2 Bộ xử lý ngắt ưu tiên 8259 ... 114

3.2.1 Các khối chức năng chính của 8259A .. 115

3.2.2 Các tín hiệu của 8259A ... 116

3.2.3 Lập trình cho PIC 8259A .. 117

4. VÀO/RA BẰNG TRUY NHẬP TRỰC TIẾP BỘ NHỚ 126

4.1 Khái niệm về phương pháp truy nhập trực tiếp vào bộ nhớ 126

4.2 Các phương pháp trao đổi dữ liệu ... 128

4.2.1 Trao đổi cả một mảng dữ liệu ... 128

4.2.2 Treo CPU để trao đổi từng byte. ... 129

4.2.3 Tận dụng thời gian CPU không dùng buýt để trao đổi dữ liệu. 129

4.3 Bộ điều khiển truy nhập trực tiếp vào bộ nhớ Intel 8237A 129

4.3.1 Giới thiệu .. 129

4.3.2 Các tín hiệu của 8237A -5... 130

4.3.3 Các thanh ghi bên trong của DMAC 8237A ... 132

4.3.4 Các lệnh đặc biệt cho DMAC 8237A .. 137

4.3.5 Lập trình cho các thanh ghi địa chỉ và thanh ghi số đếm:.................... 137

Chương 6. CÁC BỘ VI ĐIỀU KHIỂN .. 141

1. GIỚI THIỆU VỀ VI ĐIỀU KHIỂN VÀ CÁC HỆ NHÚNG 141

1.1 Giới thiệu .. 141

1.2 Các kiểu vi điều khiển .. 141

2. HỌ VI ĐIỀU KHIỂN Intel 8051 .. 142

2.1 Sơ đồ khối ... 143

2.2 Các thanh ghi .. 145

2.3 Tập lệnh .. 146

3. GIỚI THIỆU MỘT SỐ ỨNG DỤNG TIÊU BIỂU CỦA VI ĐIỀU KHIỂN ... 147

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

MỤC LỤC

9

3.1 Chuyển đổi số tương tự (D/A) .. 147

3.2 Chuyến đổi tương tự số (A/D) .. 148

Chương 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN 151

1. CÁC VI XỬ LÍ TIÊN TIẾN DỰA TRÊN KIẾN TRÚC INTEL IA-32 151

1.1 Giới thiệu IA-32 .. 151

1.2 Các vi xử lý hỗ trợ IA-32 .. 154

2. CÁC VI XỬ LÍ TIÊN TIẾN DỰA TRÊN KIẾN TRÚC INTEL IA-64 156

3. CÁC VI XỬ LÍ TIÊN TIẾN CỦA SUN MICROSYSTEMS 158

TÀI LIỆU THAM KHẢO .. 161

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

10

Chương 1. TỔNG QUAN VỀ VI XỬ LÝ VÀ HỆ VI XỬ LÝ

1. GIỚI THIỆU VỀ VI XỬ LÍ

Một máy tính thông thường bao gồm các khối chức năng cơ bản như: khối xử lí

trung tâm CPU (Central Processing Unit), bộ nhớ, và khối phối ghép với thiết bị ngoại vi

(I/O, input/output). Tuỳ theo quy mô, độ phức tạp hiệu năng của các khối chức năng kể

trên mà người ta phân các máy tính điện tử đã và đang sử dụng ra thành các loại sau:

Máy tính lớn (Mainframe) là loại máy tính được thiết kế để giải các bài toán lớn

với tốc độ nhanh. Máy tính này thường làm việc với số liệu từ 64 bít hoặc lớn hơn nữa và

được trang bị nhiều bộ xử lý tốc độ cao và bộ nhớ rất lớn. Chính vì vậy máy tính cũng

lớn về kích thước vật lý. Chúng thường được dùng để tính toán điều khiển các hệ thống

thiết bị dùng trong quân sự hoặc các hệ thống máy móc của chương trình nghiên cứu vũ

trụ, để xử lý các thông tin trong ngành ngân hàng, ngành khí tượng, các công ty bảo

hiểm...

Máy tính con (Minicomputer) là một dạng thu nhỏ về kích thước cũng như về tính

năng của máy tính lớn. Nó ra đời nhằm thoả mãn các nhu cầu sử dụng máy tính cho các

ứng dụng vừa phải mà nếu dùng máy tính lớn vào đó thì sẽ gây lãng phí. Máy tính con

thường được dùng cho các tính toán khoa học kỹ thuật, gia công dữ liệu quy mô nhỏ hay

để điều khiển quy trình công nghệ.

Máy vi tính (Microcomputer) là loại máy tính rất thông dụng hiện nay. Một máy vi

tính có thể là một bộ vi điều khiển (microcontroller), một máy vi tính trong một vi mạch

(one-chip microcomputer), và một hệ vi xử lí có khả năng làm việc với số liệu có độ dài

1 bít, 4 bít, 8 bít, 16 bít hoặc lớn hơn. Hiện nay một số máy vi tính có tính năng có thể so

sánh được với máy tính con, làm việc với số liệu có độ dài từ là 32 bít (thậm chí là 64

bít). Ranh giới để phân chia giữa máy vi tính và máy tính con chính vì thế ngày càng

không rõ nét.

Các bộ vi xử lý hiện có tên thị trường thường được xếp theo các họ phụ thuộc vào

các nhà sản xuất và chúng rất đa dạng về chủng loại. Các nhà sản xuất vi xử lý nổi tiếng

có thể kể tới Intel với các sản phẩm x86, Motorola với 680xx, Sun Microsystems với

SPARC. Tính đến thời điểm hiện nay các chương trình viết cho tập lệnh x86 của Intel

chiếm tỷ lệ áp đảo trong môi trường máy vi tính.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

11

2. HỆ VI XỬ LÍ

Bộ vi xử lý là một thành phần rất cơ bản, không thiếu được để tạo nên máy vi tính.

Trong thực tế bộ vi xử lý còn phải có thể kết hợp thêm với các bộ phận điện tử khác như

bộ nhớ và bộ phối ghép vào/ra để tạo nên một hệ vi xử lý hoàn chỉnh. Cần lưu ý rằng, để

chỉ một hệ thống có cấu trúc như trên, thuật ngữ “hệ vi xử lý” mang ý nghĩa tổng quát

hơn so với thuật ngữ “máy vi tính”, vì máy vi tính chỉ là một ứng dụng cụ thể cảu hệ vi

xử lý. Hình 1-1 giới thiệu sơ đồ khối tổng quát của một hệ vi xử lý.

Hình 1-1. Sơ đồ khối của hệ vi xử lý

Trong sơ đồ này ta thấy rõ các khối chức năng chính của hệ vi xử lý gồm:

 Khối xử lý trung tâm (CPU)

 Bộ nhớ bán dẫn (ROM-RAM)

 Khối phối ghép với các thiết bị ngoại vi (I/O)

Bộ xử lý trung

tâm

(CPU)

Thanh ghi

trong

Bộ nhớ

(ROM-RAM)

Thanh ghi

ngoài

Phối ghép vào/ra

(I/O)

Thanh ghi

ngoài

Thiết bị vào

Thiết bị ra

Buýt địa chỉ

Buýt điều khiển

Buýt dữ liệu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

12

 Các buýt truyền thông tin.

Ba khối chức năng đầu liên hệ với nhau thông qua qập các đường dây để truyền tín

hiệu gọi chung là Buýt hệ thống. Buýt hệ thống bao gồm 3 buýt thành phần ứng với các

tín hiệu địa chỉ, dữ liệu và điều khiển ta có buýt địa chỉ, buýt dữ liệu và buýt điều khiển.

CPU đóng vai trò chủ đạo trong hệ vi xử lý. Đây là một mạch vi điện tử có độ tích

hợp rất cao. Khi hoạt động, CPU đọc mã lệnh được ghi dưới dạng các bít 0 và bít 1 từ bộ

nhớ, sau đó sẽ giải mã các lệnh này thành các dãy xung điều khiển ứng với các thao tác

trong lệnh để điều khiển các khối khác thực hiện từng bước các thao tác đó. Để làm được

việc này bên trong CPU có thanh ghi dùng để chứa địa chỉ của lệnh sắp thực hiện gọi là

thanh ghi con trỏ lệnh (Instruction Pointer, IP) hoặc bộ đếm chương trình (Program

Counter, PC), một số thanh ghi đa năng khác cùng bộ tính toán số học và lô-gíc

(Arithmetic Logic Unit ALU) để thao tác với dữ liệu. Ngoài ra ở đây còn có các hệ thống

mạch điện tử rất phức tạp để giải mã lệnh và từ đó tạo ra các xung điều khiển cho toàn

hệ.

Bộ nhớ bán dẫn hay còn gọi là bộ nhớ trong là một bộ phận khác rất quan trọng

của hệ vi xử lý. Tại đây ta có thể lưu chương trình điều khiển hoạt động của toàn hệ để

khi bật điện thì CPU có thể lấy lệnh từ đây để khởi động hệ thống. Một phần của chương

trình điều khiển hệ thống, các chương trình ứng dụng, dữ liệu cùng các kết quả của

chương trình thường được đặt trong RAM. Các dữ liệu và chương trình muốn lưu trữ lâu

dài hoặc có dung lượng lớn sẽ được đặt trong bộ nhớ ngoài.

Khối phối ghép vào/ra (I/O) tạo ra khả năng giao tiếp giữa hệ vi xử lý với thế giới

bên ngoài. Các thiết bị ngoại vi như bàn phím, chuột, màn hình, máy in, chuyển đổi

số/tương tự (D/A Converter, DAC) và chuyển đổi tương tự/số (A/D Converter, ADC), ổ

đĩa từ. . . đều liên hệ với bộ vi xử lý qua bộ phận này. Bộ phận phối ghép cụ thể giữa

buýt hệ thống với thế giới bên ngoài thường được gọi là cổng. Như vậy ta sẽ có các cổng

vào để lấy thông tin từ ngoài vào và các cổng ra để đưa thông tin từ trong ra. Tùy theo

nhu cầu cụ thể của công việc, các mạch cổng này có thể được xây dựng từ các mạch

lôgic đơn giản hoặc từ các vi mạch chuyên dụng lập trình được.

Buýt địa chỉ (address bus) thường có từ 16, 20, 24, 32 hay 64 đường dây song song

chuyển tải thông tin của các bít địa chỉ. Khi đọc/ghi bộ nhớ CPU sẽ đưa ra trên buýt này

địa chỉ của ô nhớ liên quan. Khả năng phân biệt địa chỉ (số lượng địa chỉ cho ô nhớ mà

CPU có quản lý được) phụ thuộc vào số bít của buýt địa chỉ. Ví dụ nếu một CPU có số

đường dây địa chỉ là N=16 thì nó có khả năng địa chỉ hóa được 2
N
 = 65536 =64 kilô ô

nhớkhác nhau (1K= 2
10

 =1024). Khi đọc/ghi với cổng vào/ra CPU cũng đưa ra trên buýt

địa chỉ các bít địa chỉ tương ứng của cổng. Trên sơ đồ khối ta dễ nhận ra tính một chiều

của buýt địa chỉ qua một chiều của mũi tên. Chỉ có CPU mới có khả năng đưa ra địa chỉ

trên buýt địa chỉ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

13

Buýt dữ liệu (data bus) thường có từ 8, 16, 20, 24, 32, 64 (hoặc hơn) đường dây

tùy theo các bộ vi xử lý cụ thể. Số lượng đường dây này quyết định số bít dữ liệu mà

CPU có khả năng xử lý cùng một lúc. Chiều mũi tên trên sus số liệu chỉ ra rằng đây là

buýt 2 chiều, nghĩa là dữ liệu có thể truyền đi từ CPU (dữ liệu ra) hoặc truyền đến CPU

(dữ liệu vào). Các phần tử có đầu ra nối thẳng với buýt dữ liệu đều phải được trang bị

đầu ra 3 tạng thái để có thể ghép vào được và hoạt động bình thường với buýt này.

Buýt điều khiển (control bus) thường gồm hàng chục đường dây tín hiệu khác nhau.

Mỗi tín hiệu điều khiển có một chiều nhất định vì khi hoạt động CPU đưa tín hiệu điều

khiển tới các khối khác trong hệ. Đồng thời CPU cũng nhận tín hiệu điều khiển từ các

khối đó để phối hợp hoạt động của toàn hệ. Các tín hiệu này trên hình vẽ được thể hiện

bởi các đường có mũi tên 2 chiều, điều đó không phải là để chỉ tính hai chiều của một tín

hiệu mà là tính hai chiều của cả một nhóm các tín hiệu.

Mặt khác, hoạt động của hệ thống vi xử lý trên cũng có thể coi như là quá trình trao đổi

dữ liệu giữa các thanh ghi bên trong. Về mặt chức năng mỗi khối trong hệ thống trên

tương đương với các thanh ghi trong (nằm trong CPU) hoặc các thanh ghi ngoài (nằm

rải rác trong bộ nhớ ROM, bộ nhớ RAM và trong khối phối ghép vào/ra). Hoạt động của

toàn hệ thực chất là sự phối hợp hoạt động của các thanh ghi trong và ngoài nói trên để

thực hiện sự biến đổi dữ liệu hoặc sự trao đổi dữ liệu theo các yêu cầu đã định trước.

3. CÁC ĐẶC ĐIỂM CẤU TRÚC CỦA VI XỬ LÍ

3.1 Cấu trúc căn bản

Như đã trình bày trong phần trên, vi xử lý chính là đơn vị xử lý trung tâm CPU của

máy vi tính. Như vậy sức mạnh xử lý của máy vi tính được quyết định bởi năng lực của

vi xử lý. Trên nguyên tắc, vi xử lý có thể được chia thành các đơn vị chức năng chính

như trong Hình 1-2.

3.1.1 Các thanh ghi

Số lượng, kích cỡ và kiểu của các thanh ghi thay đổi từ vi xử lý này sang vi xử lý

khác. Tuy nhiên, các thanh ghi này thực hiện các thao tác tương tự nhau. Cấu trúc các

thanh ghi đóng vai trò quan trọng trong việc thiết kế kiến trúc của vi xử lý. Đồng thời,

cấu trúc thanh ghi với một loại vi xử lý cụ thể cho biết mức độ thuận lợi và dễ dùng khi

lập trình cho vi xử lý đó. Dưới đây là các thanh ghi cơ bản nhất:

i. Thanh ghi lệnh: lưu các lệnh. Sau khi nạp mã lệnh từ bộ nhớ, vi xử lý lưu mã lệnh

trong thanh ghi lệnh. Giá trị trong thanh ghi này luôn được vi xử lý giải mã để

xác định lệnh. Kích cỡ từ (word) của vi xử lý quyết định kích cỡ của thanh ghi

này. Ví dụ, vi xử lý 32 bít thì sẽ có thanh ghi lệnh 32 bít.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

14

ii. Bộ đếm chương trình: chứa địa chỉ của lệnh hay mã thực thi (op-code). Thông

thường, thanh ghi này chứa địa chỉ của câu lệnh kế. Thanh ghi này có đặc điểm

sau:

1. Khi khởi động lại, địa chỉ của lệnh đầu tiên được thực hiện được nạp vào

thanh ghi này.

2. Để thực hiện lệnh, vi xử lý nạp nội dung của bộ đếm chương trình vào

buýt địa chỉ và đọc ô nhớ ở địa chỉ đó. Giá trị của bộ đếm chương trình tự

động tăng theo bộ lô-gíc trong của vi xử lý. Như vậy, vi xử lý thực hiện

các lệnh tuần tự trừ phi chương trình có các lệnh làm thay đổi trật tự tính

toán.

3. Kích cỡ của bộ đếm chương trình phụ thuộc vào kích cỡ của buýt địa chỉ.

4. Nhiều lệnh làm thay đổi nội dung của thanh ghi này so với trình tự thông

thường. Khi đó, giá trị của thanh ghi được xác định thông qua địa chỉ chỉ

định trong các lệnh này.

iii. Thanh ghi địa chỉ bộ nhớ: chứa địa chỉ của dữ liệu. Vi xử lý sử dụng các địa chỉ

này như là các con trỏ trực tiếp tới bộ nhớ. Giá trị của các địa chỉ này chính là dữ

liệu đang được trao đổi và xử lý.

Đơn vị điều khiển

CU

B
u
ý
t

d
ữ

 l
iệ

u

Đơn vị số học và

lô-gíc ALU

Các thanh ghi

Hình 1-2. Sơ đồ khối chức năng vi xử lý

Thanh ghi lệnh

Thanh ghi địa chỉ

Thanh ghi tạm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

15

iv. Thanh ghi dùng chung: còn được gọi là thanh ghi tích lũy (accumulator). Thanh

ghi này thường là các thanh ghi 8 bít dùng thể lưu hầu hết các kết quả tính toán

của đơn vị xử lý sô học và lô-gíc ALU. Thanh ghi này còn dùng để trao đổi dữ

liệu với các thiết bị vào/ra.

3.1.2 Đơn vị xử lý số học và lô-gíc ALU

ALU thực hiện tất cả các thao tác xử lý dữ liệu bên trong vi xử lý như là các phép

toán lô-gíc, số học. Kích cỡ ALU tương ứng với kích cỡ từ của vi xử lý. Vi xử lý 32 bít

sẽ có ALU 32 bít. Một vài chức năng tiêu biểu của ALU:

1. Cộng nhị phân và các phép lô-gíc

2. Tính số bù một của dữ liệu

3. Dịch hoặc quay trái phải các thanh ghi dùng chung.

3.1.3 Đơn vị điều khiển CU

Chức năng chính của đơn vị điều khiển CU là đọc và giải mã các lệnh từ bộ nhớ

chương trình. Để thực hiện lệnh, CU kích hoạt khối phù hợp trong ALU căn cứ vào mã

lệnh (op-code) trong thanh ghi lệnh. Mã lệnh xác định thao tác để CU thực thi. CU thông

dịch nội dung của thanh ghi lệnh và sau đó sinh ra một chuỗi các tín hiệu kích hoạt tương

ứng với lệnh nhận được. Các tín hiệu này kích hoạt các khối chức năng phù hợp bên

trong ALU.

CU sinh ra các tín hiệu điều khiển dẫn tới các thành phần khác của vi xử lý qua

buýt điều khiển. Ngoài ra, CU cũng đáp ứng lại các tín hiệu điều khiển trên buýt điều

khiển do các bộ phận khác gửi tới. Các tín hiệu này thay đổi theo từng loại vi xử lý. Một

số tín hiệu điều khiển tiêu biểu như khởi động lại RESET, đọc ghi (R/W), tín hiệu ngắt

(INT/IRQ), …

3.1.3.a Thực hiện chương trình

Để chạy chương trình, vi xử lý thường lặp lại các bước sau để hoàn thành từng

lệnh:

1. Nạp (Fetch). Vi xử lý nạp (đọc) lệnh từ bộ nhớ chính vào thanh ghi lệnh

2. Giải mã (Decode). Vi xử lý giải mã hay dịch lệnh nhờ đơn vị điều khiển

CU. CU nhập nội dung của thanh ghi lệnh và giải mã để xác định kiểu lệnh.

3. Thực hiện (Execute). Vi xử lý thực hiện lệnh nhờ CU. Để hoàn thành nhiệm

vụ, CU sinh ra một chuỗi các tín hiệu điều khiển tương ứng với lệnh.

Quá trình trên được lặp đi lặp lại cho đến câu lệnh cuối cùng của chương trình.

Trong các vi xử lý tiên tiến quá trình thực hiện lệnh được cải tiến cho phép nhiều lệnh

được thực hiện xen kẽ với nhau. Tức là, câu lệnh kế tiếp sẽ được thực hiện mà không cần

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

16

chờ câu lệnh hiện thời kết thúc. Kỹ thuật trên được gọi là kỹ thuật đường ống (pipeline).

Việc thực hiện xen kẽ cho phép nâng cao tốc độ thực hiện của vi xử lý và làm giảm thời

gian chạy chương trình.

3.1.4 Kiến trúc RISC và CISC

Có hai kiển kiến trúc vi xử lý: máy tính với tập lệnh rút gọn (Reduced Instruction

Set Computer-RISC) và máy tính với tập lệnh phức tạp (Complex Instruction Set

Computer-CISC). Vi xử lý RISC nhấn mạnh tính đơn giản và hiệu quả. Các thiết kế

RISC khởi đầu với tập lệnh thiết yếu và vừa đủ. RISC tăng tốc độ xử lý bằng cách giảm

số chu kỳ đồng hồ trên một lệnh. Mục đích của RISC là tăng tốc độ hiệu dụng bằng cách

chuyển việc thực hiện các thao tác không thường xuyên vào phần mềm còn các thao tác

phổ biến do phần cứng thực hiện. Như vậy làm tăng hiệu năng của máy tính. Các đặc

trưng căn bản của vi xử lý kiểu RISC:

1. Thiết kế vi xử lý RISC sử dụng điều khiển cứng (hardwired control)

không hoặc rất ít sử dụng vi mã. Tất cả các lệnh RISC có định dạng cố

định vì vậy việc sử dụng vi mã không cần thiết.

2. Vi xử lý RISC xử lý hầu hết các lệnh trong một chu kỳ.

3. Tập lệnh của vi xử lý RISC chủ yếu sử dụng các lệnh với thanh ghi, nạp

và lưu. Tất cả các lệnh số học và lô-gíc sử dụng thanh ghi, còn các lệnh

nạp và lưu dùng để truy nhập bộ nhớ.

4. Các lệnh có một định dạng cố định và ít chế độ địa chỉ.

5. Vi xử lý RISC có một số thanh ghi dùng chung.

6. Vi xử lý RISC xử lý một vài lệnh đồng thời và thường áp dụng kỹ thuật

đường ống (pipeline).

Vi xử lý RISC thường phù hợp với các ứng dụng nhúng. Vi xử lý hay bộ điều

khiển nhúng thường được nhúng trong hệ thống chủ. Nghĩa là, các thao tác của các bộ

điều khiển này thường được che dấu khỏi hệ thống chủ. Ứng dụng điều khiển tiêu biểu

cho ứng dụng nhúng là hệ thống tự động hóa văn phòng như máy in lade, máy đa chức

năng. Vi xử lý RISC cũng rất phù hợp với các ứng dụng như xử lý ảnh, rô-bốt và đồ họa

nhờ có mức tiêu thụ điện thấp, thực thi nhanh chóng.

Mặt khác, vi xử lý CISC bao gồm số lượng lớn các lệnh và nhiều chế độ địa chỉ mà

nhiều kiểu rất ít được sử dụng. Với CISC hầu hết các lệnh đều có thể truy nhập bộ nhớ

trong khi đó RISC chỉ có các lệnh nạp và lưu. Do tập lệnh phức tạp, CISC cần đơn vị

điều khiển phức tạp và vi chương trình. Trong khi đó, RISC sử dụng bộ điều khiển kết

nối cứng nên nhanh hơn. Kiến trúc CISC khó triển khai kỹ thuật đường ống.

Ưu điểm của CISC là các chương trình phức tạp có thể chỉ cần vài lệnh với vài chu

trình nạp còn RISC cần một số lượng lớn các lệnh để thực hiện cùng nhiệm vụ. Tuy

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

17

nhiên, RISC có thể cải thiện hiệu năng đáng kể nhờ xung nhịp nhanh hơn, kỹ thuật

đường ống và tối ưu hóa quá trình biên dịch. Hiện nay, các vi xử lý CISC sử dụng

phương pháp lai, với các lệnh đơn giản CISC sử dụng cách tiếp cận của RISC để thực thi

xen kẽ (kỹ thuật đường ống) với các câu lệnh phức tạp sử dụng các vi chương trình để

đảm bảo tính tương thích.

4. LỊCH SỬ PHÁT TRIỂN VÀ PHÂN LOẠI CÁC BỘ VI XỬ LÍ

Phần này giới thiệu quá trính phát triển của các bộ vi xử lý qua các giai đoạn từ

năm 1971 tập chung chủ yếu vào các sản phẩm của hãng Intel do đây là một trong những

hãng sản xuất vi xử lý hàng đầu đồng thời cũng là hãng triển khai nhiều công nghệ mới

giúp nâng cao hiệu năng của vi xử lý, đặc biệt trong lĩnh vực máy vi tính.

4.1 Giai đoạn 1971-1973

Năm 1971, trong khi phát triển các vi mạch dùng cho máy tính cầm tay, Intel đã

cho ra đời bộ vi xử lý đầu tiên là 4004 (4 bít) của Rockwell International, IPM-16 (16

bít) của National Semiconductor.

Đặc điểm chung của các vi xử lý thế hệ này là:

 Độ dài từ thường là 4 bít (cũng có thể dài hơn)

 Công nghệ chế tạo PMOS với đặc điểm mật độ phần tử nhỏ, tốc độ thấp, giá

thành rẻ và có khả năng đưa ra dòng tải nhỏ.

 Tốc độ thực hiện lệnh: 10-16s/lệnh với tần số đồng hồ fclk = 0, 1- 0, 8

MHz.

 Tập lệnh đơn giản phải cần nhiều mạch phụ trợ mới tạo nên một hệ vi xử lý

hoàn chỉnh.

4.2 Giai đoạn 1974-1977

Các bộ vi xử lý đại diện trong thế hệ này là các vi xử lý 8 bít 6502 của MOS

Technology, 6800 và 6809 của Motorola, 8080 và 8085 của Intel và đặc biệt là bộ vi xử

lý Z80 của Zilog. Các bộ vi xử lý này có tập lệnh phong phú hơn và thường có khả năng

phân biệt địa chỉ bộ nhớ với dung lượng đến 64KB. Có một số bộ vi xử lý còn có khả

năng phân biệt được 256 địa chỉ cho các thiết bị ngoại vi (họ Intel và Zilog). Chúng đã

được sử dụng rộng rãi trong công nghiệp. Tất cả các bộ vi xử lý thời kì này đều được sản

xuất bằng công nghệ NMOS (Với mật độ điện tủ trên một đơn vị diện tích cao hơn so với

công nghệ PMOS) hoặc CMOS (tiết kiệm điện năng tiêu thụ) cho phép đạt được tốc độ

từ 1-8 s/lệnh với tần số đồng hồ fclk = 1-5 MHz.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

18

4.3 Giai đoạn 1978-1982

Các bộ vi xử lý trong thế hệ này có đại diện là các bộ vi xử lý 16 bít

8086/80186/80286 của Intel hoặc 86000/86010 của Motorola. Ưu điểm hơn hẳn so với

các bộ vi xử lý 8 bít thế hệ trước là các bộ vi xử lý 16 bít có tập lệnh đa dạng với các lệnh

nhân, lệnh chia và các lệnh thao tác với chuỗi kí tự. Khả năng phân biệt địa chỉ cho bộ

nhớ hoặc cho thiết bị ngoại vi của các vi xử lý thế hệ này cũng lớn hơn (từ 1MB đến 16

MB cho bộ nhớ và tới 64K địa chỉ cho thiết bị ngoại vi đối với họ Intel). Đây là các bộ vi

xử lý được dùng trong các máy IBM PC, PC/XT, PC/AT và các máy Macintosh của

Apple. Phần lớn các bộ vi xử lý trong thế hệ này đều được sản xuất bằng công nghệ

HMOS và cho phép đạt được tốc độ từ 0, 1-1s/lệnh với tần số đồng hồ fclk =5-10 MHz.

4.4 Giai đoạn 1983-1999

Các bộ vi xử lý đại diện trong thế hệ này là các vi xử lý 32 bít 80386/80486 và 64

bít Pentium của Intel gồm có Pentium Pro với thiết kế bộ đệm trên cùng vi mạch xử lý,

Pentium MMX với các mở rộng cho đa phương tiện, Pentium II, Pentium III. Hãng

Motorola cũng đưa ra các vi xử lý 32 bít 68020/68030/68040 và các vi xử lí 64 bít

68060/64. Đặc điểm của các bộ vi xử lý có số lượng transistor rất lớn (từ vài 3 triệu đến

trên 50 triệu transistor. Phần lớn các bộ vi xử lí mới thực hiện nhiều hơn 1 lệnh trong một

chu kỳ và tích hợp đơn vị xử lí dấu phẩy động FPU (Floating-Point Unit). Chúng có các

thanh ghi dùng chung 16-32 bít. Nhiều loại có phân biệt các tệp thanh nghi 32 bít

(register file) cho đơn vị nguyên IU (interger unit) và tệp thanh ghi 32 bít cho FPU.

Chúng có bộ nhớ đệm bên trong mức 1 với dung lượng lên tới 64 KB. Đa số bộ nhớ đệm

mức 1 được phân đôi: dùng cho lệnh (Instruction cache-Icache) và dùng cho dữ liệu

(Data cache-Dcache). Các bộ vi xử lí công nghệ cao hiện nay (advanced

microprocessors) đã thoả mãn các yêu cầu chế tạo các máy tính lớn và các siêu máy tính.

Các vi xử lí thời này có buýt địa chỉ đều là 32 bít (phân biệt 4 GB bộ nhớ) và có khả năng

làm việc với bộ nhớ ảo. Người ta cũng áp dụng các cơ chế hoặc các cấu trúc đã được sử

dụng trong các máy tính lớn vào các bộ vi xử lí: cơ chế xử lý xen kẽ liên tục dòng mã

lệnh (pipeline), bộ nhớ đệm (cache), bộ nhớ ảo. Các bộ vi xử lý này đều có bộ quản lý bộ

nhớ (MMU). Chính nhờ các cải tiến đó mà các bộ vi xử lý thế hệ này có khả năng cạnh

tranh được với các máy tính nhỏ trong rất nhiều lĩnh vực ứng dụng. Phần lớn các bộ vi

xử lý thế hệ này đều được sản xuất bằng công nghệ HCMOS.

Bên cạnh các bộ vi xử lý vạn năng truyền thống thường được dùng để xây dựng các

máy tính với tập lệnh phức tạp (complex instruction set computer, CISC) đã nói ở trên,

trong thời gian này cũng xuất hiện các bộ vi xử lý cải tiến dùng để xây dựng các máy tính

với tập lệnh rút gọn (reduced instruction set computer, RISC) với nhiều tính năng có thể

so sánh với các máy tính lớn ở các thế hệ trước. Đó là các bộ vi xử lý Alpha của Digital,

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

19

PowerPC của tổ hợp hãng Apple- Motorola- IBM... Sự ra đời của các vi xử lý loại RISC

chính là sự bắt đầu cho một thế hệ khác trong lịch sử phát triển của các thế hệ vi xử lý.

4.5 Giai đoạn 2000-2006

Các vi xử lý Intel trong thời gian này thể hiện quan điểm nâng cao hiệu năng của

bộ vi xử lý và hệ thống máy tính bằng việc nâng cao xung nhịp. Phiên bản Intel Pentium

4 đã tăng xung hịp từ 1,5 GHz năm 2000 tới 3GHz vào năm 2002. Vi kiến trúc tiêu biểu

cho các vi xử lý này là Netburst với khả năng nâng cao xung nhịp gấp 4 lần xung nhịp

của hệ thống. Ngoài ra, Intel giới thiệu công nghệ siêu phân luồng tăng hiệu năng cho hệ

thống đa nhiệm và đa luồng. Về lô-gíc, các chương trình phần mềm có thể sử dụng 2 bộ

vi xử lý trên 1 bộ vi xử lý vật lý.

Việc nâng cao xung nhịp nhanh chóng đẩy các bộ vi xử lý tới ngưỡng vật lý về

điện và nhiệt năng tỏa ra. Thực tế cho thấy đây không phải là phương pháp hiệu quả để

tăng hiệu năng của hệ thống. Hãng AMD, một trong những đối thủ cạnh tranh trực tiếp

của Intel, nhấn mạnh việc tăng hiệu năng qua việc nâng cao tốc độ thực hiện các lệnh

trong một chu kỳ máy. AMD là một trong những hãng đầu tiên tích hợp nhiều bộ giải mã

và bộ điều khiển bộ nhớ vào bên trong đơn vị xử lý trung tâm CPU, bộ nhớ đệm mức 1

lớn tới 128KB. Các bộ vi xử lý Athlon 64, Opteron là bộ vi xử lý tiêu biểu của AMD, có

tốc độ xung nhịp thấp hơn như hiệu năng thì không hề thua kém Intel. Đặc biệt về tiêu

thụ điện và mức tỏa nhiệt thì tốt hơn hẳn Intel nhờ có các công nghệ kiểm soát tiêu thụ

điện.

Trong giai đoạn này cũng chứng kiến sự bùng nổ về việc phát triển bộ vi xử lý cho

các máy tính xách tay. Yêu cầu rất quan trọng với thiết bị này là hiệu năng xử lý đủ mạnh

nhưng mức tiêu thụ điện phải đủ thấp để máy tính có thể hoạt động lâu dài bằng pin. Các

bộ vi xử lý di động của Intel Pentium Mobile đã triển khai các giải pháp dung hòa hai

yêu cầu trên bằng các nâng cao khả năng xử lý lệnh trên 1 chu kỳ xung nhịp, nâng cao bộ

đệm mức 2 lên 1MB, kiểm soát xung nhịp vi xử lý (Speedstep) theo yêu cầu của ứng

dụng. Bộ vi xử lý di động đầu tiên hoạt động ở tần số 1,6GHz có thể giảm xuống tới

200MHz khi rỗi có hiệu năng ngang ngửa với Pentium 4 ở tần số trên 2GHz.

Một sự kiện quan trọng trong giai đoạn này là sự ra đời của các bộ vi xử lý 2 nhân

cho các máy vi tính. Các hệ thống đa xử lý trước kia chỉ có trong môi trường máy chủ

hoặc máy trạm hiệu năng cao. Năm 2005 Intel đưa ra vi xử lý đa nhân đầu tiên Pentium

D với hai vi xử lý riêng biệt trên cùng một vi mạch. Ngay sau đó, AMD cũng đưa ra vi

xử lý đa nhân của mình Athlon×2. Thực tế cho thấy thiết kế của AMD mang lại hiệu

năng tốt hơn so với Intel.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 1. TỔNG QUAN VỀ VI XỬ LÍ VÀ HỆ VI XỬ LÍ

20

4.6 Giai đoạn 2007-nay

Giai đoạn này tiếp tục chứng kiến sự gia tăng số nhân bên trong bộ vi xử lý giữa

các hãng sản xuất vi xử lý như Intel và AMD. Ngoài ra các yêu cầu về tiêu thụ điện và

tỏa nhiệt của bộ vi xử lý cũng được quan tâm hơn. Intel cải tiến thiết kế vi kiến trúc nhân

(Core micro-architecture) thay thế Netburst và đưa ra thế hệ bộ vi xử lý hai nhân mới

Core-2. Bộ vi xử lý này khắc phục các điểm yếu của thế hệ trước đó đặc biệt về tương

quan giữa hiệu năng và mức tiêu thụ điện. Năm 2006 chứng kiến sự kiện mới Intel đưa ra

các bộ vi xử lý với bốn nhân cho môi trường máy chủ Intel Xeon Quadcore 5355 và máy

vi tính Intel Core-2 Extreme QX6700. Việc kết hợp với công nghệ siêu phân luồng trong

các bộ vi xử lý Core i7 của Intel cho phép nâng số vi xử lý lô-gíc lên tới 8 cho các các

chương trình ứng dụng.

Bên cạnh các bộ vi xử lý cho máy PC và máy chủ, các hãng sản xuất vi xử lý cũng

phát triển các dòng vi xử lý nhúng cho các thiết bị tính toán cá nhân. Ưu thế của các vi

xử lý nhúng so với vi xử lý kể trên là mức tiêu thụ điện năng, năng lực xử lý và chi phí.

Intel cung cấp các vi xử lý nhúng Atom có khả năng xử lý bằng một nửa Pentium M ở

cùng xung nhịp với mức tiêu thụ điện khoảng 3W. Ngoài vi xử lý Intel Atom, trên thị

trường còn có vi xử lý ARM do hãng Acon phát triển, VIA Nano của hãng VIA. . .

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

21

Chương 2. BỘ XỬ LÝ INTEL 8086

1. CẤU TRÚC BÊN TRONG CỦA 8086

Intel 8086 là bộ vi xử lý 16 bít đầu tiên của Intel và là vi xử lý đầu tiên hỗ trợ tập

lệnh x86. Vi xử lý được sử dụng trong nhiều lĩnh vực khác nhau, nhất là trong các máy

IBM PC/XT. Các bộ vi xử lý thuộc họ này sẽ còn được sử dụng rộng rãi trong thời gian

tới do tính kế thừa của các sản phẩm trong họ x86. Các chương trình viết cho 8086 vẫn

có thể chạy trên các hệ thống tiên tiến sau này.

1.1 Sơ đồ khối

Trong sơ đồ khối, vi xử lý 8086 có hai khối chính BIU và EU. Về chi tiết, vi xử

lý này bao gồm các đơn vị điều khiển, số học và lô-gíc, hàng đợi lệnh và tập các thanh

ghi. Chi tiết các khối và đơn vị chức năng này được trình bày trong phần sau.

Hình 2-1. Sơ đồ khối 8086

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

22

1.1.1 Đơn vị giao tiếp buýt và thực thi EU

Theo sơ đồ khối trên Hình 2-1 CPU 8086 có 2 khối chính: khối phối ghép BIU

(Bus Interface Unit) và khối thực hiện lệnh EU (Execution Unit). Việc chia CPU ra thành

2 phần làm việc đồng thời có liên hệ với nhau qua đệm lệnh làm tăng đáng kể tốc độ xử

lý của CPU. Các buýt bên trong CPU có nhiệm vụ chuyển tải tín hiệu giữa các khối.

Trong số các buýt đó có buýt dữ liệu 16 bít của ALU, buýt các tín hiệu điều khiển ở EU

và buýt trong của hệ thống ở BIU. Trước khi đi ra buýt ngoài hoặc đi vào buýt trong của

bộ vi xử lý, các tín hiệu truyền trên buýt thường được cho đi qua các bộ đệm để nâng cao

tính tương thích cho nối ghép hoặc nâng cao phối ghép.

BIU đưa ra địa chỉ, đọc mã lệnh từ bộ nhớ, đọc/ghi dữ liệu từ vào cổng hoặc bộ

nhớ. Nói cách khác BIU chịu trách nhiệm đưa địa chỉ ra buýt và trao đổi dữ liệu với buýt.

EU bao gồm một đơn vị điều khiển, khối này có mạch giải mã lệnh. Mã lệnh

đọc vào từ bộ nhớ được đưa đến đầu vào của bộ giải mã, các thông tin thu được từ đầu ra

của nó sẽ được đưa đến mạch tạo xung điều khiển, kết quả là ta thu được các dãy xung

khác nhau trên kênh điều khiển (tuỳ theo mã lệnh) để điều khiển hoạt động của các bộ

phận bên trong và bên ngoài CPU. Ngoài ra, EU còn có khối số học và lôgic (Arithmetic

and Logic Unit - ALU) dùng để thực hiện các thao tác khác nhau với các toán hạng của

lệnh. Tóm lại, khi CPU hoạt động EU sẽ cung cấp thông tin về địa chỉ cho BIU để khối

này đọc lệnh và dữ liệu, còn bản thân nó thì đọc lệnh và giải mã lệnh.

Trong BIU còn có một bộ nhớ đệm lệnh với dung lượng 6 byte dùng để chứa các

mã lệnh để chờ EU xử lý (bộ đệm lệnh này còn được gọi là hàng đợi lệnh).

1.1.2 Các thanh ghi

1.1.2.a Các thanh ghi đoạn

Thông thường bộ nhớ của chương trình máy tính được chia làm các đoạn phục vụ

các chức năng khác nhau như đoạn chứa các câu lệnh, chứa dữ liệu. Trong thực tế bộ vi

xử lý 8086 cung cấp các các thanh ghi 16 bít liên quan đến địa chỉ đầu của các đoạn kể

trên và chúng được gọi là các thanh ghi đoạn (Segment Registers) cụ thể:

 Thanh ghi đoạn mã CS (Code-Segment)

 Thanh ghi đoạn dữ liệu DS (Data Segment)

 Thanh ghi đoạn ngăn xếp SS (Stack Segment)

 Thanh ghi đoạn dữ liệu phụ ES (Extra Segment).

Các thanh ghi đoạn 16 bít này chỉ ra địa chỉ đầu của bốn đoạn trong bộ nhớ, dung

lượng lớn nhất của mỗi đoạn nhớ này là 64 KByte và tại một thời điểm nhất định bộ vi

xử lý chỉ làm việc được với bốn đoạn nhớ 64 KByte này. Để xác định chính xác vị trí

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

23

một ô nhớ của chương trình các thanh ghi đoạn sẽ phải phối hợp với các thanh ghi đặc

biệt khác còn gọi là các thanh ghi lệch hay phân đoạn (offset register). Chi tiết được trình

bày ở phần 1.2.

1.1.2.b Các thanh ghi đa năng

Trong khối EU có bốn thanh ghi đa năng 16 bít AX, BX, CX, DX. Điều đặc

biệt là khi cần chứa các dữ liệu 8 bít thì mỗi thanh ghi có thể tách ra thành hai thanh ghi 8

bít cao và thấp để làm việc độc lập, đó là các tập thanh ghi AH và AL, BH và BL, CH và

CL, DH và DL (trong đó H chỉ phần cao, L chỉ phần thấp). Mỗi thanh ghi có thể dùng

một cách vạn năng để chứa các tập dữ liệu khác nhau nhưng cũng có công việc đặc biệt

nhất định chỉ thao tác với một vài thanh ghi nào đó. Chính vì vậy các thanh ghi thường

được gán cho những cái tên có ý nghĩa. Cụ thể:

 AX (accumulator): thanh ghi tích lũy. Các kết quả của các thao tác thường

được chứa ở đây (kết quả của phép nhân, chia). Nếu kết quả là 8 bít thì

thanh ghi AL được coi là thanh ghi chứa.

 BX (base): thanh ghi cơ sở thường chứa địa chỉ cơ sở của một bảng.

 CX (count): bộ đếm. CX thường được dùng để chứa số lần lặp trong trường

hợp các lệnh LOOP (lặp), còn CL thường cho ta số lần dịch hoặc quay

trong các lệnh dịch hoặc quay thanh ghi.

 DX (data): thanh ghi dữ liệu DX cùng BX tham gia các thao tác của phép

nhân hoặc chia các số 16 bít. DX thường dùng để chứa địa chỉ của các cổng

trong các lệnh vào/ ra dữ liệu trực tiếp.

1.1.2.c Các thanh ghi con trỏ và chỉ số

Trong 8086 còn có ba thanh ghi con trỏ và hai thanh ghi chỉ số 16 bít. Các thanh

ghi này (trừ IP) đều có thể được dùng như các thanh ghi đa năng, nhưng ứng dụng chính

của mỗi thanh ghi là chúng được ngầm định như là thanh ghi lệch cho các đoạn tương

ứng. Cụ thể:

 IP: con trỏ lệnh (Instruction Pointer). IP luôn trỏ vào lệnh tiếp theo sẽ được

thực hiện nằm trong đoạn mã CS. Địa chỉ đầy đủ của lệnh tiếp theo này ứng

với CS:IP và được xác định như trình bày trong phần 1.2.

 BP: con trỏ cơ sở (Base Pointer). BP luôn trỏ vào một dữ liệu nằm trong

đoạn ngăn xếp SS. Địa chỉ đầy đủ của một phần tử trong đoạn ngăn xếp ứng

với SS:BP và được xác định như trình bày trong phần 1.2.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

24

 SP: con trỏ ngăn xếp (Stack Pointer). SP luôn trỏ vào đỉnh hiện thời của ngăn

xếp nằm trong đoạn ngăn xếp SS. Địa chỉ đỉnh ngăn xếp ứng với SS:SP và

được xác định như trình bày trong phần 1.2.

 SI: chỉ số gốc hay nguồn (Source Index). SI chỉ vào dữ liệu trong đoạn dữ

liệu DS mà địa chỉ cụ thể đầy đủ ứng với DS:SI và được xác định như trình

bày trong phần 1.2.

 DI: chỉ số đích (Destination Index). DI chỉ vào dữ liệu trong đoạn dữ liệu DS

mà địa chỉ cụ thể đầy đủ ứng với DS:DI và được xác định như trình bày trong

phần 1.2.

Riêng trong các lệnh thao tác với dữ liệu kiểu chuỗi thì cặp ES:DI luôn ứng với

địa chỉ của phần tử thuộc chuỗi đích còn cặp DS:SI ứng với địa chỉ của phần tử thuộc

chuỗi gốc.

1.1.2.d Thanh ghi cờ FR (flag register)

Đây là thanh ghi khá đặc biệt trong CPU, mỗi bít của nó được dùng để phản ánh

một trạng thái nhất định của kết quả phép toán do ALU thực hiện hoặc một trạng thái

hoạt động của EU. Dựa vào các cờ này người lập trình có thể có các lệnh thích hợp tiếp

theo cho bộ vi xử lý (các lệnh nhảy có điều kiện). Thanh ghi cờ gồm 16 bít nhưng người

ta chỉ dùng hết 9 bít của nó để làm các bít cờ như hình vẽ dưới đây.

 U không sử dụng.

 C hoặc CF (Carry Flag): cờ nhớ. CF = 1 khi có nhớ hoặc muợn từ bít có

nghĩa lớn nhất MSB (Most Significant Bit).

 P hoặc PF (Parity Flag): cờ parity. PF phản ánh tính chẵn lẻ của tổng số bít 1

có trong kết quả. Cờ PF =1 khi tổng số bít 1 trong kết quả là chẵn (even

parity).

 A hoặc AF (Auxiliary Carry Flag): cờ nhớ phụ rất có ý nghĩa khi ta làm việc

với các số BCD (Binary Coded Decimal). AF = 1 khi có nhớ hoặc muợn từ

một số BCD thấp (4 bít thấp) sang một số BCD cao (4 bít cao).

 Z hoặc ZF (Zero Flag): cờ rỗng. ZF =1 khi kết quả = 0.

Hình 2-2. Thanh ghi cờ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

25

 S hoặc SF (sign flag): cờ dấu. SF = 1 khi kết quả âm.

 O hoặc OF (Overflow Flag): cò tràn. OF = 1 khi kết quả là một số bù 2 vượt

qua ngoài giới hạn biểu diễn dành cho nó.

Trên đây là 6 bít cờ trạng thái phản ánh các trạng thái khác nhau của kết sau một

thao tác nào đó, trong đó 5 bít cờ đầu thuộc byte thấp của thanh cờ là các cờ giống như

của bộ vi xử lý 8 bít 8085 của Intel. Chúng được lập hoặc xoá tuỳ theo các điều kiện cụ

thể sau các thao tác của ALU. Ngoài ra, bộ vi xử lý 8086 còn có các cờ điều khiển sau

đây (các cờ này được lập hoặc xoá bằng các lệnh riêng):

 T hoặc TF (Trap Flag): cờ bẫy. TF = 1 thì CPU làm việc ở chế độ chạy từng

lệnh (chế độ này dùng khi cần tìm lỗi trong một chương trình).

 I hoặc IF (Interrupt Enable Flag): cờ cho phép ngắt. IF = 1 thì CPU cho phép

các yêu cầu ngắt (che được) được tác động.

 D hoặc DF (Direction Flag): cờ hướng. DF = 1 khi CPU làm việc với chuỗi

ký tự theo thứ tự từ phải sang trái (vì vậy D chính là cờ lùi)

1.2 Phân đoạn bộ nhớ của 8086

Khối BIU đưa ra trên buýt địa chỉ 20 bít địa chỉ, như vậy 8086 có khả năng phân

biệt ra được 2
20

 = 1.048.576 = 1M ô nhớ hay 1Mbyte, vì các bộ nhớ thường tổ chức theo

byte. Trong không gian 1Mbyte bộ nhớ cần được chia thành các vùng khác nhau (điều

này rất có lợi khi làm việc ở chế độ nhiều người sử dụng hoặc đa nhiệm) để:

 Chứa mã chương trình.

 Chứa dữ liệu và kết quả không gian của chương trình.

 Tạo ra một vùng nhớ đặc biệt gọi là ngăn xếp (stack) dùng vào việc quản lý

các thông số của bộ vi xử lý khi gọi chương trình con hoặc trở về từ chương

trình con.

Trong thực tế bộ vi xử lý 8086 có các thanh ghi 16 bít liên quan đến địa chỉ đầu của

các vùng (các đoạn) kể trên và chúng được gọi là các thanh ghi đoạn (Segment

Registers). Đó là thanh ghi đoạn mã CS (Code-Segment), thanh ghi đoạn dữ liệu DS

(Data sement), thanh ghi đoạn ngăn xếp SS (Stack segment) và thanh ghi đoạn dữ liệu

phụ ES (Extra segment). Các thanh ghi đoạn 16 bít này chỉ ra địa chỉ đầu của bốn đoạn

trong bộ nhớ, dung lượng lớn nhất của mỗi đoạn nhớ này là 64 KByte và tại một thời

điểm nhất định bộ vi xử lý chỉ làm việc được với bốn đoạn nhớ 64 KByte này. Việc thay

đổi giá trị của các thanh ghi đoạn làm cho các đoạn có thể dịch chuyển linh hoạt trong

phạm vi không gian 1 Mbyte. Vì vậy các đoạn này có thể nằm cách nhau khi thông tin

cần lưu đòi hỏi dung lượng đủ 64 KByte hoặc cũng có thể nằm trùm nhau do có những

đoạn không cần dùng hết đoạn dài 64 KByte và vì vậy những đoạn khác có thể bắt đầu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

26

nối tiếp ngay sau đó. Điều này cũng cho phép ta truy nhập vào bất kỳ đoạn nhớ (64

KByte) nào nằm trong toàn bộ không gian 1 MByte.

 Nội dung các thanh ghi đoạn sẽ xác định địa chỉ của ô nhớ nằm ở đầu đoạn. Địa

chỉ này còn gọi là địa chỉ cơ sở. Địa chỉ của các ô nhớ khác nằm trong đoạn tính được

bằng cách cộng thêm vào địa chỉ cơ sở một giá trị gọi là địa chỉ lệch hay độ lệch (Offset),

do nó ứng với khoảng lệch địa chỉ của một ô nhớ cụ thể nào đó so với ô đầu đoạn. Độ

lệch này được xác định bởi các thanh ghi 16 bít khác đóng vai trò thanh ghi lệch (Offset

register) mà ta sẽ được trình bày sau. Cụ thể, để xác định địa chỉ vật lý 20 bít của một ô

nhớ nào đó trong một đoạn bất kỳ. CPU 8086 phải dùng đến 2 thanh ghi 16 bít: một

thanh ghi để chứa địa chỉ cơ sở, còn thanh kia chứa độ lệch. Từ nội dung của cặp thanh

ghi đó tạo ra địa chỉ vật lý theo công thức sau:

Địachỉvậtlý=Thanh_ghi_đọan×16+Thanh_ghi_lệch

Việc dùng 2 thanh ghi để ghi nhớ thông tin về địa chỉ thực chất để tạo ra một loại

địa chỉ gọi là địa chỉ logic và được ký hiệu như sau:

Thanh_ghi_đoạn: Thanh_ghi_lệch hay segment: offset

Địa chỉ kiểu segment: offset là logic vì nó tồn tại dưới dạng giá trị của các thanh

ghi cụ thể bên trông CPU và ghi cần thiết truy cập ô nhớ nào đó thì nó phải được đổi ra

địa chỉ vật lý để rồi được đưa lên buýt địa chỉ. Việc chuyển đổi này do một bộ tạo địa chỉ

thực hiện (phần tử  trên Hình 2-1).

Ví dụ: cặp CS:IP sẽ chỉ ra địa chỉ của lệnh sắp thực hiện trong đoạn mã. Tại

một thời điểm nào đó ta có CS = F00H và IP = FFF0H thì

CS:IP~F000Hx16 + FFF0H = F000H + FFF0H = FFFF0H

Do tổ chức như vậy nên dẫn đến tính đa trị của các thanh ghi đoạn và thanh ghi

lệch trong địa chỉ logic ứng với một địa chỉ vật lý. Từ một địa chỉ vật lý ta có thể tạo ra

các giá trị khác nhau của thanh ghi đoạn và thanh ghi lệch

Ví dụ: Địa chỉ vật lý 12345H có thể được tạo ra từ các giá trị:

 Thanh ghi đoạn Thanh ghi lệch

 1000H 2345H

 1200H 0345H

 1004H 2305H

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

27

2. BỘ ĐỒNG XỬ LÍ TOÁN HỌC 8087

Như được trình bày trong phần trước, 8086 không có các thao tác với số thực. Để

làm việc này, hệ vi xử lý cần có các bộ đồng xử lý toán học 80x87 hỗ trợ CPU trong việc

tính toán các biểu thức dùng dấu chấm động như cộng, trừ, nhân, chia các số dấu chấm

động, căn thức, logarit, … Chúng cho phép xử lý các phép toán này nhanh hơn nhiều so

với 8086.

8087 gồm một đơn vị điều khiển (CU – Control Unit) dùng để điều khiển buýt và

một đơn vị số học (NU – Numerical Unit) để thực hiện các phép toán dấu chấm động

trong các mạch tính lũy thừa (exponent module) và mạch tính phần định trị (mantissa

module). Khác với 8086, thay vì dùng các thanh ghi rời rạc là một ngăn xếp thanh ghi.

Đơn vị điều khiển nhận và giải mã lệnh, đọc và ghi các toán hạng, chạy các lệnh

điều khiển riêng của 8087. Do đó, CU có thể đồng bộ với CPU trong khi NU đang thực

hiện các công việc tính toán. CU bao gồm bộ điều khiển buýt, bộ đệm dữ liệu và hàng

lệnh.

Ngăn xếp thanh ghi có tất cả 8 thanh ghi từ R0 - R7, mỗi thanh ghi dài 80 bít trong

đó bít 79 là bít dấu, bít 64 - 78 dùng cho số mũ và phần còn lại là phần định trị. Dữ liệu

truyền giữa các thanh ghi này được thực hiện rất nhanh do 8087 có độ rộng buýt dữ liệu

là 84 bít và không cần phải biến đổi định dạng. Ngay sau khi khởi động lại PC, bộ đồng

Hình 2-3. Sơ đồ khối 8087

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

28

xử lý kiểm tra xem nó có được nối với PC hay không bằng các đường BHE /S7. Bộ đồng

xử lý 8087 sẽ điều chỉnh độ dài của hàng lệnh cho phù hợp với CPU.

3. TẬP LỆNH CỦA 8086

3.1 Khái niệm lệnh, mã hoá lệnh và quá trình thực hiện lệnh

Lệnh của bộ vi xử lý được ghi bằng các ký tự dưới dạng gợi nhớ (memonic) để

người sử dụng để nhận biết. Đối với bản thân bộ vi xử lý thì lệnh được mã hoá dưới dạng

các số 0 và 1 (còn gọi là mã máy) vì đó là dạng biểu diễn thông tin duy nhất mà máy hiểu

được. Do lệnh được cho dưới dạng mã nên sau khi nhận lệnh, bộ vi xử lý phải thực hiện

việc giải mã lệnh rồi sau đó mới thực hiện lênh.

Một lệnh có thể có độ dài một vài byte tuỳ theo thiết kế bộ vi xử lý. Số lượng các

bít n dùng để mã hóa vi lệnh (opcode) cho biết số lượng tối đa các lệnh (2
n
) có trong bộ

vi xử lý. Với 1 byte bộ vi xử lý có thể mã hoá được tối đa 256 lệnh. Trong thực tế việc

mã hoá lệnh cho bộ vi xử lý là rất phức tạp và bị chi phối bởi nhiều yếu tố khác nữa. Đối

với bộ vi xử lý 8086 một lệnh có thể có độ dài từ 1 đến 6 byte. Ta sẽ chỉ lấy trường hợp

lệnh MOV để giải thích cách ghi lệnh nói chung của 8086.

Lệnh MOV đích, gốc dùng để chuyển dữ liệu giữa thanh ghi và ô nhớ. Chỉ nguyên

với các thanh ghi của 8086, nếu ta lần lượt đặt các thanh ghi vào các vị trí toán hạng đích

và toán hạng gốc ta thấy đã phải cần tới rất nhiều mã lệnh khác nhau để mã hoá tổ hợp

các này.

Hình vẽ trên biểu diễn dạng thức các byte dùng để mã hoá lệnh MOV. Như vậy để

mã hoá lệnh MOV cần ít nhất là 2 byte, trong đó 6 bít của byte đầu dùng để chứa mã

lệnh. Đối với các lệnh MOV. Bít W dùng để chỉ ra rằng 1 byte (W = 0) hoặc 1 từ (W = 1)

sẽ được chuyển. Trong các thao tác chuyển dữ liệu, một toán hạng luôn bắt buộc phải là

thanh ghi. Bộ vi xử lý dùng 2 hoặc 3 bít để mã hoá các thanh ghi trong CPU như sau:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

29

Bít D dùng để chỉ hướng đi của dữ liệu. D = 1 thì dữ liệu đi đến thanh ghi cho bởi

bít của REG. 2 bít MOD (chế độ) cùng với 3 bít R/M (thanh ghi/bộ nhớ) tạo ra 5 bít dùng

để chỉ ra chế độ địa chỉ cho các toán hạng của lệnh.

Bảng dưới đây cho ta thấy cách mã hoá các chế độ địa chỉ (cách tìm ra các toán

hạng bằng các bít này).

Ghi chú:

 addr8, addr16 tương ứng với địa chỉ 8 và 16 bít

 Các giá trị cho trong các cột 2, 3, 4 (ứng với MOD =00, 01, 10) là các địa

chỉ hiệu dụng (EA) sẽ được cộng với DS để tạo ra địa chỉ vật lý (riêng BP

phải được cộng với SP)

3.2 Các chế độ địa chỉ của 8086

Chế độ địa chỉ (addressing mode) là cách để CPU tìm thấy toán hạng cho các lệnh

của nó khi hoạt động. Một bộ vi xử lý có thể có nhiều chế độ địa chỉ. Các chế độ địa chỉ

này được xác định ngay từ khi chế tạo ra bộ bi xử lý và sau này không thể thay đổi được.

Bộ vi xử lý 8086 và cả họ 80x86 nói chung đều có 7 chế độ địa chỉ sau:

1. Chế độ địa chỉ thanh ghi (register addressing mode).

2. Chế độ địa chỉ tức thì (immediate addressing mode).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

30

3. Chế độ địa chỉ trực tiếp (direct addressing mode).

4. Chế độ địa chỉ gián tiếp qua thanh ghi (register indirect addressing

mode).

5. Chế độ địa chỉ tương đối cơ sở (based indexed relative addressing

mode).

6. Chế độ địa chỉ tương đối chỉ số (indexed relative addressing mode).

7. Chế độ địa chỉ tương đối chỉ số cơ sở (based indexed relative

addressing mode).

3.2.1 Chế độ địa chỉ thanh ghi

Trong chế độ địa chỉ này, người ta dùng các thanh ghi bên trong CPU như là các

toán hạng để chứa dữ liệu cần thao tác. Vì vậy khi thực hiện lệnh có thể đạt tốc độ truy

nhập cao hơn so với các lệnh có truy nhập đên bộ nhớ.

Ví dụ 2-1

 MOV BX, DX ; chuyển nội dung DX vào BX.

 MOV DS, AX ; chuyển nội dung AX vào DX

 ADD AL, DL ; cộng nội dung AL và DL rồi đưa vào

3.2.2 Chế độ địa chỉ tức thì

Trong chế độ địa chỉ này, toán hạng đích là một thanh ghi hay một ô nhớ, còn toán

hạng nguồn là một hằng số và vị trí của toán hạng này ở ngay sau mã lệnh. Chế độ địa

chỉ này có thể được dùng để nạp dữ liệu cần thao tác vào bất kỳ thanh ghi nào (ngoại trừ

các thanh ghi đoạn và thanh cờ) hoặc vào bất kỳ ô nhớ nào trong đoạn dữ liệu DS.

Ví dụ 2-2

 MOV CL, 100 ; chuyển 100 vào CL.

 MOV AX, 0FF0H ; chuyển 0FF0H vào AX để rồi đưa

 MOV DS, AX ; vào DS (vì không thể chuyểntrực tiếp vào thanh ghi

đoạn)

 MOV (BX), 10 ; chỉ DS:BX.

3.2.3 Chế độ địa chỉ trực tiếp

Trong chế độ địa chỉ này một toán hạng chứa địa chỉ lệnh của ô nhớ dùng chứa dữ

liệu còn toán hạng kia chỉ có thể là thanh ghi mà không được là ô nhớ. Nếu so sánh với

chế độ địa chỉ tức thì ta thấy ở đây ngay sau mã lệnh không phải là toán hạng mà là địa

chỉ lệch của toán hạng.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

31

Ví dụ 2-3

 MOV AL, (1234H) ;chuyển ô nhớ DS:1234 vào AL.

 MOV (4320H), CX ;chuyển CX vào 2 ô nhớ liên tiếp DS:4320 và DS:4321

3.2.4 Chế độ gián tiếp qua thanh ghi

Trong chế độ địa chỉ này một toán hạng là một thanh ghi được sử dụng để chứa địa

chỉ lệch của ô nhớ chứa dữ liệu, còn toán hạng kia chỉ có thể là thanh ghi mà không được

là ô nhớ (8086 không cho phép tham chiếu bộ nhớ 2 lần đối với một lệnh).

Ví dụ 2-4

 MOV AL, (BX) ; chuyển ô nhớ có địa chỉ DS:BX vào AL.

 MOV (SI), CL ; chuyển CL vào ô nhớ có địa chỉ DS:SI.

 MOV (DI), AX ; chuyển AX vào 2 ô nhớ liên tiếp tại DS:DI và DS: (DI + 1).

3.2.5 Chế độ địa chỉ tương đối cơ sở

Trong chế độ địa chỉ này các thanh ghi cơ sở như BX và BP và các hằng số biểu

diễn các giá trị dịch chuyển (displacement values) được dùng để tính địa chỉ hiệu dụng

của toán hạng trong các vùng nhớ DS và SS. Sự có mặt của các giá trị dịch chuyển xác

định tính tương đối của địa chỉ so với địa chỉ cơ sở.

Ví dụ 2-5

MOV CX, (BX) +10 ; chuyển 2 ô nhớ liên tiếp có địa chỉ DS: (BX + 10) và

 ; DS: (BX+10) vào CX.

MOV CX, (BX+10) ; một cách viết khác của lệnh trên.

MOV CX, 10 (BX) ; một cách viết khác của lệnh đầu.

MOV AL, (BP) +5 ; chuyển ô nhớ SS: (BP+5) vào AL.

ADD AL, Table (BX) ; cộng AL với ô nhớ do BX chỉ ra trong bảng table

 ; (bảng này nằm trong DS), kết quả dựa vào AL.

Trong ví dụ trên:

 10 và 5 là các giá trị cụ thể cho biết mức dịch chuyển của các toán hạng.

Table là tên mảng biểu diễn kiểu dịch chuyển của mảng (phần tử đầu tiên)

so với địa chỉ đầu của đoạn dữ liệu DS.

 (BX+10) hoặc (BP+5) gọi là địa chỉ hiệu dụng (effective address. EA. theo

cách gọi của Intel).

 DS: (BX+10) hoặc SS: (BP+5) chính là logic tương ứng với một địa chỉ

vật lý.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

32

 Theo cách định nghĩa này thì địa chỉ hiệu dụng của một phần tử thứ BX

nào đó (kể từ 0) trong mảng Table (BX) thuộc đoạn DS là EA =

Table+BX và của phần tử đầu tiên là EA = Table.

3.2.6 Chế độ địa chỉ tương đối chỉ số cơ sở

Kết hợp hai chế độ địa chỉ chỉ số và cơ sở ta có chế độ địa chỉ chỉ số cơ sở. Trong

chế độ địa chỉ này ta dùng cả thanh ghi cơ sở lẫn thanh ghi chỉ số để tính địa chỉ của toán

hạng. Nếu ta dùng thêm cả thành phần biểu diễn sự dịch chuyển của địa chỉ thì ta có chế

độ địa chỉ phức tạp nhất: chế độ địa chỉ tương đối chỉ số cơ sở. Ta có thể thấy chế độ địa

chỉ này rất phù hợp cho việc địa chỉ hoá các mảng hai chiều.

Ví dụ 2-6

 MOV AX, [BX] [SI]+8 ;chuyển 2 ô nhớ liên tiếp có địa chỉ

 ; DS:(BX+SI+8) và DS:(BX+SI+9) vào AX

 MOV AX, [BX+SI+8] ; một cách viết khác của lệnh trên

 MOV CL, [BP+DI+5 ; chuyển ô nhớ SS:(BP+DI+5) vào CL.

3.2.7 Phương pháp bỏ ngầm định thanh ghi đoạn

Như trong các phần trước đã nói, các thanh ghi đoạn và thanh ghi lệch được ngầm

định đi kèm với nhau từng cặp dùng để địa chỉ hoá các toán hạng trong các vùng khác

nhau của bộ nhớ. Bảng 2-1 chỉ ra các cặp đôi ngầm định của cácthan ghi đoạn và thanh

ghi lệch thường dung. Vì tính ngầm định này nên trong các lệnh ta chỉ cần viểt các thanh

ghi lệch là đủ cơ sở để tính ra được đia chỉ của toán hạng.

Tuy nhiên, ngoài các tổ hợp ngầm định đã kể, 8086 còn cho phép ta làm việc với

các tổ hợp ngầm định đã kể, 8086 còn cho phép ta làm việc với các tổ hợp khác của các

thanh ghi đoạn và thanh ghi lệch. Muốn loại bỏ các tổ hợp ngầm định nói trên, trong khi

viết lệnh phải ghi rõ thanh ghi đoạn sẽ dùng để tính địa chỉ.

Bảng 2-1. Các cặp thanh ghi đoạn và thanh ghi lệch ngầm định

Thanh ghi đoạn CS DS ES SS

Thanh ghi lệch IP SI, DI, BX DI SP, BP

Ví dụ:

Nếu ta muốn thay đổi, không lấy toán hạng trong đoạn dữ liệu DS, mà lại lấy toán

hạng trong đoạn dữ liệu phụ ES để đưa vào AL, thì ta phải viết lại lệnh trên thành

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

33

 MOV AL, ES:[BX]

Trong đó ta đã dùng ES: để loại bỏ thanh ghi đoạn ngầm định DS và để chỉ rõ

thanh ghi đoạn mới dùng trong lệnh này bây giờ là ES.

3.3 Tập lệnh của 8086

Bộ xử lý 8086 có tập lệnh gồm 111 lệnh, chiều dài của lệnh từ 1 byte đến vài byte.

Tập lệnh 8086 hỗ trợ các nhóm thao tác căn bản như dưới đây.

3.3.1 Các lệnh trao đổi dữ liệu.

Các câu lệnh trong nhóm cho phép trao đổi dữ liệu giữa thanh ghi và ô nhớ hay

giữa thiết bị vào/ra với ô nhớ hoặc thanh ghi. Kích cỡ dữ liệu cho phép với các câu lệnh

này là byte (8 bít) hoặc word (16 bít). Như vậy các câu lệnh trao đổi dữ liệu giúp nạp dữ

liệu cần thiết cho các thao tác tính toán của vi xử lý. Ngoài ra các lệnh này cho phép lưu

các kết quả tính toán ra bộ nhớ hoặc các thiết bị ngoại vi.

Bảng 2-2. Các lệnh trao đổi dữ liệu

Mã gợi nhớ Chức năng

MOV
Di chuyển byte hay word giữa thanh ghi và ô

nhớ

IN, OUT
Đọc, ghi một byte hay word giữa cổng và ô

nhớ

LEA Nạp địa chỉ hiệu dụng

PUSH, POP Nạp vào, lấy ra một word trong ngăn xếp.

XCHG Hoán đổi byte hay word

3.3.1.a MOV – Chuyển 1 byte hay word

Viết lệnh: MOV Đích, Gốc.

Mô tả: Đích  Gốc

Trong đó toán hạng đích và gốc có thể tìm được theo các chế độ địa chỉ khác nhau

nhưng phải có cùng độ dài và không được phép đồng thời là 2 ô nhớ hoặc 2 thanh ghi

đoạn.

Lệnh này không tác động đến các cờ.

Ví dụ:

 MOV AL, 74H ; AL  74

 MOV CL, BL ; CL  BL

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

34

 MOV DL, [SI] ; DL  [DS:SI]

 MOV AL, Table [BX] ; AL [DS:(Table+BX)]

3.3.1.b LEA - Nạp địa chỉ hiệu dụng vào thanh ghi

Viết lệnh: LEA Đích, Gốc

Trong đó:

 + Đích thường là một trong các thanh ghi: BX, CX, DX, BP, SI, DI.

 + Gốc là tên biến trong đoạn DS được chỉ rõ trong lệnh hoặc ô nhớ cụ thể.

Mô tả: Đích  Địa chỉ lệch của Gốc, hoặc

 Đích  Địa chỉ hiệu dụng của Gốc

Đây là lệnh để tính địa chỉ lệch của biến hoặc địa chỉ của ô nhớ chọn làm gốc rồi

nạp vào thanh ghi đã chọn.

Lệnh này không tác động đến các cờ.

Ví dụ:

 LEA DX, MSG ; nạp địa chỉ lệch của bản tin MSG vào DX.

 LEA CX, [BX] [DI] ; nạp vào CX địa chỉ hiệu dụng

 ; do BX và DI chỉ ra: EA =BX+DI

3.3.1.c IN- Đọc dữ liệu từ cổng vào thanh ghi ACC.

Viết lệnh: IN ACC, Port

Mô tả: ACC <- [Port]

Trong đó [Port] là dữ liệu của cổng có địa chỉ là Port. Port là địa chỉ 8 bít của

cổng, nó có thể có các giá trị trong khoảng 00H…FFH. Như vậy có thể có các khả năng

sau:

+Nếu ACC là AL thì dữ liệu 8 bít được đưa vào từ cổng Port.

+Nếu ACC là AX thì dữ liệu 16 bít được đưa vào từ cổng Port và cổng Port+1.

Địa chỉ cổng có thể được lưu trong thanh ghi DX. Cách này địa chỉ cổng hoá

mềm dẻo hơn. Lúc này địa chỉ cổng nằm trong dải 0000H. . FFFFH và câu lệnh có dạng:

IN ACC, DX

Trong đó DX phải được gắn từ trước giá trị ứng với địa chỉ cổng. Lệnh này không

tác động đến các cờ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

35

3.3.1.d OUT - Ghi dữ liệu từ Acc ra cổng)

 Viết lệnh: OUT Port, Acc

 Mô tả: Acc  [port]

Trong đó [port]là dữ liệu của cổng có địa chỉ là Port. Port là địa chỉ 8 bít của cổng,

nó có thể có các giá trị trong khoảng 00H. . . FFH. Như vậy ta có thể có các khả năng

sau:

 + Nếu Acc là AL thì dữ liệu 8 bít được đưa ra cổng port.

 + Nếu Acc là AX thì dữ liệu 16 bít được đưa ra cổng port và cổng port +1.

Có một cách khác để biểu diễn địa chỉ cổng là thông qua thanh ghi DX theo dạng:

OUT DX, Acc

Trong đó DX phải được gán từ trước giá trị ứng với địa chỉ cổng. Lệnh này không

tác động đến các cờ.

3.3.2 Các lệnh tính toán số học và lô gíc.

Đây là các nhóm lệnh thực hiện các tính toán chủ yếu của vi xử lý 8086.

Bảng 2-3. Các lệnh số học và lô gíc

Mã gợi nhớ Chức năng

NOT Đảo (bù một) byte hay word

AND Phép và byte hoặc word

OR Phép hoặc byte hoặc word

XOR Phép hoặc loại trừ byte hoặc word

SHL, SHR Dịch trái, dịch phải lôgíc byte hay word. Số bước

1 hoặc do CL xác định

SAL, SAR Dịch trái, dịch phải số học byte hay word. Số

bước 1 hoặc do CL xác định

ROL, ROR Quay trái, quay phải byte hay word. Số bước 1

hoặc do CL xác định

ADD, SUB Cộng trừ byte hoặc word

ADC, SBB Cộng trừ byte hoặc word có nhớ

INC, DEC Tăng, giảm

NEG Đảo byte hoặc word (bù 2)

CMP So sánh hai byte hoặc word

MUL, DIV Nhân, chia byte hoặc word không dấu

IMUL, IDIV Nhân chia byte hoặc word có dấu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

36

3.3.2.a ADD-Cộng 2 toán hạng

Viết lệnh: ADD Đích, Gốc.

Mô tả: Đích  Đích + Gốc.

Trong đó toán hạng đích và gốc có thể tìm được theo các chế độ địa chỉ khác nhau.

Nhưng phải chứa dữ liệu có cùng độ dài và không được phép đồng thời là 2 ô nhó và

cũng không được là thanh ghi đoạn. Có thể tham khảo các ví dụ của lệnh ADC.

Cập nhật: AF, CF, PF, SF, ZP

3.3.2.b MUL - Nhân số không dấu

 Viết lệnh: MUL Gốc

Trong đó toán hạng Gốc là số nhân và có thể tìm được theo các chế độ địa chỉ khác

nhau.

Mô tả: tuỳ theo độ dài của toán hạng Gốc ta có 2 trường hợp tổ chức phép nhân,

chỗ để ngầm định cho số bị nhân và kết quả:

Nếu Gốc là số 8 bít: ALGốc,

 số bị nhân phải là số 8 bít để trong AL.

 sau khi nhân: AX  tích,

Nếu Gốc là số 16 bít: AXGốc,

 số bị nhân phải là số 16 bít để trong AX.

 sau khi nhân: DXAX  tích.

Nếu byte cao (hoặc 16 bít cao) của 16 (hoặc 32) bít kết quả chứa 0 thì CF=OF=0

Như vậy các cờ CF và OF cho biết có thể bỏ đi bao nhiêu số 0 trong kết quả. Ví dụ:

Nếu cần nhân một số 8 bít với một số 16 bít, số 16 bít đặt tại Gốc và số 8 bít ở AL. Số 8

bít này ở AL cần phải được mở rộng sang AH bằng cách gán AH=0 để làm cho số bị

nhân nằm trong AX. Sau cùng chỉ việc dùng lệnh MUL Gốc và kết quả có trong cặp

DXAX.

Cập nhật: CF, OF.

Không xác định: AF, PF, SF, ZP.

3.3.2.c DIV – Chia 2 số không có dấu

Viết lệnh: DIV Gốc

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

37

Trong đó toán hạng Gốc là số chia và có thể tìm được theo các chế độ địa chỉ khác

nhau.

Mô tả: tuỳ theo độ dài của toán hạng gốc ta có 2 trường hợp bố trí phép chia. Các

chỗ để ngầm định cho số bị chia và kết quả:

 Nếu Gốc là số 8 bít: AX/Gốc. Số bị chia phải là số không dấu 16 bít để

trong AX.

 Nếu Gốc là số 16 bít: DXAX/Gốc. Số bị chia phải là số không dấu 32 bít để

trong cặp thanh ghi DXAX.

 Nếu thương không phải là số nguyên nó được làm tròn theo số nguyên sát

đuôi.

 Nếu Gốc = 0 hoặc thương thu được lớn hơn FFH hoặc FFFFH (tuỳ theo độ

dài của toán hạng Gốc) thì 8086 thực hiện lệnh ngắt INT 0.

Không xác định: AF, CF, OF, PF, SF, ZP.

3.3.2.d CMP- So sánh 2 byte hay 2 word

Viết lệnh: CMP Đích, Gốc.

Mô tả: Đích – Gốc.

Trong đó toán hạng đích và gốc có thể tìm được theo các chế độ địa chỉ khác nhau.

Nhưng phải chứa dữ liệu có cùng độ dài và không được phép đồng thời là 2 ô nhớ.

Lệnh này chỉ tạo các cờ, không lưu kết quả so sánh, sau khi so sánh các toán hạng

không bị thay đổi. Lệnh này thường được dùng để tạo cờ cho các lệnh nhảy có điều kiện

(nhảy theo cờ).

Các cờ chính theo quan hệ đích và gốc khi so sánh 2 số không dấu:

 CF ZF

 Đích = Gốc 0 1

 Đích > Gốc 0 1

 Đích > Gốc 1 0

Cập nhật: AF, CF, OF, PF, SF, ZP.

3.3.2.e AND - Phép và 2 toán hạng

Viết lệnh: AND Đích, Gốc

Mô tả: Đích - Đích, Gốc.

Trong đó toán hạng đích và gốc có thể tìm được theo các chế độ địa chỉ khác nhau.

Nhưng phải chứa dữ liệu cùng độ dài và không được phép đồng thời là 2 ô nhớ và cũng

không được là thanh ghi đoạn. Phép AND thường dùng để che đi/giữ lại một vài bít nào

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

38

đó của một toán hạng bằng cách nhân logic toán hạng đó với toán hạng tức là có các bít

0/1 ở các chỗ cần che đi/giữ nguyên tương ứng (toán hạng lúc này còn được gọi là mặt

nạ).

Xoá: CF, OF.

Cập nhật: PF, SF, ZP, PF chỉ có nghĩa khi toán hạng là 8 bít.

Không xác định: AF.

Ví dụ:

 AND AL, BL ;AL, AL BL theo từng bít.

 AND BL, 0FH ;che 4 bít cao của BL.

3.3.3 Điều khiển, rẽ nhánh và lặp.

 Các câu lệnh thuộc nhóm này cho phép thay đổi trật tự thực hiện các câu lệnh bên

trong chương trình.

Bảng 2-4. Các lệnh rẽ nhánh và lặp tiêu biểu

Mã gợi nhớ Chức năng

JMP Nhảy không điều kiện

JA (JNBE) Nhảy nếu lớn hơn

JAE (JNB) Nhảy nếu lớn hơn hoặc bằng

JB (JNAE) Nhảy nếu bé hơn

JBE (JNA) Nhảy nếu bé hơn hoặc bằng

JE (JZ) Nhảy nêu bằng

JC, JNC Nhảy nếu cờ nhớ đặt, xóa

JO, JNO Nhảy nếu cờ tràn đặt, xóa

JS, JNS Nhảy nếu cờ dấu đặt, xóa

LOOP Lặp không điều kiện, số lần lặp do CX xác định

LOOPE (LOOPZ) Lặp nếu bằng (cờ không) hoặc số lần lặp do CX

xác định

LOOPNE (LOOPNZ) Lặp nếu không bằng (cờ không xóa) hoặc số lần

lặp do CX xác định

CALL, RET Gọi hàm, trở về từ hàm con

INT Ngắt mềm

IRET Quay trở về từ đoạn chương trình ngắt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

39

3.3.3.a JMP - Nhảy (vô điều kiện) đến một đích nào đó

Lệnh này khiến cho bộ vi xử lý 8086 bắt đầu thực hiện một lệnh mới tại địa chỉ

được mô tả trong lệnh. Lệnh này phân biệt nhảy xa và nhảy gần theo vị trí của câu lệnh

mới. Tuỳ thuộc vào độ dài của bước nhảy chúng ta phân biệt các kiểu lệnh nhảy gần và

nhảy xa với độ dài lệnh khác nhau. Lệnh nhảy đến nhãn ngắn shortlabel là lệnh nhảy

tương đối. Nơi đến phải nằm trong phạm vi từ -128 đến +127 so với vị trí của lệnh nhảy.

Toán hạng nguồn trong lệnh chỉ là byte độ dời để cộng thêm vào thanh ghi IP. Byte độ

dời này được mở rộng dấu trước khi cộng vào thanh ghi IP.

- Ví dụ :

 JMP SHORT 18h

 JMP 0F008h

 JMP DWORD PTR [3000h]

Lệnh này không tác động đến các cờ.

3.3.3.b LOOP -Lặp lại đoạn chương trình do nhãn chỉ ra cho đến khi CX=0

 Viết lệnh: LOOP NHAN

Lệnh này dùng để lặp lại đoạn chương trình (gồm các lệnh nằm trong khoảng từ

nhãn NHAN đến hết lệnh LOOP NHAN) cho đến khi số lần lặp CX=0. Điều này có

nghĩa là trước khi vào vòng lặp số lần lặp mong muốn phải được nạp vào thanh ghi CX

và sau mỗi lần thực hiện lệnh LOOP NHAN thì đồng thời CX tự động giảm đi một (CX

CX-1).

Lệnh này không tác động đến các cờ.

3.3.4 Điều khiển vi xử lý.

Các câu lệnh này tác động lên thanh ghi cờ là thay đổi trạng thái hoạt động của vi

xử lý.

Bảng 2-5. Các lệnh điều khiển vi xử lý tiêu biểu

Mã gợi nhớ Chức năng

STC, CLC, CMC Lập, xóa cờ nhớ

STD, CLD Lập xóa cờ hướng

STI, CLI Lập xóa cờ cho phép ngắt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

40

PUSHF, POPF Nạp vào, lấy ra thanh ghi cờ tới/từ ngăn xếp

NOP Không làm gì cả

WAIT Chờ tín hiệu TEST

HLT Treo vi xử lý

4. NGẮT VÀ XỬ LÍ NGẮT TRONG 8086

4.1 Sự cần thiết phải ngắt CPU

Ngắt là việc tạm dừng việc chương trình đang chạy để CPU có thể chạy một

chương trình khác nhằm xử lý một yêu cầu do bên ngoài đưa tới CPU như yêu cầu vào/ra

hoặc do chính yêu cầu của bên trong CPU như lỗi trong khi tính toán.

Trong cách tổ chức trao đổi dữ liệu thông qua việc thăm dò trạng thái sẵn sàng của

thiết bị ngoại vi, trước khi tiến hành bất kỳ một cuộc trao đổi dữ liệu nào CPU phải dành

toàn bộ thời gian vào việc xác định trạng thái sẵn sàng làm việc của thiết bị ngoại vi. Để

tận dụng khả năng của CPU để làm thêm được nhiều công việc khác nữa, chỉ khi nào có

yêu cầu trao đổi dữ liệu thì mới yêu cầu CPU tạm dừng công việc hiện tại để phục vụ

việc trao đổi dữ liệu. Sau khi hoàn thành việc trao đổi dữliệu thì CPU lại phải quay về để

làm tiếp công việc hiện đang bị gián đoạn.

Trong các tín hiệu của CPU 8086 có tín hiệu cho các yêu cầu ngắt che được INTR

và không che được NMI, chính các tín hiệu này sẽ được sử dụng vào việc đưa các yêu

cầu ngắt từ bên ngoài đến CPU.

4.2 Các loại ngắt trong hệ 8086

 Trong hệ vi xử lý 8086 có thể xếp các nguyên nhân gây ra ngắt CPU vào 3 nhóm

như sau:

 Nhóm các ngắt cứng: đó là các yêu cầu ngắt CPU do các tín hiệu đến từ các chân

INTR và NMI.

Ngắt cứng INTR là yêu cầu ngắt che được. Các lệnh CLI và STI có ảnh hưởng

trực tiếp tới trạng thái của cờ IF trong bộ vi xử lý, tức là ảnh hưởng tới việc CPU

có nhận biết yêu cầu ngắt tại chân này hay không. Yêu cầu ngắt tại chân INTR có

thể có kiểu ngắt N nằm trong khoảng 0-FFH. Kiểu ngắt này phải được đưa vào

buýt dữ liệu để CPU có thể đọc được khi có xung trong chu kỳ trả lời chấp nhận

ngắt.

 Nhóm các ngắt mềm: khi CPU thực hiện các lệnh ngắt dạng INT N, trong đó N là

số hiệu (kiểu) ngắt nằm trong khoảng 00-FFH (0-255).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

41

 Nhóm các hiện tượng ngoại lệ: đó là các ngắt do các lỗi nảy sinh trong quá trình

hoạt động của CPU như phép chia cho 0, xảy ra tràn khi tính toán.

 Yêu cầu ngắt sẽ được CPU kiểm tra thường xuyên tại chu kỳ đồng hồ cuối cùng

của mỗi lệnh. Error! Reference source not found. trình bày một cách đơn giản để đưa

được số hiệu ngắt N vào buýt dữ liệu trong khi cũng tạo ra yêu cầu ngắt đưa vào chân

INTR của bộ vi xử lý 8086.

 Giả thiết trong một thời điểm nhất định chỉ có một yêu cầu ngắt IRi được tác

động và sẽ có xung yêu cầu ngắt đến CPU. Tín hiệu IRi được đồng thời đưa qua mạch

khuếch đại đệm để tạo ra số hiệu ngắt tương ứng, số hiệu ngắt này sẽ được CPU đọc vào

khi nó đưa ra tín hiệu trả lời.

Bảng 2-6 Quan hệ giữa IRi và số hiệu ngắt N tương ứng.

IR6 IR5 IR4 IR3 IR2 IR1 IR0 N

1 1 1 1 1 1 0 FEH (254)

1 1 1 1 1 0 1 FDH (253)

1 1 1 1 0 1 1 FBH (251)

1 1 1 0 1 1 1 F7H (247)

1 1 0 1 1 1 1 EFH (239)

1 0 1 1 1 1 1 DFH (223)

0 1 1 1 1 1 1 BFH (191)

4.3 Đáp ứng của CPU khi có yêu cầu ngắt

 Khi có yêu cầu ngắt kiểu N đến CPU và nếu yêu cầu đó được phép, CPU thực

hiện các công việc sau:

1. SP  SP-2, [SP]  FR, trong đó [SP] là ô nhớ do SP chỉ ra.

(chỉ ra đỉnh mới của ngắn xếp, cất thanh ghi cờ vào đỉnh ngăn

xếp)

2. IF  0, TF  0.

(cấm các ngắt khác tác động vào CPU, cho CPU chạy ở chế độ

bình thường)

3. SP  SP-2, [SP]  CS.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

42

(chỉ ra đỉnh mới của ngăn xếp, cất phần địa chỉ đoạn của địa chỉ

trở về vào đỉnh ngăn xếp)

4. SP  SP-2, [SP]  IP

(chỉ ra đỉnh mới của ngăn xếp, cất phần địa chỉ lệch của địa chỉ

trờ về vào đỉnh ngăn xếp)

5. [N*4]  IP, [N*4+2]  CS

(lấy lệnh tại địa chỉ mới của chương trình con phục vụ ngắt kiểu

N tương ứng trong bảng vectơ ngắt)

6. Tại cuối chương trình phục vụ ngắt, khi gặp lệnh IRET

[SP]  IP, SP  SP+2

[SP]  CS, SP  SP+2

[SP]  FR, SP  SP+2

(bộ vi xử lý quay lại chương trình chính tại địa chỉ trở về và với

giá trị cũ của thanh ghi cờ được lấy ra từ ngăn xếp).

 Về mặt cấu trúc chương trình, khi có ngắt xảy ra thì chương trình chính tạm dừng

việc thực hiện và lưu các thanh ghi cần thiết như thanh ghi cờ. Sau đó con trỏ lệnh của

CPU sẽ được trỏ tới đoạn mã của chương trình con phục vụ ngắt. Khi chương trình con

phục vụ ngắt kết thúc, CPU khôi phục lại trạng thái các thanh ghi của chương trình chính

và đặt con trỏ lệnh về vị trí bị ngừng khi phục vụ ngắt. Dưới đây là danh sách một số

kiểu ngắt đặc biệt được xếp vào đầu dãy ngắt mềm INT N như sau:

 + INT 0: Ngắt mềm do phép chia cho số 0 gây ra,

 + INT1: Ngắt mềm để chạy từng lệnh ứng với trường hợp cờ TF=1,

 + INT2: Ngắt cứng do tín hiệu tích cực tại chân NMI gây ra,

+ INT3: Ngắt mềm để đặt điểm dừng của chương trình tại một địc chỉ nào đó

+ IN T4: (Hoặc lệnh INTO): ngắt mềm ứng với trường hợp cờ tràn OF=1.

Các kiểu ngắt khác còn lại thì được dành cho nhà sản xuất và cho người sử dụng

định nghĩa:

+ INT 5-INT 1FH; dành riêng cho Intel trong các bộ vi xử lý cao cấp khác,

+ INT 20H-INT FFH: dành cho người sử dụng.

Các kiểu ngắt N trong INT N đều tương ứng với các địa chỉ xác định của chương

trình con phục vụ ngắt mà ta có thể tra được trong bảng các vectơ ngắt. Intel quy định

bảng này nằm trong RAM bắt đầu từ địa chỉ 00000H và dài 1 KB (vi xử lý 8086 có tất cả

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086/8088

43

256 kiểu ngắt, mỗi kiểu ngắt ứng với 1 vectơ ngắt, 1 vectơ ngắt cần 4 byte để chứa địa

chỉ đầy đủ cho CS:IP của chương trình con phục vụ ngắt).

Bảng 2-7. Bảng vectơ ngắt của 8086 tại 1KB RAM đầu tiên

03FEH-03FFH CS của chương trình con phục vụ ngắt INT FFH

03FCH-03FDH IP của chương trình con phục vụ ngắt INT FFH

0082H-0083H CS của chương trình con phục vụ ngắt INT 20H

0080H-0081H IP của chương trình con phục vụ ngắt INT 20H

000AH-000BH CS của chương trình con phục vụ ngắt INT 2

0008H-0009H IP của chương trình con phục vụ ngắt INT 2

0006H-0007H CS của chương trình con phục vụ ngắt INT 1

0004H-0005H IP của chương trình con phục vụ ngắt INT 1

0002H-0003H CS của chương trình con phục vụ ngắt INT 0

0000H-0001H IP của chương trình con phục vụ ngắt INT 0

4.4 Xử lý ưu tiên khi ngắt

Có một vấn đề rất thực tế đặt ra là nếu tại cùng một thời điểm có nhiều yêu cầu

ngắt thuộc các loại ngắt khác nhau cùng đòi hỏi CPU phục vụ thì CPU sẽ phải có cơ chế

để xử lý các yêu cầu ngắt này. Cơ chế phổ biến là chia các ngắt theo mức ưu tiên. CPU

8086 có khả năng phân biệt các mức ưu tiên khác nhau cho các loại ngắt (theo thứ tự từ

cao xuống thấp) như sau:

 + ngắt trong: INT 0 (phép chia cho 0), INT N, INTO . . . cao nhất

 + ngắt không che được NMI

 + ngắt che được INTR

 + ngắt để chạy từng lệng INT 1 . . . thấp nhất

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 2. BÔ XỬ LÍ INTEL 8086

44

Theo thứ tự ưu tiên ngầm định trong việc xử lý ngắt của CPU 8086 thì INT 0 có

mức ưu tiên cao hơn INTR, vì vậy đầu tiên CPU sẽ thực hiện chương trình phục vụ ngắt

INT 0 để đáp ứng với lỗi đặc biệt cho phép chia cho 0 gây ra và cờ IF bị xóa về 0. Yêu

cầu ngắt INTR sẽ tự động bị cấm cho tới khi chương trình phục vụ ngắt INT 0 được hoàn

tất và trở về nhờ IRET, cờ IF cũ được trả lại. Tiếp theo đó CPU sẽ đáp ứng yêu cầu ngắt

INTR bằng cách thực hiện chương trình phục vụ ngắt dành cho INTR.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

45

Chương 3. LẬP TRÌNH HỢP NGỮ VỚI 8086

1. GIỚI THIỆU KHUNG CỦA CHƯƠNG TRÌNH HỢP NGỮ

1.1 Cú pháp của chương trình hợp ngữ

Một chương trình hợp ngữ bao gồm các dòng lệnh, một dòng lệnh có thể là một

lệnh thật dưới dạng ký hiệu (symbolic), mà đôi khi còn được gọi là dạng gợi nhớ

(mnemonic) của bộ vi xử lý, hoặc một hướng dẫn cho chương trình dịch (assembler

directive). Lệnh gợi nhớ sẽ được dịch ra mã máy còn hướng dẫn cho chương trình dịch

thì không được dịch vì nó chỉ có tác dụng chỉ dẫn riêng thực hiện công việc. Các dòng

lệnh này có thể được viết bằng chữ hoa hoặc chữ thường và chúng sẽ được coi là tương

đương vì đối với dòng lệnh chương trình dịch không phân biệt kiểu chữ.

Một dòng lệnh của chương trình hợp ngữ có thể có những trường sau (không nhất

thiết phải có đủ hết tất cả các trường):

 Tên Mã lệnh Các toán dạng Chú giải

 Một ví dụ dòng lệnh gợi nhớ:

 TIEP: MOV AH, [BX] [SI] ; nạp vào AH ô nhớ có địa chỉ DS:

(BX+SI)

Trong ví dụ trên, tại trường tên ta có nhãn TIEP, tại trường mã lệnh ta có lệnh

MOV, tại trường toán hạng ta có các thanh ghi AH, BX và SI và phần chú giải gồm có

các dòng

 ; nạp vào AH ô nhớ có địa chỉ DS: (BX+SI)

Một ví dụ khác là các dòng lệnh với các hướng dẫn cho chương trình dịch:

 MAIN PROC

 và

 MAIN ENDP

Trong ví dụ này, ở trường tên ta có tên thủ tục là MAIN, ở trường mã lệnh ta có các

lệnh giả PROC và ENDP. Đây là các lệnh giả dùng để bắt đầu và kết thúc một thủ tục có

tên là MAIN.

a) Trường tên

Trường tên chứa các nhãn, tên biến hoặc tên thủ tục. Các tên và nhãn này sẽ được

chương trình dịch gán bằng các địa chỉ cụ thể của ô nhớ. Tên và nhẵn có thể có độ dài 1. .

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

46

31 ký tự, không được chứa dấu cách và không được bắt đầu bằng số. Các ký tự đặc biệt

khác có thể dùng trong tên là ?. @_$%. Nếu dấu chấm ('. ') được dùng thì nó phải được

đặt ở vị trí đầu tiên của tên. Một nhãn thường kết thúc bằng dấu hai chấm (:).

b) Trường mã lệnh

Trong trường mã lệnh nói chung sẽ có các lệnh thật hoặc lệnh giả. Đối với các lệnh

thật thì trường này chứa các mã lệnh gợi nhớ. Mã lệnh này sẽ được chương trình dịch

dịch ra mã máy. Đối với các hướng dẫn chương trình dịch thì trường này chứa các lệnh

giả và sẽ không được dịch ra mã máy.

c) Trường toán hạng

Đối với một lệnh thì trường này chứa các toán hạng của lệnh. Tùy theo từng loại

lệnh mà ta có thể có 0, 1 hoặc 2 toán hạng trong một lệnh. Trong trường hợp các lệnh với

1 toán hạng thông thường ta có toán hạng là đích hoặc gốc, còn trong trường hợp lệnh

với 2 toán hạng thì ta có 1 toán hạng là đích và 1 toán hạng là gốc.

Đối với hướng dẫn chương trình dịch thì trường này chứa các thông tin khác nhau

liên quan đến các lệnh giả của hướng dẫn.

d) Trường chú giải

Lời giải thích ở trường chú giải phải được bắt đầu bằng dấu chấm phẩy (;). Trường

chú giải này được dành riêng cho người lập trình để ghi các lời giải thích cho các lệnh

của chương trình với mục đích giúp cho người đọc chương trình dễ hiểu các thao tác của

chương trình hơn. Thông thường lời chú giải cần phải mang đủ thông tin để giải thích về

thao tác của lệnh trong hoàn cảnh cụ thể và như thế thì mới có ích cho người đọc.

1.2 Dữ liệu cho chương trình

Dữ liệu của một chương trình hợp ngữ là rất đa dạng. Các dữ liệu có thể được cho

dưới dạng số hệ hai, hệ mười, hệ mười sáu hoặc dưới dạng ký tự. Khi cung cấp số liệu

cho chương trình, số cho ở hệ nào phải được kèm đuôi của hệ đó (trừ hệ mười thì không

cần vì là trường hợp ngầm định của assembler). Riêng đối với số hệ mười sáu nếu số đó

bắt đầu bằng các chữ (a. f hoặc A. . F) thì ta phải thêm 0 ở trước để chương trình dịch có

thể hiểu được đó là một số hệ mười sáu chứ không phải là một tên hoặc một nhãn.

 Ví dụ các số viết đúng:

 0011B ; Số hệ hai.

 1234 ; Số hệ mười

 0ABBAH ; Số hệ mười sáu

 1EF1H ; Số hệ mười sáu.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

47

Nếu dữ liệu là ký tự hoặc chuỗi ký tự thì chúng phải được đóng trong cặp dấu trích

dẫn đơn hoặc kép, thí dụ 'A' hay "abcd". Chương trình dịch sẽ dịch ký tự ra mã ASCII

tương ứng của nó. Vì vậy trong khi cung cấp dữ liệu kiểu ký tự cho chương trình ta có

thể dùng bản thân ký tự được đóng trong dấu trích dẫn hoặc mã ASCII của nó. Ví dụ, ta

có thể sử dụng liệu ký tự là "0" hoặc mã ASCII tương ứng là 30H, ta có thể dùng '$' hoặc

26H hoặc 34. . .

1.2.1 Biến và hằng

Biến trong chương trình hợp ngữ có vai trò như nó có ở ngôn ngữ bậc cao. Một

biến phải được định kiểu dữ liệu là kiểu byte hay kiểu từ và sẽ được chương trình dịch

gán cho một địa chỉ nhất định trong bộ nhớ. Để định nghĩa các kiểu dữ liệu khác nhau ta

thường dùng các lệnh giả sau:

 DB (define byte) : định nghĩa biến kiểu byte

 DW (define word) : định nghĩa biến kiểu từ

 DD (define double word) : định nghĩa biến kiểu từ kép

a) Biến byte

Biến kiểu byte sẽ chiếm 1 byte trong bộ nhớ. Hướng dẫn chương trình dịch để định

nghĩa biến kiểu byte có dạng tổng quát như sau:

 Tên DB giá_ trị_khởi_đầu

 Ví dụ:

 B1 DB 4

 Ví dụ trên định nghĩa biến byte có tên là B1 và dành 1 byte trong bộ nhớ cho nó

để chứa giá trị khởi đầu bằng 4.

 Nếu trong lệnh trên ta dùng dấu? thay vào vị trí của số 4 thì biến B1 sẽ được dành

chỗ trong bộ nhớ nhưng không được gán giá trị khởi đầu. Cụ thể dòng lệnh giả:

 B2 DB ?

chỉ định nghĩa 1 biến byte có tên là B2 và dành cho nó một byte trong bộ nhớ.

 Một trường hợp đặc biệt của biến byte là biến ký tự. Ta có thể có định nghĩa biến

kỳ tự như sau:

 C1 DB ' $'

 C2 DB 34

b) Biến từ

Biến từ cũng được định nghĩa theo cách giống như biến byte. Hướng dẫn chương

trình dịch để định nghĩa biến từ có dạng như sau:

 Tên DB giá_ trị_khởi_đầu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

48

 Ví dụ:

 W1 DW 40

 Ví dụ trên định nghĩa biến từ có tên là W1 và dành 2 byte trong bộ nhớ cho nó để

chứa giá trị khởi đầu bằng 40.

 Chúng ta cũng có thể sử dụng dấu? chỉ để định nghĩa và dành 2 byte trong bộ nhớ

cho biến từ W2 mà không gán giá trị đầu cho nó bằng dòng lệnh sau:

 W2 DW ?

c) Biến mảng

Biến mảng là biến hình thành từ một dãy liên tiếp các phần tử cùng loại byte hoặc

từ, khi định nghĩa biến mảng ta gán tên cho một dãy liên tiếp các byte hay từ trong bộ

nhớ cùng với các giá trị ban đầu tương ứng.

Ví dụ:

 M1 DB 4, 5, 6, 7, 8, 9

Ví dụ trên định nghĩa biến mảng có tên là M1 gồm 6 byte và dành chỗ cho nó

trong bộ nhớ từ địa chỉ ứng với M1 để chứa các giá trị khởi đầu bằng 4, 5, 6, 7, 8, 9. Phần

tử đầu tỏng mảng là 4 và có địa chỉ trùng với địa chỉ của M1, phần tử thứ hai là 5 và có

địa chỉ M1+1. . .

Khi chúng ta muốn khởi đầu các phần tử của mảng với cùng một giá trị chúng ta

có thể dùng thêm toán tử DUP trong lệnh.

Ví dụ:

 M2 DB 100 DUP (0)

 M3 DB 100 DUP (?)

Ví dụ trên định nghĩa một biến mảng tên là M2 gồm 100 byte, dành chỗ trong bộ

nhớ cho nó để chứa 100 giá trị khởi đầu bằng 0 và biến mảng khác tên là M3 gồm

100byte, dành sẵn chỗ cho nó trong bộ nhớ để chứa 100 giá trị nhưng chưa được khởi

đầu.

Toán tử DUP có thể lồng nhau để định nghĩa ra 1 mảng.

Ví dụ: dòng lệnh

 M4 DB 4, 3, 2, 2 DUP(1, 2 DUP(5), 6)

Sẽ định nghĩa ra một mảng M4 tương đương với lệnh sau:

 M4 DB 4, 3, 2, 1, 5, 5, 6, 1, 5, 5, 6

Một điều cần chú ý nữa là đối với các bộ vi xử lý của Intel, nếu ta có một từ để

trong bộ nhớ thì byte thấp của nó sẽ được để ở ô nhớ có địa chỉ thấp, byte cao sẽ được để

ở ô nhớ có địa chỉ cao. Cách lưu giữ số liệu kiểu này cũng còn có thể thấy ở các máy

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

49

VAX của Digital hoặc của một số hãng khác và thường gọi là 'quy ước đầu bé' (little

endian, byte thấp được cất tại địa chỉ thấp). Cũng nên nói thêm ở đây là các bộ vi xử lý

của Motorola lại có cách cất số liệu theo thứ tự ngược lại hay còn được gọi là 'quy ước

đầu to' (big endian byte cao được cất tại địa chỉ thấp).

Ví dụ: Sau khi định nghĩa biến từ có tên là WORDA như sau:

 WORDA DW 0FFEEH

Thì ở trong bộ nhớ thấp (EEH) sẽ được để tại địa chỉ WORDA còn byte cao (FFH)

sẽ được để tại địa chỉ tiếp theo, tức là tại WORDA+1

d) Biến kiểu xâu kí tự

Biến kiểu xâu kí tự là một trường hợp đặc biệt của biến mảng, trong đó các phần tử

của mảng là các kí tự. Một xâu kí tự có thể được định nghĩa bằng các kí tự hoặc bằng mã

ASCII của các kí tự đó. Các ví dụ sau đều là các lệnh đúng và đều định nghĩa cùng một

xâu kí tự nhưng gắn nó cho các tên khác nhau:

 STR1 DB 'string'

 STR2 DB 73h, 74h, 72h, 69h, 6Eh, 67h

 STR3 DB 73h, 74h, 'x' 'i', 6Eh, 67h

e) Hằng có tên

Các hằng trong chương trình hợp ngữ thường được gán tên để làm cho chương

trình trở nên dễ đọc hơn. Hằng có thể là kiểu số hay kiểu ký tự. Việc gán tên cho hằng

được thực hiện nhờ lệnh giả EQU như sau:

 CR EQU 0Dh ;CR là carriage return

 LE EQU 0Ah ;LF là line feed

Trong ví dụ trên lệnh giả EQU gán giá trị số 13 (mã ASCII của kí tự trở về đầu

dòng) cho tên CR và 10 (mã ASCII của ký tựu thêm dòng mới) cho tên LF.

Hằng cũng có thể là một chuỗi ký tự. Trong ví dụ dưới đây, sau khi đã gán một

chuỗi ký tự cho một tên:

 CHAO EQU 'Hello'

ta có thể sử dụng hằng này để định nghĩa một biến mảng khác.

 MSG DB CHAO, '$'

Vì lệnh giả EQU không dành chỗ của bộ nhớ cho tên của hằng nên ta có thể đặt nó

khá tự do tại những chỗ thích hợp bên trong chương trình. Tuy nhiên trong thực tế người

ta thường đặt các định nghĩa này trong đoạn dữ liệu.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

50

1.2.2 Khung của một chương trình hợp ngữ

Một chương trình mã máy trong bộ nhớ thường bao gồm các vùng nhớ khác nhau

để chứa mã lệnh, chứa dữ liệu của chương trình và một vùng nhớ khác được dùng làm

ngăn xếp phục vụ hoạt động của chương trình. Chương trình viết bằng hợp ngữ cũng phải

có cấu trúc tương tự để khi được dịch nó sẽ tạo ra mã tương ứng với chương trình mã

máy nói trên. Để tạo ra sườn của một chương trình hợp ngữ chúng ta sẽ sử dụng cách

định nghĩa đơn giản đối với mô hình bộ nhớ dành cho chương trình và đối với các thanh

ghi đoạn.

1.2.2.a Khai báo quy mô sử dụng bộ nhớ

Kích thước của bộ nhớ dành cho đoạn mã và đoạn dữ liệu trong một chương trình

được xác định nhờ hướng dẫn chương trình dịch MODEL như sau (hướng dẫn này phải

được đặt trước các hướng dẫn khác trong chương trình hợp ngữ, nhưng sau hướng dẫn về

loại CPU):

 . MODEL Kiểu_ kích_thước_bộ_nhớ

Có nhiều Kiểu_ kích_thước_bộ_nhớ cho các chương trình với đòi hỏi dung lượng

bộ nhớ khác nhau. Đối với ta thông thường các ứng dụng đòi hỏi mã chương trình dài

nhất cũng chỉ cần chứa trong một đoạn (64KB), dữ liệu cho chương trình nhiều nhất cũng

chỉ cần chứa trong một đoạn, thích hợp nhất nên chọn Kiểu_ kích_thước_bộ_nhớ là

Small (nhỏ) hoặc nếu như tất cả mã và dữ liệu có thể gói trọn được trong một đoạn thì có

thể chọn Tiny (hẹp):

 . Model Small

hoặc . Model Tiny

Ngoài Kiểu_ kích_thước_bộ_nhớ nhỏ hoặc hẹp nói trên, tuỳ theo nhu cầu cụ thể

MASM còn cho phép sử dụng các Kiểu_ kích_thước_bộ_nhớ khác như liệt kê trong

Bảng 3-1.

Bảng 3-1. Các kiểu kích thước bộ nhớ cho chương trình hợp ngữ

Kiểu kích thước Mô tả

Tiny (Hẹp) Mã lệnh và dữ liệu gói gọn trong một đoạn

Small (Nhỏ)
Mã lệnh gói gọn trong một đoạn, dữ liệu nằm trong

một đoạn.

Medium (Trung

bình)

Mã lệnh không gói gọn trong một đoạn, dữ liệu nằm

trong một đoạn.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

51

Compact(Gọn)
Mã lệnh không gói gọn trong một đoạn, dữ liệu không

gói gọn trong một đoạn.

Large (lớn)

Mã lệnh không gói gọn trong một đoạn, dữ liệu không

gói gọn trong một đoạn, không có mảng nào lớn hơn

64KB.

Huge (Đồ sộ)

Mã lệnh không gói gọn trong một đoạn, dữ liệu không

gói gọn trong một đoạn, các mảng có thể lớn hơn

64KB

1.2.2.b Khai báo đoạn ngăn xếp

Việc khai báo đoạn ngăn xếp là để dành ra một vùng nhớ đủ lớn dùng làm ngăn

xếp phục vụ cho hoạt động của chương trình khi có chương trình con. Việc khai báo

được thực hiện nhờ hướng dẫn chương trình dịch như sau.

 . Stack Kích_thước

Kích_thước sẽ quyết định số byte dành cho ngăn xếp. Nếu ta không khai

Kích_thước thì chương trình dịch sẽ tự động gán cho Kích_thước giá trị 1 KB, đây là

kích thước ngăn xếp quá lớn đối với một ứng dụng thông thường. Trong thực tế các bài

toán của ta thông thường với 100-256 byte là đủ để làm ngăn xếp và ta có thể khai báo

kích thước như sau:

 . Stack 100

Khai báo đoạn dữ liệu

Đoạn dữ liệu chứa toàn bộ các định nghĩa cho các biến của chương trình. Các hằng

cũng nên được định nghĩa ở đây để đảm bảo tính hệ thống mặc dù ta có thể để chúng ở

trong chương trình như đã nói ở phần trên.

 Việc khai báo đoạn dữ liệu được thực hiện nhờ hướng dẫn chương trình dịch

DATA, việc khai báo và hằng được thực hiện tiếp ngay sau đó bằng các lệnh thích hợp.

Điều này được minh hoạ trong ví dụ sau:

 . Data

 MSG DB 'helo!$'

 CR DB 13

 LF EQU 10

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

52

1.2.2.c Khai báo đoạn mã

Đoạn mã chứa mã lệnh của chương trình. Việc khai báo đoạn mã được thực hiện

nhờ hướng dẫn chương trình dịch. CODE như sau:

 . CODE

Bên trong đoạn mã, các dòng lệnh phải được tổ chức một cách hợp lý, đúng ngữ

pháp dưới dạng một chương trình chính (CTC) và nếu cần thiết thì kèm theo các chương

trình con (ctc). Các chương trình con sẽ được gọi ra bằng các lệnh CALL có mặt bên

trong chương trình chính.

Một thủ tục được định nghĩa nhờ các lệnh giả PROC và ENDP. Lệnh giả PROC để

bắt đầu một thủ tục còn lệnh giả ENDP được dùng để kết thúc nó. Như vậy một chương

trình chính có thể được định nghĩa bằng các lệnh giả PROC và ENDP theo mẫu sau:

Tên_CTC Proc

; Các lệnh của thân chương trình chính

CALL Tên_ ctc; gọi ctc

Tên_CTC Endp

Giống như chương trình chính con cũng được định nghĩa dưới dạng một thủ tục

nhờ các lệnh giả PROC và ENDP theo mẫu sau:

Tên_ctc Proc

; các lệnh thân chương trình con

RET

Tên_ctc Endp

Trong các chương trình nói trên, ngoài các lệnh giả có tính nghi thức bắt buộc ta

cần chú ý đến sự bố trí của lệnh gọi (CALL) trong chương trình chính và lệnh về (RET)

trong chương trình con.

1.2.2.d Khung của chương trình hợp ngữ để dịch ra chương trình .EXE

Từ các khai báo các đoạn của chương trình đã nói ở trên ta có thể xây dựng một

khung tổng quát cho các chương trình hợp ngữ với kiểu kích thước bộ nhớ nhỏ. Sau đây

là một khung cho chương trình hợp ngữ để rồi sau khi được dịch (assembled), nối

(linked) trên máy IBM PC sẽ tạo ra một tệp chương trình chạy được ngay (executable)

với đuôi .EXE.

 . Model small

 . Stack 100

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

53

 . Data

 ; các định nghĩa cho biến và hằng để tại đây

 . Code

 MAIN Proc

 ; Khởi đầu cho DS

 MOV AX, @Data

 MOV DS, AX

 ; Các lệnh của chương trình chính để tại đây

 ; Trở về DOS dùng hàm 4CH của INT 21H

 MOV AH, 4CH

 INT 21 H

 MAIN Endp

 ; các chương trình con (nếu có) để tại đây

 END MAIN

Trong khung chương trình trên, tại dòng cuối cùng của chương trình ta dùng hướng

dẫn chương trình dịch END và tiếp theo là MAIN để kết thúc toàn bộ chương trình. Ta

có nhận xét rằng MAIN là tên của chương trình chính nhưng quan trọng hơn và về thực

chất thì nó là nơi bắt đầu các lệnh của chương trình trong đoạn mã.

Khi một chương .EXE được nạp vào bộ nhớ, hệ điều hành DOS sẽ tạo ra một mảng

gồm 256 byte của cái gọi là đoạn mào đầu chương trình (Program Segment Prefix - PSP)

dùng để chứa các thông tin liên quan đến chương trình và các thanh ghi DS và ES. Do

vậy DS và ES không chứa giá trị địa chỉ của các đoạn dữ liệu cho chương trình. Để

chương trình có thể chạy đúng phải có các lệnh sau để khởi đầu cho thanh ghi DS (hoặc

ES nếu cần):

 MOV AX, @Data

 MOV DS, AX

Trong đó @Data là tên của đoạn dữ liệu. @Data định nghĩa bởi hướng dẫn chương

trình dịch sẽ dịch tên @Data thành giá trị số của đoạn dữ liệu. Ta phải dùng thanh ghi

AX làm trung gian cho việc khởi đầu DS như trên là do bộ vi xử lý 8086, Vì những lí do

kỹ thuật, không cho phép chuyển giá trị số (chế độ địa chỉ tức thì) vào các thanh ghi

đoạn. Thanh ghi AX cũng có thể được thay thế bằng các thanh ghi khác.

 Sau đây là ví dụ của một chương trình hợp ngữ được viết để dịch ra chương trình

với đuôi .EXE. khi cho chạy, chương trình này sẽ hiện lên màn hình lời chào 'Hello' nằm

giữa hai dòng trống cách đều các dòng mang dấu nhắc của DOS.

 Ví dụ 3-1. Chương trình Hello.EXE

 . Model Small

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

54

 . Stack 100

 . Data

 CRLF DB 13, 10, ' $ '

 MSG DB ' Hello!$ '

 . Code

 MAIN Proc

 ; khởi đầu thanh ghi DS

 MOV AX, @Data

 MOV DS, AX

 ; về đầu dòng mới dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, CRLF

 INT 21H

 ; hiện thị lời chào dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, MSG

 INT 21H

 ; về đầu dòng mới dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, CFLF

 INT 21H

 ; trở về DOS dùng hàm 9 của INT 21H

 MOV AH, 4CH

 INT 21H

 MAIN Endp

 END MAIN

Trong ví dụ trên chúng ta đã sử dụng các dịch vụ có sẵn (các hàm 9 và 4CH) của

ngắt INT 21H của DOS trên máy IBM PC để hiện thị xâu ký tự và trở về DOS một cách

thuận lợi.

1.2.2.e Khung của chương trình hợp ngữ để dịch ra chương trình .COM

Trên máy tính IBM PC ngoài tệp chương trình với đuôi .EXE, có thể dịch chương

trình hợp ngữ có kết cấu thích hợp ra một loại tệp chương trình chạy được kiểu khác với

đuôi .COM. Đây là một dạng chương trình ngắn gọn và đơn giản hơn nhiều so với tệp

chương trình đuôi .EXE. Trong đó các đoạn mã, đoạn dữ liệu và đoạn ngăn xếp được gộp

lại trong một đoạn duy nhất là đoạn mã. Với việc tạo ra tệp này còn tiết kiệm được cả

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

55

không gian nhớ khi phải lưu trữ trên ổ đĩa. Để có thể dịch được ra chương trình đuôi

.COM thì chương trình nguồn hợp ngữ phải được kết cấu sao cho thích hợp.

Sau đây là khung của một chương trình hợp ngữ để dịch được ra tệp chương trình

đuôi .COM.

Ví dụ 3-2. Khung chương trình .COM

 . Model Tiny

 . Code

 ORG 100h

 START: JMP CONTINUE

 ; các định nghĩa cho biến và hằng để tại đây

 CONTINUE:

 MAIN Proc

 ; các lệnh của chương trình chính để tại đây

 INT 20H ; Trở về DOS

 MAIN Endp

 ; các chương trình con (nếu có) để tại đây

 END START

So sánh khung này với khung cho chương trình .EXE ta thấy trong khung không có

khai báo đoạn ngăn xếp và đoạn dữ liệu, còn khai báo quy mô sử dụng nhớ là kiểu Tiny.

Ở ngay đầu đoạn mã là lệnh giả ORG (origin: điểm xuất phát) lệnh JMP (nhảy). Lệnh giả

ORH 100H dùng để gán địa chỉ bắt đầu cho chương trình tại 100H trong đoạn mã, chừa

lại vùng nhớ với dung lượng 256 byte (từ địa chỉ 0 đến địa chỉ 255) cho đoạn mào đầu

chương trình (PSP).

Lệnh JMP sau nhãn START dùng để nhảy qua phần bộ nhớ dành cho việc định

nghĩa và khai báo dữ liệu (về nguyên tắc, dữ liệu có thể được đặt ở đầu hoặc ở cuối đoạn

mã, nhưng ở đây ta đặt nó ở đầu đoạn mã để có thể áp dụng các định nghĩa đơn giản đã

nói). Đích của lệnh nhảy là phần đầu của chương trình chính. Hình 3-1 biểu diễn việc

một chương trình kiểu .COM được nạp vào và sắp xếp trong một đoạn mã của bộ nhớ ra

sao.

Trong Hình 3-1 một chương trình .COM cũng được nạp vào bộ nhớ sau vùng PSP

như chương trình đuôi .EXE. Ngăn xếp cho chương trình .COM được xếp đặt tại cuối

đoạn mã, đỉnh của ngăn xếp lúc ban đầu là ô nhớ có địa chỉ là FFFEH.

Trong trường hợp chương trình kiểu .COM này chúng ta sẽ bị các hạn chế

 Dung lượng nhớ cực đại của một đoạn là 64KB, tức là ta phải luôn chắc chắn

được rằng các chương trình ứng dụng phải có số lượng byte của mã máy và

dữ liệu cho chương trình không lớn lắm.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

56

 Chương trình cũng chỉ được phép sử dụng ngăn xếp một cách hạn chế (nếu

không có thể làm cho đỉnh ngăn xếp trong khi hoạt động dâng lên nhiều về

phía địa chỉ thấp của đoạn).

 Địa chỉ lệch

000H

Đoạn đầu chương trình (PSP)

0100H JMP CONTINUE  IP

 Dữ liệu nằm tại đây

FFFEH

CONTINUE:

(chiều tiến của mã & dữ liệu)





(chiều tiến của ngăn xếp)

 SP

Hình 3-1. Tệp chương trình .COM trong bộ nhớ

Tóm lại phải chắc chắn không thể xảy ra hiện tượng trùm vào nhau của các thông

tin tại vùng mã lệnh hoặc dữ liệu. Khi kết thúc chương trình kiểu .COM, để trở về DOS

cần dùng ngắt INT 20H của DOS để làm cho chương trình gọn hơn. Tất nhiên cũng có

thể dùng hàm 4CH của ngắt INT 21H như đã dùng trong chương trình để dịch ra tệp

.EXE.

Để kết thúc toàn bộ chương trình, dùng hướng dẫn chương chính dịch END đi kèm

theo nhãn START tương ứng với địa chỉ lệnh đầu tiên của chương trình trong đoạn mã.

Sau đây là ví dụ của một chương trình hợp ngữ để dịch ra tệp chương trình chạy

được với đuôi .COM.

Ví dụ 3-3. Chương trình Helo .COM

 . Model Tiny

 . Code

 ORG 100H

 START: IMP CONTINUE

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

57

 CRLF DB 13, 10, '$'

 MSG DB !Hello! $'

 CONTINUE:

 MAIN Proc

 ; về đầu dòng mới dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, CRLF

 INT 21H

 ; hiện thị lời chào

 MOV AH, 9

 LEA DX, CRLF

 INT 21H

 ; trở về DOS

 INT 20H

 MAIN Endp

 END START

Trong Ví dụ 3-3 ta không cần đến các thao tác khởi đầu cho thanh ghi DS, như ta

đã phải làm trong Ví dụ 3-1, vì trong chương trình .COM không có đoạn dữ liệu nằm

riêng rẽ.

Chương

trình

PSP

100h

SS

CS

DS

ES

Chương

trình

PSP

Stack

100h

.COM .EXE

Hình 3-2. Môđun chương trình. COM và. EXE trong bộ nhớ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

58

Hình 3-2 biểu diễn cấu trúc của các chương trình .COM và .EXE khi chúng được

tải vào trong bộ nhớ.

2. CÁCH TẠO VÀ CHẠY CHƯƠNG TRÌNH HỢP NGỮ

Như đã nói trong phần trước, máy IBM PC là phương tiện lý tưởng để chúng ta tạo

ra và thử nghiệm các chương trình hợp ngữ 8086. Các bước bao gồm:

1. Dùng các phần mềm soạn thảo văn bản để tạo ra một tệp văn bản chương

trình gốc bằng hợp ngữ. Tệp này phải được gán đuôi. ASM.

2. Dùng chương trình dịch MASM để dịch tệp. ASM ra mã máy dưới dạng tệp.

OBJ. Nếu trong bước này nếu trong chương trình có lỗi cú pháp thì phải quay

lại bước 1 để sửa lại chương trình gốc.

3. Dùng chương trình LINK để nối một hay nhiều tệp OBJ lại với nhau thành

một tệp chương trình chạy được với đuôi .EXE.

4. Nếu chương trình gốc viết ra là để dịch ra kiểu .COM thì ta phải dùng chương

trình EXE2BIN (đọc là EXEtoBIN) của DOS để dịch tiếp tệp .EXE ra tệp

chương trình chạy được với đuôi .COM.

5. Cho chạy chương trình vừa dịch

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

59

3. CÁC CẤU TRÚC LẬP TRÌNH CƠ BẢN

Trong khi thực hiện các khối chức năng thành phần của chương trình, thông thường

người ta sử dụng các cấu trúc lập trình cơ bản để thực hiện các nhiệm cụ của khối đó.

Điều này làm cho các chương trình viết ra trở thành có cấu trúc với các ưu điểm chính dễ

phát triển, dễ hiệu chỉnh hoặc cải tiến và dễ lập tài liệu.

Các cấu trúc lập trình cơ bản bao gồm:

 + Cấu trúc tuần tự.

 + Cấu trúc lựa chọn (IF-THEN-ELSE) và

 + Cấu trúc lặp (WHILE. DO).

Thay đổi các cấu trúc này có thể tạo thêm 4 cấu trúc khác cũng rất có tác dụng

trong khi viết chương trình:

 + cấu trúc chọn kiểu IF-THEN

 + cấu trúc chọn kiểu CASE,

Tạo ra tệp văn bản của chương trình

*.asm

Dùng MASM để dịch ra mã máy *.obj

Dùng LINK để nối tệp. obj lạithành

*.exe

Dịch được ra.com?

Dùng EXE2BIN để dịch *.exe thành

*.com

Cho chạy chương trình

s

đ

Hình 3-3. Các bước để tạo ra và chạy chương trình hợp ngữ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

60

 + cấu trúc lặp kiểu REPEAT-UNTIL và

 + cấu trúc lặp kiểu FOR-DO.

Đặc điểm chung của tất cả các cấu trúc lập trình cơ bản là tính cấu trúc chỉ có một

lối vào cấu trúc và một lối ra để ra khỏi cấu trúc đó.

3.1 Cấu trúc tuần tự

Cấu trúc tuấn tự là một cấu trúc thông dụng và đơn giản nhất. Trong cấu trúc này

các lệnh được sắp xếp tuần tự, lệnh này kế tiếp lệnh kia. Sau khi thực hiện xong lệnh cuối

cùng của cấu trúc thì công việc phải làm cũng được hoàn tất.

 Ngữ pháp:

 Lệnh 1

 Lệnh 2

 ...

 Lệnh n

Bài tập 3-1

Các thanh ghi CX và BX chứa các giá trị của biến c và b. Hãy tính giá trị của biểu

thức a = 2(c+b) và chứa kết quả trong thanh ghi AX.

Giải

 Ta có thể thực hiện công việc trên bằng mẫu chương trình sau:

 XOR AX, AX ;tổng tại AX lúc đầu là 0.

 ADD AX, BX ;cộng thêm BX.

 ADD AX, CX ;cộng thêm CX.

 SHL AX, l ;nhân đôi kết quả trong AX.

 RA: ;lối ra của cấu trúc.

3.1.1 Cấu trúc IF - THEN

IF Điều kiện THEN công việc.

Từ ngữ pháp của cấu trúc IF-THEN ta thấy nếu thoả mãn Điều kiện thì Công việc

được thực hiện nếu không Công việc sẽ bị bỏ qua. Điều này tương đương với việc dùng

lệnh nhảy có điều kiện để bỏ qua một thao tác náo đó trong chương trình hợp ngữ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

61

Bài tập 3-2.

Gán cho BX giá trị tuyệt đối của AX.

 Giải

 Để thực hiện phép gán BX  AX ta có thể dùng các lệnh sau:

 CMP AX, 0 ; AX<0?

 JNL GAN ; không, gán luôn.

 NEG AX ; đúng. đào dấu, rồi

 GAN: MOV BX, AX ; lối ra của cấu trúc.

3.1.2 Cấu trúc IF - THEN - ELSE

IF ĐiềuKiện THEN CôngViệc1 ELSE CôngViệc2

Từ ngữ pháp của cấu trúc IF-THEN-ELSE, nếu thoả mãn Điều_kiện thì Côngviệc1

được thực hiện nếu không thì Côngviệc2 được thực hiện. Điều này tương đương với việc

dùng lệnh nhảy có điều kiện và không điều kiện để nhảy đến các nhãn nào đó trong

chương trình.

Bài tập 3-3.

Gán cho CL giá trị bít dấu của AX.

Giải

 Ta có thể thực hiện các công việc trên bằng chương trình sau:

Điều kiện

Công việc

S

ai Đ

úng

Hình 3-6.Cấu trúc IF-THEN

Điều kiện

S

ai
Đ

úng

Công việc 1 Công việc 2

Hình 3-5 Cấu trúc IF-THEN-ELSE

Hình 3-6

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

62

 CMP AX, 0 ; AX>0?.

 JNS DG ; đúng.

 MOV CL, l ; sai, cho CL  1 rồi

 JMP RA ; di ra.

 DG: XOR CL, CL ; cho CL  0.

 RA: ; lối ra của cấu trúc.

3.1.3 Cấu trúc CASE

 CASE Biểuthức

 Giátrị1: Côngviệc1

Giátrị2: Côngviệc2

 . . .

 GiátrịN: CôngviệcN

 END CASE

Từ ngữ pháp của cấu trúc ta thấy nếu Biểuthức có Giátrị1 thì Côngviệc1 được thực

hiện. Nếu Biểuthức có Giátrị2 thì Côngviệc2 được thực hiện và cứ tiếp tục cho đến

CôngviệcN. Điều này tương đương với việc dùng các lệnh nhảy có điều kiện và nhảy

không điều kiện để nhảy các nhãn nào đó trong chương trình hợp ngữ. Cấu trúc CASE có

thể thực hiện bằng các cấu trúc lựa chọn lồng nhau.

Bài tập 3-4.

Dùng CX để biểu hiện các giá trị khác nhau của AX theo quy tắc sau:

AX < 0 thì CX =-1

Biểuthức

Côngviệc1 CôngviệcN Côngviệc2

Giátrị1 Giátrị2 GiátrịN

Hình 3-7. Cấu trúc lệnh CASE

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

63

AX = 0 thì CX =0

AX > 0 thì CX =1

Giải

 Ta có thể thực hiện các công việc trên bằng mẫu chương trình sau:

 CMP AX, 0 ; Kiểm tra dấu của AX.

 JL AM ; AX<0.

 JE KHONG ; AX =0.

 JG DUONG ; AX > 0.

 AM: MOV CX, -1

 JMP RA

 DUONG: MOV CX, 1

 JMP RA

 KHONG: XOR CX. CX

 RA: ; lối ra của cấu trúc.

3.1.4 Cấu trúc lặp FOR - DO

 FOR Số lần lặp DO Công việc

Từ ngữ pháp cuả cấu trúc FOR - DO ta thấy ở đây Công_ việc được thực hiện lặp

đi lặp lại tất cả Số lần lặp lại. Điều này hoàn toàn tương đươg với việc dùng lệnh LOOP

trong hợp ngữ để lặp lại CX lần một Công việc nào đó, trước đó ta phải gán Số lần lặp

cho thanh ghi CX.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

64

Bài tập 3-5

Hiển thị một dòng kí tự '$' trên màn hình.

Giải

 Một dòng màn hình trên máy IBM PC chứa được nhiều nhất là 80 kí tự.

Ta sẽ sử dụng hàm 2 của ngắt 21H để hiển thị 1 kí tự. Ta phải lặp lại công việc này

80 lần cả thảy bằng lệnh LOOP. Muốn dùng lện này, ngay từ đầu ta phải nạp vào thanh

ghi CX số lần hiển thị, nội dung của CX được tự động giảm đi1 do tác động của lệnh

LOOP.

Sau đây là mẩu chương trình thực hiện các công việc trên:

 MOV CX, 80 ; số lần hiện thị trong CX

 MOV AH, 2 ; AH chứa số hiệu hàm hiện thị,

 MOV DL, '$' ; DL chứa kí tự cần hiện thị,

 HIEN: INT 21H ; hiện thị

 LOOP HIEN ; cả một dòng kí tự.

 RA: ; lối ra của cấu trúc.

Khởi đầu bộ đếm

Công việc

Giảm bộ đếm đi 1

sai

Bộ đếm=0

đúng

Hình 3-8. Cấu trúc lặp FOR - DO.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

65

3.1.5 Cấu trúc lặp WHILE - DO

 WHILE Điều kiện DO Công việc

 Từ ngữ pháp của cấu trúc WHILE - DO ta thấy: Điều kiện được kiểm tra đầu

tiên. Công việc được lặp đi lặp lại chừng nào Điều kiện còn đúng. Điều này trong hợp

ngữ hoàn toàn tương đương với việc dùng lệnh CMP để kiểm tra Điều kiện và sau đó

dùng lệnh nhảy có điều kiện để thoát khỏi vòng lặp.

 Bài tập 3-6

 Đếm số ký tự đọc được từ bàn phím, khi gặp ký tự CR thì thôi.

 Giải

 Ta có thể thực hiện công việc trên bằng mẩu chương trình sau:

 XOR CX, CX ; tổng số ký tự đọc được lúc đầu là 0

 MOV AH, 1 ; hàm đọc ký tự từ bàn phím.

 TIEP: INT 21H ; đọc 1 ký ự, Al chứa mã ký tự.

 CMP AL, 13 ; đọc được CR?

 JE RA ; đúng, ra.

 INC CX ; sai, thêm 1 ký tự vào tổng.

 RA: ; lối ra của cấu trúc.

3.1.6 Cấu trúc lặp REPEAT - UNTIL

 REPEAT Công việc UMTIL Điều kiện

Từ ngữ pháp của cấu trúc REPEAT - UNTIL ta thấy: Công việc được thực hiện

đầu tiên. Điều đó có nghĩa là công việc được thực hiện ít nhất một lần. Điều kiện được

Điều kiện

Công việc

sai

 đúng

sai

 đúng

Điều kiện

Công việc

Hình 3-10. Cấu trúc WHILE - DO Hình 3-10. Cấu trúc REPEAT - UNTIL

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

66

kiểm tra sau đó. Công việc được lặp đi lặp lại cho tới Điều kiện được thoả mãn. Điều này

trong hợp ngữ hoàn toàn tương đương với việc dùng lệnh CMP để kiểm tra Điềukiện và

sau đó dùng lệnh nhảy có điều kiện để thoát khỏi vòng lặp.

Bài tập 3-7

Đọc ký tự từ bàn phím cho tới khi gặp '$' thì thôi.

Giải

Ví dụ này chỉ làm một phần công việc của ví dụ trước. Tại đây ta chỉ phải đọc các

ký tự đọc được.

Ta có thể tực hiện công việc trên bằng mẩu chương trình sau:

 MOV Ah, 1 ; hàm đọc ký tự bàn phím.

 TIEP: INT 21H ; đọc 1 ký tự.

 CMP AL, '$' ; đọc được đôla ?

 RA: ; lối ra của cấu trúc.

4. MỘT SỐ VÍ DỤ

Trong phần này giới thiệu một số chương trình cho các ứng dụng cụ thể, thông qua

các ví dụ này ta có thể học được các lệnh, cách lập chương trình cùng với cách tổ chức

dữ liệu để giải quyết các bài toán cụ thể.

Dưới đây là một số hàm của các loại ngắt có trong máy IBM PC với hệ điều hành

MS DOS.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

67

 Bảng 3-2. Một số dịch vụ ngắt DOS

4.1 Ví dụ 1

Trong phần đầu của chương trình hợp ngữ ta có giới thiệu một chương trình hiện

lời chào băng tiếng Anh "Hello". Bây giờ ta phải thêm một lời chào bằng tiếng Việt

không dấu "Chao ban" nằm cách lời chào "Hello" trước đây một số dòng nhất định nào

đó.

Giải

Ta cũng vẫn sử dụng phương pháp đã được dùng ở chương trình mẫu trước đây để

hiện thị lời chào 'tây', hiện các dòng giãn cách và hiện lời chào 'ta'. Trong ví dụ này bỏ

bớt đi các dòng cách ở đầu và cuối để chương trình.

 . Model Small

 . Stack 100

 . Data

 CRLF DB 13, 10, '$'

 Chao tay DB 'hello!$'

 ChaoTa DB 'Chao ban!$'

 . Code

 MAIN Proc

Ngắt INT 20H dành riêng để kêt thúc chương trình loại. COM

Hàm 1 của ngắt INT 21H: đọc 1 ký tự từ bàn phím

 Vào: AH = 1

 Ra: AL = mã ASCH của ký tự cần hiện thị

 Al = 0 khi ký tự gõ vào là từ các phím chức năng

Hàm 2 của ngắt INT 21H: hiện 1 ký tự lên màn hình

 Vào: AH = 2

 DL = mã ASCH của ký tự cần hiện thị.

Hàm 9 của ngắt INT 21H: hiện chuỗi ký tự với $ ở cuối lên màn hình

Vào: AH = 9

 DX = địa chỉ lệch của chuỗi ký tự cần hiện thị.

Hàm 4CH của ngắt INT 21H: kết thúc chương trình loại. EXE

 Vào: AH = 4CH

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

68

 MOV AX, @ Data ; khởi đầu thanh ghi DS

 MOV DS, AX

 ; hiện thị lời chào dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, ChaoTay

 INT 21H

 ; cách 5 dòng dùng hàm 9 của INT 21H

 LEA DX, CELF

 MOV CX, 6 ;CX chứa số dòng cách +1

 LAP: INT 21H

 LOOP LAP

 ; hiện thị lời chào dùng hàm 9 của INT 21H

 LEA DX, ChaoTa

 INT 21H

 ; trở về DOS dùng hàm 4 CH của INT 21H

 MOV AH, 4CH

 INT 21H

 MAIN Endp

 END MAIN

Trong chương trình trên dùng thanh ghi CX để chứa số dòng phải giãn cách. Với

cách làm này mỗi khi muốn thay đổi số dòng dãn cách giữa 2 lời chào ta và lời chào tây,

cần phải gắn giá trị khác cho thanh ghi CX.

4.2 Ví dụ 2

Trên cơ sở ví dụ trước, hãy viết chương trình sao cho số dòng giãn cách có thể thay

đổi được ngay trong khi chạy chương trình.

Giải

Muốn có số dòng cách thay đổi được theo ý muốn giữa 2 lời chào ta và tây khi

chạy chương trình mà không phải thay giá trị mới cho thanh ghi CX ngay trong chương

trình như ở ví dụ trước, cần dùng thêm 1 biến mới để chứa số dòng cách và viết chương

trình sao cho mỗi khi cho chạy thì chương trình có thêm phần đối thoại để người sử dụng

có thể thay đổi giá trị của số dòng giãn cách đó.

 Sau đây là chương trình thực hiện công việc trên:

 . Model Small

 . Stack 100

 . Data

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

69

 CRLF DB 13, 10, '$'

 ChaoTay DB 'Hello!S'

 ChaoTa DB 'Chao ban!S'

 Thongbao DB 'go vao so dong cach:S'

 SoCRLF DB ?

 . Code

 MAIN Proc

 MOV AX, @Data ; khởi đầu thanh ghi DS

 MOV DS, AX

 ; hiện thông báo dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, Thongbao

 INT 21H

 ; đọc số dòng cách dùng hàm 1 của INT 21H

 MOV AH, 1

 INT 21H ; đọc số dòng cách

 AND AL, OFH ; đổi ra hệ hai

 MOV SoCRLE, AL ; cất đi

 ; cách 1 dòng dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, CRLF

 INT 21H

 ; hiển thị lời chào dùng hàm 9 của INT 21H

 MOV AH, 9

 LEA DX, ChaoTay

 INT 21H

 LEA DX, CFLF

 XOR CX, CX

 MOV CL, SoCRLE ; CX chứa số dòng cách

 LAP: INT 21H

 LOOP LAP

 ; hiện thị lời chào dùng hàm 9 của INT 21H

LEA DX, ChaoTa

INT 21H

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

70

 ; trở về DOS dùng hàm 4CH của INT 21H

MOV AH, 4CH

INT 21H

MAIN Endp

END MAIN

Trong ví dụ trên có một điều cần chú ý là khi đọc một ký tự từ bàm phím (trong

trường hợp cụ thể này thì đó là số dòng cách) ta sẽ thu được trong thanh ghi AL mã

ASCII của ký tự (số) đã gõ. Để sử dụng nó trong trường hợp cụ thể như một giá trị số và

cất nó tại biến SoCRLF, ta phải biến đổi mã ASCII này thành hệ số hai. Để đối mã

ASCII của một số ra trị số hoặc ngược lại chú ý rằng giữa giá trị số và mã ASCII của số

đó chênh nhau 30H. Ví dụ số 9 có mã ASCII là 39H hay số 0 có mã ASCII là 30H (có

thể được viết là "0"). Như vậy việc biến đổi mã ASCII (giả thiết đã có sẵn trong AL) ra

giá trị số có thể thực hiện được bằng một trong các lệnh sau:

 + SUB AL, 30H

 + AND AL, 0FH

Tương tự như vậy, việc biến đổi ngược lại từ số hệ hai (thường giả thiết đã có sẵn

trong thanh ghi DL) ra mã ASCII có thể làm được bằng một trong các lệnh sau:

 + ADD DL, 30H

 + OR DL, 30H

4.3 Ví dụ 3

Đọc từ bàn phím một số hệ hai (dài nhất là 16 bít), kết quả đọc được để tại thanh

ghi BX. Sau đó hiện nội dung thanh ghi BX ra màn hình.

Giải

Công việc của bài này thực chất gồm hai phần, một phần đầu là đọc được số hệ hai

và cất nó tại BX, trong phần tiếp theo đưa được nội dung của thanh ghi BX ra màn hình.

Sau đây là chương trình thực hiện công việc trên:

 . Model Small

 . Stack 100

 . Data

 TBao DB 'Go vao 1 so he hai (max 16 bít, '

 DB 'CR de thoi):$'

 . Code

 MAIN proc

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

71

 MOV AX, @ Data

MOV DS, AX

MOV AH, 9 ; hiện thị thông báo

LEA DX, TBao

 INT 21H

 XOR BX, BX ; BX chứa kết quả, lúc đầu là 0

 MOV AH, 1 ; hàm đọc 1 số từ bàn phím

TIEP: INT 21H

 CMP AL, 13 ; CR?

 JF THOIDOC ; đúng, thôi đọc

 AND AL, OFH ; không, đổi mã ASCII ra số

 SHL BX, 1 ; dịch trái BX 1 bít để lấy chỗ

 OR BL, AL ; chèn bít vừa đọc vào kết quả

 JMP TIEP ; đọc tiếp một ký tự

THOIDOC:MOV CX, 16 ; CX chứa số bít của BX

 MOV AH, 2 ; hàm hiện ký tự

 HIEN:XOR DL, DL ; xoá DL để chuẩn bị đổi

 ROL BX, 1 ; đưa bít MSB của BX sang CF

 ADC DL, 30H ; đổi giá trị bít đó ra ASCII

 INT 21H ; hiển thị 1 bít của BX

 LOOP HIEN ; lặp lại cho đến hết

 MOV AH, 4CH ; trở về DOS

 INT 21H

MAIN Endp

 END MAIN

Chương trình hợp ngữ cho công việc đã nêu được hình thành từ 2 phần, một phần

với chức năng đọc và một phần với chức năng hiện thị.

Thuật toán cho phần đọc: đọc một ký tự số, chuyển mã ASCII ra số rồi chèn số đọc

được vào BX theo thứ tự từ phải qua trái, lặp lại công việc trên các số khác.

Thuật toán cho phần hiện thị ngược lại so với phần đọc: lấy ra 1 bít của số đó trong

BX theo thứ tự từ trái qua phải, đổi số đó ra mã ASCII rồi cho hiện thị nó ra màn hình,

lặp lại công việc trên cho các số khác.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

72

Các thuật toán của 2 phần trên về cơ bản có thể ứng dụng được cho trường hợp

phải đọc và hiện thị số hệ mười sáu hoặc hệ mười.

Một số Chú ý từ chương trình trên:

 Lệnh xóa thanh ghi BX là rất cần thiết để sau này khi gõ vào các bít của

nó không nhất thiết phải gõ đủ 16 bít mà vẫn xác định được giá trị của

thanh ghi này.

 Chương trình này dùng lệnh ROL để quay tròn thanh ghi BX, vì vậy sau

khi quay và hiện thị tất cả 16 bít của BX, giá trị của thanh ghi BX vẫn

được bảo toàn.

 Chương trình này dùng lệnh cộng có nhớ ADC một cách rất hiệu dụng để

lấy ra 1 bít của thanh ghi BX từ giá trị của cờ CF và đổi luôn được nó ra

mã ASCII cần thiết cho việc hiện thị.

4.4 Ví dụ 4

Trong thanh ghi BX có sẵn 4 số hệ mười sáu, mỗi số được biểu diễn bằng 1 ô mẫu:

Hãy lập trình để biến đổi thanh ghi BX thành:

(Ví dụ: nếu như lúc đầu thanh ghi BX chứa giá trị 1234H thì sau khi biến đổi, BX

sẽ chứa giá trị 3241H. v. v. . .)

Giải

Thực chất đây là kiểu bài toán cụ thể này, sau khi xem xét dạng thức của thanh ghi

BX trước và sau khi biến đổi, ta thấy có thể thu được kết quả môt cách rất đơn giản bằng

cách quay trái thanh ghi BX nguyên gốc đi 4 bít rồi sau đó quay tiếp thanh ghi BH đi 4

bít.

Sau đây là chương trình thực hiện công việc trên.

 . Model Small

 . Stack 100

 . Code

 MAIN Proc

 MOV CL, 4

 ROL BX, CL ; quay BX đi 4 bít

 MOV CL, 4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086/8088

73

 ROR BH, CL ; tráo 4 bít thấp và cao của BH

 MOV AH, 4CH ; trở về DOS

 INT 21H

 MAIN Endp

 END MAIN

4.5 Ví dụ 5

Có một chuỗi ký tự thường trong bộ nhớ. Hãy tạo ra một chuỗi ký tự chữ hoa từ

chuỗi trên rồi cất chuỗi đó trong bộ nhớ.

Giải:

Ví dụ này và ví dụ trước khi khác nhau chút ít trong việc xử lý các ký tự của chuỗi,

vì vậy phần trên các lệnh có tính chất chuẩn bị trước và sau các thao tác với chuỗi có thể

coi là như nhau. Để giải bài toán này có thể ứng dụng các lệnh LODSB và STOSB với

chuỗi đã cho. Các bước thực hiện:

 Lấy từng ký tự của chuỗi gốc (cũ) bằng lệnh LODSB,

 Biến đổi thành chữ hoa bằng cách trừ đi 20H,

 Cất ký tự đã biến đổi vào chuỗi đích (mới) bằng lệnh STOSB.

Sau đây là cách tổ chức dữ liệu và chương trình cho bài toán trên với độ dài chuỗi

là 8 byte. Để minh hoạ một cách thao tác khác so với cách ở ví dụ trước trong ví dụ này

là dùng cách thao tác lùi đối với chuỗi ký tự.

 . Model Small

 . Stack 100

 . Data

 Str1 DB 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'

 Tbao DB 'chuỗi đã được đổi: ', 10, 13

 DB '$'

 . Code

 MAIN Proc

 MOV AX, @Data ; khởi đầu đầu cho DS và ES

 MOV DS, AX

 MOV ES, AX

 LEA SI, Str1+7 ; SI chỉ vào cuối chuỗi cũ

 LEA DI, Str2+7 ; DI chỉ vào cuối chuỗi mới

 STD ; định hướng lùi

 MOV CX, 8 ; CX chứa số byte phải đổi

LAP: LODSB ; lấy 1 ký tự của chuỗi cũ

 SUB AL, 20H ; đổi thành chữ hoa

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 3.LẬP TRÌNH HỢP NGỮ VỚI 8086

74

 STOSB ; cất vào chuỗi mới

 LOOP LAP ; làm cho đến hết

 LEA DX, Tbao ; chuẩn bị hiện chuỗi mới

 MOV AH, 9

 INT 21H

 MOV AH, 4CH ; về DOS

 INT 21H

MAIN Endp

 END MAIN

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

75

Chương 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC

THIẾT BỊ VÀO/RA

1. CÁC TÍN HIỆU CỦA VI XỬ LÍ VÀ CÁC MẠCH PHỤ TRỢ

1.1 Các tín hiệu của 8086

Hình vẽ trên cho chúng ta thấy tín hiệu của 8086. Chức năng các tín hiệu tại các

chân cụ thể như sau:

 ADO – AD15 [I;O: tín hiệu vào và ra]: Các chân dồn kênh cho các tín hiệu buýt

dữ liệu và buýt địa chỉ. Xung ALE sẽ báo cho mạnh ngoài biết khi nào trên các

đường đó có tín hiệu dữ liệu (ALE = 0) hoặc địa chỉ (ALE = 1). Các chân này ở

trạng thái trở kháng cao khi P chấp nhận treo.

 A16/S3, A17/S4, A18/S5, A19/S6 [O]: Các chân dồn kênh của địa chỉ phần cao

và trạng thái. Địa chỉ A16 - A19 được truyền trên các chân đó khi ALE = 1 còn

Hình 4-1. Tín hiệu 8086

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

76

khi AEL = 0 thì trên các chân đó có các tín hiệu trạng thái S3-S6. Các chân này ở

trạng thái trở kháng cao khi P chấp nhận treo.

Bảng 4-1. Các bít trạng thái và việc truy nhập các thanh ghi đoạn.

S4 S3 Truy nhập đến

0 0 Đoạn dữ liệu phụ

0 1 Đoạn ngăn xếp

1 0 Đoạn mã hoặc không đoạn nào

1 1 Đoạn dữ liệu

Bít S6 = 0 liên tục, bít S5 phản ánh giá trị bít IF của thanh ghi cờ. Hai bít S3 và

S4 phối hợp với nhau để chỉ ra việc truy nhập các thanh ghi đoạn như trong bảng.

 RD [O]: Xung cho phép đọc. Khi RD = 0 thì buýt dữ liệu sẵn sàng nhận số liệu

từi bộ nhớ hoặc thiết bị ngoại vi. Chân RD ở trạng thái trở kháng cao khi P

chấp nhận treo.

 READY [I]: Tín hiệu báo cho CPU biết tình trạng sẵn sàng của thiết bị ngoại vi

hay bộ nhớ. Khi READY = 1 thì CPU thực ghi/đọc mà không cần chèn thêm các

chu kỳ đợi. Ngược lại khi thiết bị ngoại vi hay bộ nhớ có tốc độ hoạt động chậm,

chúng có thể đưa tín hiệu READY = 0 để báo cho CPU biết. Lúc này CPU tự kéo

dài thời gian thực hiện lệnh ghi/đọc bằng cách chèn thêm các chu kỳ đợi.

 INTR [I]: Tín hiệu yêu cầu ngắt che được. Khi có yêu cầu ngắt mà cờ cho phép

ngắt IF = 1 thì CPU kết thúc lệnh đang làm dở, sau đó nó đi vào chu kỳ chấp nhận

ngắt và đưa ra bên ngoài tín hiệu INTA = 0.

 TEST [I]: Tín hiệu tại chân này được kiểm tra bởi lệnh WAIT. Khi CPU thực

hiện lệnh WAIT mà lúc đó tín hiệu TEST =1, nó sẽ chờ cho đến khi tín hiệu

TEST = 0 thì mới thực hiện lệnh tiếp theo.

 NMI [I]: Tín hiệu yêu cầu ngắt không che được. Tín hiệu này không bị khống

chế bởi cờ IF và tín hiệu này sẽ được CPU nhận biết bằng các tác động của sườn

lên của xung yêu cầu ngắt. Nhận được yêu cầu này CPU kết thúc lệnh đang làm

dở, sau đó chuyển sang thực hiện chương trình phục vụ ngắt kiểu INT2.

 RESET [I]: tín hiệu khởi động lại 8086. khi RESET = 1 kéo dài ít nhất trong thời

gian 4 chu kỳ đồng hồ thì 8086 bị buộc phải khởi động lại: nó xoá các thanh ghi

DS, ES, SS, IP và FR về 0 và bắt đầu thực hiện chương trình tại địa chỉ

CS:IP=FFFF:0000H (chú ý cờ IF 0 để cấm các yêu cầu ngắt khác tác động vào

CPU và cờ TF0 để bộ vi xử lý không ở chế độ chạy từng lệnh).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

77

 CLK [I]: Tín hiệu đồng hồ (xung nhịp).cung cấp xung nhịp làm việc cho CPU.

 Vcc [I]: Chân nguồn cung cấp 5V

 GND [O]: điểm 0V của nguồn nuôi.

 MN/MX [I]: Chân điều khiển hoạt động của CPU theo chế độ MIN/MAX.

a) Chế độ MIN (Chân MN/MX cần được nối thẳng vào +5V mà không qua điện

trở)

o Trong chế độ MIN tất cả các tín hiệu điều khiển liên quan đến các thiết bị

ngoại vi truyền thống và bộ nhớ giống như trong hệ 8085 đều có sẵn trong

8086.

o IO/ M [O]: Tín hiệu này phân biệt trong thời điểm đã định phần tử nào

trong các thiết bị vào/ra (IO) hoặc bộ nhớ (M) được chọn làm việc với

CPU. Trên buýt địa chỉ lúc đó sẽ có các địa chỉ tương ứng của các thiết bị

đó. Chân này ở trạng thái trở kháng cao khi P chấp nhận treo.

o WR [O]: Xung cho phép ghi. Khi CPU đưa ra WR =0 thì trên buýt dữ liệu

các dữ liệu đã ổn định và chúng sẽ được ghi vào bộ nhớ hoặc thiết bị

ngoại vi tại thời điểm WR = 1. Chân WR ở trạng thái trở kháng cao khi P

chấp nhận treo.

o INTA [O]: Tín hiệu báo cho các mạch bên ngoài biết CPU chấp nhận yêu

cầu ngắt INTR. Lúc này CPU đưa ra INTA = 0 để báo là nó đang chờ

mạch ngoài đưa vào số hiệu ngắt (kiểu ngắt) trên buýt dữ liệu.

o ALE [O]: Xung cho phép chốt địa chỉ. Khi ALE = 1 có nghĩa là trên buýt

dồn kênh AD có các địa chỉ của thiết bị vào/ra hay của ô nhớ. ALE không

bao giờ bị thả nối (trong trạng thái trở kháng cao) khi CPU bị treo thì ALE

= 0.

o DT/ R [O]: Tín hiệu điều khiển các đệm 2 chiều của buýt dữ liệu để chọn

chiều chuyển của vận dữ liệu trên buýt D. Chân này ở trạng thái trở kháng

cao khi P chấp nhận treo.

o DEN [O]: Tín hiệu báo cho bên ngoài biết là lúc này trên buýt dồn kênh

AD có dữ liệu ổn định. Chân này ở trạng thái trở kháng cao khi P chấp

nhận treo.

o HOLD [I]: Tín hiệu yêu cầu treo CPU để mạch ngoài thực hiện việc trao

đổi dữ liệu với bộ nhớ bằng cách truy nhập trực tiếp. Khi HOLD = 1. CPU

8086 sẽ tự tách ra hệ thống bằng cách treo tất cả các buýt A, buýt D, buýt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

78

C (các buýt ở trạng thái trở kháng cao) để bộ điều khiển DMA (DMA

Contrroller) lấy quyền điều khiển hệ thống để thực hiện trao đổi dữ liệu.

Bảng 4-2. Các chu kỳ của buýt qua các tín hiệu SS0 , IO/ M , DT/ R

IO/ M DT/ R SS0 Chu kỳ điều khiển của buýt

0 0 0 Đọc mã lệnh

0 0 1 Đọc bộ nhớ

0 1 0 Ghi bộ nhớ

0 1 1 Buýt rỗi (nghỉ)

1 0 0 Chấp nhận yêu cầu ngắt

1 0 1 Đọc thiết bị ngoại vi

1 1 0 Ghi thiết bị ngoại vi

1 1 1 Dừng (halt)

o HLDA [O]: Tín hiệu báo cho bên ngoài biết yêu cầu treo CPU để dùng

các buýt đã được chấp nhận, và CPU 8086 đã treo các buýt A, buýt D và

một số tín hiệu của buýt C.

o SSO [O]: Tín hiệu trạng thái được dùng kết hợp với IO/M và DT/ R để

giải mã các chu kỳ hoạt động của buýt.

b) Chế độ MAX (Chân MN/MX nối đất)

o Trong chế độ MAX một số tín hiệu điều khiển cần thiết được tạo ra trên

cơ sở các tín hiệu trạng thái nhờ dùng mạch điều khiển buýt 8288. Chế độ

MAX được sử dụng khi có bộ đồng xử lý toán học 8087.

o 2S 1S và 0S [O]: Các chân trạng thái dùng trong chế độ MAX để ghép

với mạch điều khiển buýt 8288. Các tín hiệu này được 8288 dùng để tạo

ra các tín hiệu điều khiển trong các chu kỳ hoạt động của buýt như trong

bảng dưới đây.

 Bảng 4-3. Các tín hiệu điều khiển của 8288.

2S 1S 0S Chu kỳ điều khiển của buýt Tín hiệu

0 0 0 Chấp nhận yêu cầu ngắt INTA

0 0 1 Đọc thiết bị ngoại vi IORC

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

79

0 1 0 Ghi thiết bị ngoại vi IOWC, AIOWC

0 1 1 Dừng (halt) Không

1 0 0 Đọc mã lệnh MRDC

1 0 1 Đọc bộ nhớ MRDC

1 1 0 Ghi bộ nhớ MWTC, AMWC

1 1 1 Buýt rỗi (nghỉ) Không

o RQ / 0GT và RQ / 1GT [I/O]: Các tín hiệu yêu cầu dùng buýt của các bộ

xử lý khác hoặc thông báo chấp nhận treo của CPU. RQ / 0GT có mức ưu

tiên hơn RQ / 1GT .

o LOCK [O]: Tín hiệu do CPU đưa ra để cấm các bộ xử lý khác trong hệ

thống dùng buýt trong khi nó đang thi hành một lệnh nào đó đặt sau tiếp

đầu LOCK.

o QS0 và QS1 [O]: Tín hiệu thông báo các trạng thái khác nhau của

đệm lệnh (hàng đợi lệnh) như trong Bảng 4-4. Khi có bộ đồng hồ xử lý

toán học 8087, các tín hiệu này được mạch 8087 dùng để đồng bộ quá

trình hoạt động với bộ vi xử lý 8086.

Bảng 4-4. Các trạng thái của lệnh đệm

QS1 QS0 Trạng thái lệnh đệm

0 0 Không hoạt động

0 1 Đọc byte mã lệnh đầu tiên từ đệm lệnh

1 0 Đọc lệnh rỗng

1 1 Đọc byte tiếp theo từ đệm lệnh

1.2 Phân kênh để tách thông tin và việc đệm cho các buýt

Để hạn chế số lượng chân cho các tín hiệu của vi mạch CPU, người ta đã hạn chế

số chân của vi mạch bằng cách dồn kênh nhiều tín hiệu trên cùng một chân. Các chân

AD0 – AD16 của 8086 được dồn kênh để có thể đưa ra bên ngoài các thông tin về địa chỉ

và dữ liệu. Khi nhận được các tín hiệu đó ở bên ngoài vi mạch, cần phải tiến hành tách

các tín hiệu để tái tạo lại các tín hiệu gốc cho các buýt độc lập (buýt địa chỉ và buýt dữ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

80

liệu). Đối với các chân dồn địa chỉ/trạng thái cũng phải làm tương tự. Để hỗ trợ cho việc

tách thông tin, CPU đưa ra thêm xung ALE sao cho khi ALE ở mức cao sẽ có tác dụng

báo cho bên ngoài biết lúc này thông tin về địa chỉ tại các chân dồn kênh có giá trị. Xung

ALE được dùng để mở các mạch chốt và tách được các thông tin về địa chỉ bị dồn kênh.

Muốn nâng cao tải của các buýt để đảm nhận việc nuôi các mạch bên ngoài. Các tín

hiệu ra và vào CPU cần phải được khuếch đại thông qua các mạch đệm một chiều hoặc

hai chiều với các đầu ra thường hoặc đầu ra 3 trạng thái.

Hình 4-3 cho thấy một ví dụ về việc tách tín hiệu địa chỉ từ các tín hiệu dồn kênh

chỉ/dữ liệu hoặc địa chỉ/điều khiển bằng các mạch chốt 74LS373 và việc sử dụng các bộ

khuếch đại đệm 74LS244 và 74LS245 cho các tín hiệu của bộ vi xử lý 8086 làm việc ở

chế độ MAX. Hình 4-3 còn thể hiện ghép nối với các mạch phụ trợ như: bộ điều khiển

buýt 8288, bộ tạo ra xung đồng hồ 8284.

1.3 Mạch tạo xung nhịp 8284.

CPU 8086 luôn cần xung nhịp (xung đồng hồ) từ mạch tạo xung nhịp 8284. Mạch

tạo xung nhịp không những cung cấp xung nhịp với tần số thích hợp cho toàn hệ mà nó

còn có ảnh hưởng tới việc đồng bộ tín hiệu RESET và tín hiệu READY của CPU (Hình

4-4). Ý nghĩa của các tín hiệu như sau:

74LS245

x2

8284A

Clock

Generator

RDY

Vcc

8086

CPU

CLK

READY

RESET

MN/MX#

S0#
S1#
S2#

8288

Bus

Controller

MRDC#

MWTC#

AMWC#

IORC#

IOWC#

AIOWC#

INTA#

CLK

74LS373

x3
ADDR/DATA

LE
OE#

ALE

DEN
DT/R#

BHE

#
AD15:AD0

A19:A16

74LS245

x2

EN#
DIR

D15:D0

A19:A0,

BHE#

ADDR/Data

INTR

8086 Chế độ max

Hình 4-3. Buýt hệ thống 8086 có đệm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

81

 1AEN , 2AEN : Tín hiệu cho phép chọn đầu vào tương ứng RDY1, RDY2 làm

tín hiệu báo tình trạng sẵn sàng của bộ nhớ hoặc thiết bị ngoại vi.

 RDY1, RDY2: cùng với 1AEN , 2AEN dùng để tạo ra các chu kỳ đợi ở CPU.

 ASYNC : Chọn đồng bộ hai tầng hoặc đồng bộ một tầng cho tín hiệu RDY1,

RDY2. Trong chế độ đồng bộ một tầng (ASYNC = 1) tín hiệu RDY có ảnh hưởng

đến tín hiệu READY tới sườn xuống của xung đồng hồ tiếp theo. Còn trong chế

độ đồng bộ hai tầng (ASYNC = 0) tín hiệu RDY chỉ có ảnh hưởng đến tín hiệu

READY khi có sườn xuống của xung đồng hồ tiếp theo.

 READY: Nối đến đầu READY của CPU. Tín hiệu này được đồng bộ với các tín

hiệu RDY1, RDY2.

 X1, X2: Nối với hai chân của thạch anh với tần số fx, thạch anh này là một bộ

phận của một mạch dao động bên trong 8284 có nhiệm vụ tạo xung chuẩn dùng

làm tín hiệu đồng hồ cho toàn hệ thống.

 F/ C : Dùng để chọn nguồn tín hiệu chuẩn cho 8284. Khi chân này ở mức cao thì

xung đồng hồ bên ngoài sẽ được dùng làm xung nhịp cho 8284, ngược lại thì

xung đồng hồ của mạch dao động bên trong dùng thạch anh sẽ được chọn để làm

xung nhịp.

 EFI: lối vào cho xung từ bộ dao động ngoại.

 CLK: Xung nhịp fCLK=fx/3với độ rỗng 77% nối đến chân của CLK của 8086.

 PCLK: Xung nhịp fCLK=fx/6với độ rỗng 50% dành cho thiết bị ngoại vi.

 OSC: Xung nhịp đã được khuếch đại có tần số bằng fx của bộ dao động.

 RES : Chân khởi động, nối với mạch RC để 8284 để tự khởi động khi bật nguồn.

 RESET: Nối vào RESETcủa 8086 và là tín hiệu khởi động lại cho toàn hệ

 CSYNC: Lối vào cho xung đồng bộ chung khi trong hệ thống có các 8284 dùng

dao động ngoài tại chân này (Hình 4-4)

Hình 4-4 biểu diễn các đường nối tín hiệu chính của 8086 và 8284. Mạch 8284

nhận được xung khởi động từ bên ngoài thông qua mạch RC khi có nguồn hoặc xung

khởi động lại khi bấm công tắc Reset. Từ xung này 8284 có nhiệm vụ đưa ra xung khởi

động đồng bộ cho CPU cùng với tất cả các thành phần khác của hệ thống.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

82

1.4 Mạch điều khiển buýt 8288

Vi mạch 8288 là mạch điều khiển buýt sử dụng một số tín hiệu điều khiển của CPU

và cung cấp tất cả các tín hiệu điều khiển cần thiết cho hệ vi xử lý khi CPU 8086 làm

việc ở chế độ MAX. Sơ đồ chân và các tín hiệu của 8288.

 Các tín hiệu chính của 8288 bao gồm:

 2S , 1S , 0S [I, I, I]: là các tín hiệu trạng thái lấy thẳng từ CPU. Tuỳ theo các

tín hiệu này mà mạch 8288 sẽ tạo ra các tín hiệu điều khiển khác nhau tại các

chân ra của nó để điều khiển hoạt động của các thiết bị nối với CPU.

 CLK [I]: đầu vào nối với xung đồng hồ hệ thống (từ mạch 8284) và dùng để

đồng bộ toàn bộ các xung điều khiển đi ra từ mạch 8288.

Hình 4-5. Bộ điều khiển buýt 8288

Hình 4-4. Nối 8284 với vi xử lý

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

83

 CEN [I]: tín hiệu đầu vào để cho phép đưa ra tín hiệu DEN và các tín hiệu

điều khiển khác của 8288.

 IOB [I]: tín hiệu để điều khiển mạch 8288 làm việc ở các chế độ buýt khác

nhau.

Khi IOB = 1 8288 làm việc ở chế độ buýt vào/ra, khi IOB = 0 mạch 8288 làm

việc ở chế độ buýt hệ thống (như trong các máy IBM PC).

 MRDC [O]: tín hiệu điều khiển đọc bộ nhớ. Nó kích hoạt bộ nhớ đưa dữ liệu

ra buýt.

 MWTC [O] AMWC [O]: là các tín hiệu điều khiển ghi bộ nhớ hoặc ghi bộ nhớ

kéo dài.

Đó thực chất là các tín hiệu giống như MEMW , nhưng AMWC (advanced

memory write command) hoạt động sớm lên một chút để tạo ra khả năng cho

các bộ nhớ chậm có thêm được thời gian ghi.

 IORC [O]: tín hiệu điều khiển đọc thiết bị ngoại vi. Nó kích hoạt các thiết bị

được chọn để các thiết bị này đưa dữ liệu ra buýt.

 IOWC [O] AIOWC [O]: là các tín hiệu điều khiển đọc thiết bị ngoại vi hoặc

đọc thiết bị ngoại vi kéo dài. Đó thực chất là các tín hiệu giống như IOW ,

nhưng AIOWC (advanced I/O write command) hoạt động sớm lên một chút

để tạo ra khả năng cho các bộ nhớ chậm có thêm được thời gian ghi.

 INTA [O]: đầu ra để thông báo là CPU chấp nhận yêu cầu ngắt của thiết bị

ngoại vi và lúc này các thiết bị ngoại vi phải đưa ra số hiệu ngắt ra buýt để

CPU đọc.

 DT/ R [O]: tín hiệu để điều khiển hướng đi của dữ liệu trong hệ vào hay ra so

với CPU (DT/ R = 0: CPU đọc dữ liệu, DT/ R = 1 CPU ghi dữ liệu).

 DEN [O]: đây là tín hiệu để điều khiển buýt dữ liệu trở thành buýt cục bộ hay

buýt hệ thống.

 MCE/ PDEN [O]: tín hiệu dùng để định chế độ làm việc cho mạch điều khiển

ngắt PIC 8259 để nó làm việc ở chế độ chủ.

 ALE [O]: tín hiệu cho phép chốt địa chỉ tại các chân dồn kênh địa chỉ - dữ

liệu AD0 - AD7.

1.5 Biểu đồ thời gian của các lệnh ghi/đọc

Hình 4-6 và Hình 4-7 là các biểu đồ thời gian đã được đơn giản hoá của các tín

hiệu cơ bản trong CPU 8086 cho các lệnh ghi/đọc bộ nhớ hoặc thiết bị ngoại vi.

Một chu kỳ ghi/đọc bình thường (còn gọi là chu kỳ buýt) của CPU kéo dài 4 chu kỳ

đồng hồ. Các chu kỳ đồng hồ được đánh dấu là T1, T2, T3 và T4. Nếu CPU làm việc với

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

84

tần số đồng hồ 5MHz thì một chu kỳ đồng hồ kéo dài T=200ns và một chu kỳ buýt kéo

dài 4*T=800ns.

Chúng ta mô tả tóm tắt các hiện tượng xảy ra trong một chu kỳ T nói trên.

Chu kỳ T1:

Trong chu kỳ này địa chỉ của bộ nhớ hay thiết bị ngoại vi được đưa ra trên các

đường địa chỉ, hoặc địa chỉ/dữ liệu và địa chỉ/ trạng thái. Các tín hiệu điều khiển ALE,

DT/ R ,IO/ M cũng được đưa ra để giúp việc hoàn tất việc giữ thông tin địa chỉ này.

Chu kỳ T2:

Trong chu này CPU đưa ra các tín hiệu điều khiển RD hoặc WR , DEN và tín

hiệu dữ liệu trên D0 - D7 nếu là lệnh ghi. DEN thường dùng để mở các bộ đệm của buýt

dữ liệu nếu như chúng được dùng trong hệ. Tại cuối kỳ T2 (và giữa mỗi chu kỳ T của Tw,

nếu có) CPU lấy mẫu tín hiệu READY để xử lý trong chu kỳ tiếp theo khi nó phải làm

việc với bộ nhớ hoặc thiết bị ngoại vi chậm.

ALE

T1

CLOCK

T2 T3 T4

AD15

 - AD0

A19/S6 - A16/S3

DT/R

 __

IO/M
 __

RD

DEN

A19 - A16 S6 - S3

Truy nhập

địa chỉ

Trễ địa

chỉ

Xác lập

dữ liệu

Dữ liệu ngoàiRác A15 – A0

Xung đọc

Hình 4-6. Biểu đồ đọc đơn giản hóa

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

85

Chu kỳ T3:

Trong chu kỳ này CPU dành thời giờ cho bộ nhớ hay thiết bị ngoại vi khi nhập dữ

liệu. Nếu là chu kỳ đọc dữ liệu thì tại cuối T3 CPU sẽ lấy mẫu tín hiệu của buýt dữ liệu.

Nếu tại cuối chu kỳ đồng hồ T2 (hoặc giữa mỗi chu kỳ T của Tw) mà CPU phát

hiện ra tín hiệu READY=0 (do bộ nhớ hay thiết bị ngoại vi đưa đến) thì CPU tự xen vào

sau T3 một vài chu kỳ T để tạo chu kỳ đợi Tw = n*T nhằm kéo dài thời gian thực hiện

lệnh, tạo điều kiện cho bộ nhớ hoặc thiết bị ngoại vi có đủ thời gian hoàn tất việc ghi/đọc

dữ liệu.

 Chu kỳ T4:

Trong chu kỳ này các tín hiệu trên buýt được đưa về trạng thái bị động để chuẩn bị

cho chu kỳ buýt mới. Tín hiệu WR trong khi chuyển trạng thái từ 0 lên 1 sẽ kích hoạt

động quá trình đưa vào bộ nhớ hay thiết bị ngoại vi.

Trên các biểu đồ đọc ghi cũng biểu diễn các thông số quan trọng về mặt thời gian

liên quan đến tốc độ hoạt động tối thiểu cần thiết của các bộ nhớ hoặc thiết bị ngoại vi

nếu chúng muốn làm việc với CPU 5MHz.

Trong biểu đồ thời gian đọc (Hình 4-6) ta thấy việc truy nhập bộ nhớ kéo dài trong

khoảng thời gian từ T1 - T3 (gần 3 chu kỳ đồng hồ 3*T = 600 ms). Trong tổng số thời

ALE

T1

CLOCK

T2 T3 T4

AD15 - AD0

A19/S6 - A16/S3

DT/R

 __

IO/M

 __

WR

DEN

A19 - A0
from 74LS373 to memory

A19 - A16 S6 - S3

A19 - A0 from 74LS373

A15 – A0 D15 - D0 (tới buýt ngoài)

2 xung nhịp

Độ rộng xung

ghi

Chờ dữ liệu
Trễ điều

khiển

Hình 4-7. Biểu đồ ghi đơn giản hóa

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

86

gian này phải tính đến thời gian trễ khi chuyền địa chỉ ttrễ địa chỉ = 110ns, thời gian giữ của

dữ liệu khi đọc tgiữR = 30 ns và thời gian trễ do việc truyền tín hiệu qua các mạch đệm

nhiều nhất là ttrễ đệm = 40ns. Như vậy các bộ nhớ nối với 8086 - 5MHz cần phải có thời

gian truy nhập nhỏ hơn:

 3*T - ttrễ địa chỉ - tgiữR - ttrễ đệm = 600 - 110 - 30 - 40 = 420ns.

Mặt khác với CPU 8086 5MHz thì độ rộng xung đọc là TRD = 325ns, đó là thời

gian đủ dài để cho bộ nhớ với thời gian truy nhập cỡ 420ns làm việc.

Trong biểu đồ thời gian ghi (Hình 4-7) ta thấy phải có một thời gian giữ dữ liệu tối

thiểu để ghi tgiữW = 88ns sau khi WR đột biến từ 0 lên 1. trong thực tế thời gian này gần

như bằng 0 đối với bộ nhớ thông dụng. Độ dài của xung ghi đối với CPU 8086 - 5MHz là

tWR = 340ns cũng là phù hợp với các bộ nhớ với thời gian truy nhập cỡ 450ns.

2. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ

2.1 Giới thiệu bộ nhớ

Các bộ nhớ bán dẫn thường dùng với bộ vi xử lý bao gồm:

 Bộ nhớ cố định ROM (Read Only Memory) hay bộ nhớ chỉ để đọc ra.

Thông tin ghi trong mạch không bị mất khi mất nguồn điện nuôi cho

mạch.

 Bộ nhớ bán cố định EPROM (Erasable Programmable ROM) là bộ nhớ

ROM có thể lập trình được bằng xung điện và xoá được bằng tia cực tím.

 Bộ nhớ truy nhập ngẫu nhiên RAM (Random Access Memory) thông tin

ghi trong mạch bị mất khi mất nguồn điện nuôi cho mạch. Trong các bộ

nhớ RAM còn phân biệt ra loại RAM tĩnh (Static RAM), trong đó mỗi

phần tử nhỏ là một mạch lật hay trạng thái ổn định) và loại RAM động

(Dynamic RAM) trong đó mỗi phần tử nhớ là một tụ điện rất nhỏ được

chế tạo bằng công nghệ MOS.

Một bộ nhớ thường được xây dựng từ nhiều vi mạch nhớ. Một vi mạch nhớ thường

có dạng cấu trúc tiêu biểu như hình sau đây.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

87

Theo sơ đồ khối này ta thấy một l vi mạnh nhớ có các nhóm tín hiệu sau:

a) Nhóm tín hiệu địa chỉ:

Các tín hiệu địa chỉ có tác dụng chọn ra một ô nhớ của vi mạch nhớ. Các ô

nhớ có độ dài khác nhau (còn gọi là từ nhớ) tuỳ theo nhà sản xuất: 1, 4, 8,

bít. Số đường tín hiệu địa chỉ có liên quan đến dung lượng của mạch nhớ.

Với một mạch nhớ có m bít địa chỉ thì dung lượng của mạnh nhớ đó là 2
m

từ nhớ. Ví dụ, với m = 10 dung lượng mạch nhớ là 1K ô nhớ (1 kilô = 2
10

 =

1024) và với m=20 dung lượng mạch nhớ là 1M ô nhớ (1 Mêga = 2
20

 =

1048576).

b) Nhóm tín hiệu dữ liệu:

Các tín hiệu dữ liệu thường là đầu ra đối với mạch ROM hoặc đầu vào/ra

dữ liệu chung (hai chiều) đối với mạch RAM. Ngoài ra có loại mạch nhớ

RAM với đầu ra và đầu vào dữ liệu riêng biệt. Các mạch nhớ thường có đầu

ra dữ liệu kiểu 3 trạng thái. Số đường dây dữ liệu quyết định độ dài từ nhớ

của mạch nhớ. Thông thường người ta hay nói rõ dung lượng và độ dài từ

nhớ cùng một lúc. Ví dụ mạch nhớ dung lượng 1 Kx8 (tức là 1KB) hoặc

16Kx4. . .

c) Tín hiệu chọn vi mạch (chọn vỏ):

Các tín hiệu chọn vi mạch là CS (chip select) hoặc CE (chip enable)

thường được dùng để tạo ra vi mạch nhớ cụ thể để ghi/đọc. Tín hiệu chọn vi

mạch ở các mạch RAM thường la CS , còn ở mạch ROM thường là CE .

Các tín hiệu chọn vi mạch thường được nối với đầu ra của bộ giải mã địa

Hình 4-8. Vi mạch nhớ khái quát

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

88

chỉ. Khi một mạnh nhớ không được chọn thì buýt dữ liệu của nó bị treo (ở

trạng thái trở kháng cao).

d) Nhóm tín hiệu điều khiển:

Tín hiệu điều khiển cần có trong tất cả các mạch nhớ. Các mạch nhớ ROM

thường có một đầu vào điều khiển OE (output enable) để cho phép dữ liệu

được đưa ra buýt. Khi mạch nhớ không được mở bởi OE thì buýt dữ liệu

được treo. Một mạch nhớ RAM nếu chỉ có một tín hiệu điều khiển thì

thường đó là R /W để điều khiển quá trình ghi/đọc. Nếu mạch nhớ RAM

có hai tín hiệu điều khiển đó thường là WE (write enable) để điều khiển ghi

và OE để điều khiển đọc. Hai tín hiệu này phải loại trừ lẫn nhau (ngược

pha) để điều khiển việc ghi/đọc mạch nhớ.

Một thông số đặc trưng khác của bộ nhớ là thời gian truy nhập tac được định nghĩa

như là thời gian kể từ khi có xung địa chỉ trên buýt địa chỉ cho đến khi có dữ liệu ra ổn

định trên buýt dữ liệu. Thời gian truy nhập bộ nhớ phụ thuộc rất nhiều vào công nghệ chế

tạo.

2.2 Giải mã địa chỉ cho bộ nhớ

2.2.1 Giới thiệu

Mỗi mạch nhớ nối ghép với CPU cần phải được CPU tham chiếu chính xác khi

thực hiện các thao tác ghi/đọc. Điều đó có nghĩa là mỗi mạch nhớ phải được gán cho một

vùng riêng biệt có địa chỉ xác định nằm trong không gian địa chỉ tổng thể của bộ nhớ.

Việc gán địa chỉ cụ thể cho mạch nhớ được thực hiện nhờ một xung chọn vi mạch lấy từ

mạch giải mã địa chỉ. Việc phân định không gian địa chỉ tổng thể thành các cùng nhớ

khác nhau để thực hiện những chức năng nhất định gọi là phân vùng bộ nhớ. Việc phân

vùng ô nhớ tùy thuộc vào thiết kế của hệ vi xử lý.

Về nguyên tắc một bộ giải mã địa chỉ khái quát thường có cấu tạo như trên Hình

4-9 dưới đây. Đầu vào của bộ giải mã là các tín hiệu địa chỉ và tín hiệu điều khiển. Các

tín hiệu địa chỉ gồm các bít địa chỉ có quan hệ nhất định với các tín hiệu chọn vỏ ở đầu

ra. Thường là các tín hiệu địa chỉ tương ứng với dải địa chỉ cấp cho vi mạch nhớ sẽ sinh

ra tín hiệu chọn vỏ tương ứng. Tín hiệu điều khiển thường là tín hiệu IO/ M dùng để phân

biệt đối tượng mà CPU chọn làm việc là bộ nhớ hay thiết bị vào/ra. Mạch giải mã là một

trong những khâu tăng thêm trễ thời gian của tín hiệu từ CPU tới bộ nhớ hoặc thiết bị

ngoại vi. Tuỳ theo quy mô của mạch giải mã mà ta có thể có ở đầu ra một hay nhiều tín

hiệu chọn vỏ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

89

Giải mã đầy đủ cho một mạch nhớ đòi hỏi ta phải đưa đến đầu vào của mạch giải

mã các tín hiệu địa chỉ sao cho tín hiệu ở đầu ra của nó chỉ chọn riêng mạch nhớ đã định.

Trong trường hợp này ta phải dùng tổ hợp đầy đủ của các đầu vào địa chỉ tương ứng để

chọn được mạch nhớ. Nói cách khác, từ một tổ hợp tín hiệu địa chỉ, bộ giải mã sẽ chỉ

sinh ra một tín hiệu chọn vỏ duy nhất ứng với không gian địa chỉ cấp cho vi mạch nhớ.

Giải mã địa chỉ thiếu hay giải mã rút gọn thì ta chỉ dùng một nhóm trong số các tín

hiệu địa chỉ để sinh ra tín hiệu chọn vỏ cho mạch nhớ. Như vậy, từ một tổ hợp các tín

hiệu địa chỉ có thể sinh ra nhiều tín hiệu chọn vỏ khác nhau. Vì sử dụng ít tín hiệu hơn

nên mạch giải mã thiếu cần ít linh kiện hơn nhưng lại làm mất tính đơn trị của xung chọn

thu được ở đầu ra.

Ví dụ: Chíp nhớ C có dung lượng 10000H ô nhớ và được gán cho dải địa chỉ từ

00000H-0FFFFH. Để sinh ra tín hiệu chọn vỏ cho C ta có thể sử dụng duy nhất tín hiệu

địa chỉ A16 ở mức thấp (A16=0) hoặc cả bốn tín hiệu A16-A19 ở mức thấp (A16=. . .

=A19=0). Với trường hợp thứ nhất ta có giải mã thiếu do A16=0 có thể do các yêu cầu

truy nhập tới dải địa chỉ 20000H-2FFFFH.

Thông thường khi thiết kế mạch giải mã người ta hay tính dư ra một chút để nếu có

sự thay đổi do phải tăng thêm dung lượng của bộ nhớ thì vẫn có thể sử dụng được mạch

giải mã đã được thiết kế. Nói cách khác, hệ thống có thể mở rộng thêm không gian nhớ

bằng các bổ sung thêm các vi mạch nhớ. Phần dưới đây sẽ xem xét một số phương pháp

thực hiện mạch giải mã địa chỉ bộ nhớ.

Hình 4-9. Mạch giải mã địa chỉ tổng quát

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

90

2.2.2 Thực hiện mạch giải mã bằng các mạch lô-gíc đơn giản

Các mạch lô-gíc đơn giản bao gồm các mạch AND, OR, NOT hay kết hợp như

NAND, NOR. Bằng các mạch kiểu này ta có thể xây dựng được mạch giải mã địa chỉ

đơn giản với số đầu ra hạn chế. Các mạch lô-gíc làm nhiệm vụ tổ hợp các tín hiệu địa chỉ

và điều khiển đọc/ghi bộ nhớ sao cho với một tổ hợp địa chỉ cho trước sẽ sinh ra tín hiệu

chọn vỏ tương ứng.

Hình 4-10 giới thiệu mạch giải mã cho mạch EPROM 2716 có dung lượng 2K ô

nhớ mỗi ô chứa 8 bít, làm việc trong dải địa chỉ FF800H-FFFFFH. Do mạch nhớ có dung

lượng 2K tương ứng với dải địa chỉ 0FFH-7FFH (tương ứng với A0. . . A10). Như vậy, số

lượng các tín hiệu địa chỉ dùng sinh ra tín hiệu kích hoạt chíp nhớ này là A11-A19. Với dải

địa chỉ cho trước FF800H-FFFFFH thì tổ hợp A11=. . . =A19=1 sẽ sinh ra tín hiệu chọn vỏ

cho EPROM 2716. Bên cạnh đó, ta cần phối hợp với các tín hiệu điều khiển IO/ M và

RD (ở mức thấp) để tạo ra tín hiệu chọn vỏ.

Như trong hình vẽ, các tín hiệu địa chỉ và tín hiệu đảo của IO/ M được liên kết trực

tiếp với nhau bằng phép lô-gíc AND rồi đảo. Do tín chất của mạch AND kết quả tổ hợp

là duy nhất. Đầu ra sẽ chỉ bằng 1 khi tất cả đầu vào bằng 1. Đầu ra của mạch NAND

được OR với RD (mức thấp) để sinh ra tín hiệu chọn vỏ (kích hoạt). Tương tự, do tính

chất của mạch OR đầu ra sẽ chỉ bằng 0 nếu tất cả các đầu vào bằng 0 nên tín hiệu chọn

vỏ là tín hiệu duy nhất được sinh ra ứng với thao tác truy nhập tới dải địa chỉ FF800H-

FFFFFH. Như vậy, mạch giải mã trên là mạch giải mã đầy đủ.

Hình 4-10. Mạch giải mã dùng mạch lô-gíc

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

91

2.2.3 Thực hiện bộ giải mã dùng mạch giải mã tích hợp

Khi ta muốn có nhiều đầu ra chọn vỏ từ bộ giải mã mà vẫn dùng các mạch logic

đơn giản thì thiết kế sẽ trở nên rất cồng kềnh do số lượng các mạch tăng lên. Trong

trường hợp như vậy ta thường sử dụng các mạch giải mã tích hợp có sẵn. Một trong các

mạch giải mã hay được sử dụng là 74LS138 cho phép giải mã 3 tín hiệu đầu vào thành 8

tín hiệu đầu ra.

Giả sử chúng ta cần xây dựng mạch giải mã cho không gian nhớ 256KB tương ứng

với dải địa chỉ F8000H-FFFFFH trong đó mỗi mạch nhớ 2732 có dung lượng 4K×8. Từ

dải địa chỉ được gán và dung lượng của từng mạch nhớ, có thể thấy rằng từ các tín hiệu

địa chỉ A13 tới A19 cần phải sinh ra 8 tín hiệu kích hoạt các vi mạch nhớ ứng với 8 dải địa

chỉ như bảng dưới đây:

Bảng 4-5. Dải tín hiệu của các mạch nhớ 2732

Địa chỉ A19-A16 A15 A14 A13 A12

F8 1111 1 0 0 0

F9 1111 1 0 0 1

FA 1111 1 0 1 0

Hình 4-11. 74LS138 và bảng trạng thái

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

92

FB 1111 1 0 1 1

FC 1111 1 1 0 0

FD 1111 1 1 0 1

FE 1111 1 1 1 0

FF 1111 1 1 1 1

Qua bảng trên, ta thấy chỉ có các tín hiệu A12-A14 là thay đổi còn A15-A19 bằng 1 và

không đổi. Như vậy ta có thể sử dụng mạch giải mã 74LS138 để sinh ra các tín hiệu chọn

vỏ cho các mạch nhớ như hình sau:

Các tín hiệu A12-A14 được nối trực tiếp vào tín hiệu đầu vào (A-C) của 74LS138.

Các tín hiệu địa chỉ còn lại A15-A19 và các tín hiệu điều khiển IO/ M được nối vào tín

hiệu điều khiển của 74LS138 (G2A, G2B). Tín hiệu G1 luôn ở mức lô-gíc 1. Các đầu ra

của 74LS138 được nối lần lượt với các mạch nhớ ứng với dải địa chỉ gán trước.

Tại ví dụ này ta thấy mạch giải mã có sẵn 74LS138 có số lượng đầu vào địa chỉ và

đầu vào cho phép hạn chế. Nếu ta có số lượng đầu vào cho địa chỉ lớn mà ta lại phải giải

mã đầy đủ để thực hiện bộ giải mã đã hoàn chỉnh ta vẫn phải dùng thêm các mạch logic

phụ. Đây cũng là lý do để người ta thay thế các bộ giải mã kiểu này bằng các bộ giải mã

dùng PROM hoặc PLA (Programable Logic Array) với ưu điểm chính là chúng có rất

nhiều đầu vào cho các bít địa chỉ và vì thế rất thích hợp trong các hệ vi xử lý sau này với

không gian địa chỉ lớn.

Hình 4-12. Giải mã sử dụng 74LS138

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

93

2.2.4 Thực hiện bộ giải mã dùng PROM

Việc sử dụng bộ nhớ ROM làm bộ giải mã lợi dụng số lượng lớn các tín hiệu địa

chỉ đầu vào, điều khiển và dữ liệu ra của mạch nhớ ROM. Với mỗi tổ hợp tín hiệu địa chỉ

và điều khiển đầu vào, mạch nhớ ROM sẽ sinh ra một nhóm tín hiệu trên kênh dữ liệu.

Trạng thái của các tín hiệu dữ liệu này tùy thuộc vào giá trị được lưu vào trong ROM

trước đó. Nếu các tín hiệu này loại trừ lẫn nhau thì các tín hiệu dữ liệu có thể được dùng

làm các tín hiệu chọn vi mạch nhớ.

Dưới đây sử dụng mạch PROM 256 byte để làm bộ giải mã cho ví dụ phân vùng bộ

nhớ cho ROM trong phần trước. Trong bảng dưới đây là mẫu các bít để ghi vào PROM

cho trường hợp cụ thể này.

Bảng 4-6. Mẫu dữ liệu ghi vào ROM

A
7
 A

6
 A

5
 A

4
 A

3
 A

2
 A

1
 A

0
 O

0
 O

1
 O

2
 O

3
 O

4
 O

5
 O

6
 O

7

1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1

1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Theo bảng trên, trong dải địa chỉ từ F8H-FFH của ROM ta ghi 8 giá trị sao cho tín

hiệu dữ liệu đầu ra chỉ có duy nhất một tín hiệu mức thấp còn tất cả các tín hiệu còn lại

đều ở mức cao. Ngoài 8 ô nhớ này, tất cả các ô nhớ khác của ROM đều được điền giá trị

FFH.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

94

Mạch giải mã cho bộ nhớ PROM được thể hiện trên hình trên so với cách thực hiện

bộ giải mã bằng 74LS138 chúng ta không phải dùng đến các mạch phụ điều này làm

giảm đáng kể kích thước vật lý của bộ giải mã. Ngoài ra ta có thể dễ dàng thay đổi địa

chỉ của các mạch nhớ bằng cách thay đổi vị trí và giá trị dữ liệu trong mạch nhớ giải mã

ROM.

3. PHỐI GHÉP VI XỬ LÍ VỚI THIẾT BỊ VÀO RA

3.1 Giới thiệu về thiết bị vào/ra

Đối với 8086 (hay họ 80x86 nói chung) có 2 cách phối ghép CPU với các thiết bị

ngoại vi (các cổng vào/ra, I/O):

a) Thiết bị vào/ra có không gian địa chỉ tách biệt

Trong cách phối ghép này, bộ nhớ được dùng toàn bộ không gian 1MB mà

CPU dành cho nó. Các thiết bị ngoại vi (các cổng) sẽ được dành riêng một

không gian 64KB cho mỗi loại cổng vào hoặc ra. Để phân biệt các thao tác

truy nhập, ta phải dùng tín hiệu IO/ M =1, và các lệnh trao đổi dữ liệu một

cách thích hợp cho mỗi không gian đó. Với các thiết bị này cần sử dụng các

câu lệnh IN, OUT để trao đổi dữ liệu.

Hình 4-13. Giải mã dùng ROM

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

95

b) Thiết bị vào/ra và bộ nhớ có chung không gian địa chỉ

Trong cách phối ghép này, bộ nhớ và thiết bị ngoại vi cùng chia nhau không

gian địa chỉ 1MB mà CPU 8086 có khả năng địa chỉ hóa. Các thiết bị ngoại

vi sẽ chiếm một vùng nào đó trong không gian 1MB, phần còn lại là của bộ

nhớ. Tất nhiên trong trường hợp này ta dùng chung tín hiệu IO/ M =0 và lệnh

trao đổi dữ liệu kiểu lệnh MOV cho cả bộ nhớ và thiết bị ngoại vi

3.2 Giải mã địa chỉ thiết bị vào ra

3.2.1 Giới thiệu

Việc giải mã địa chỉ cho thiết bị vào/ra cũng gần giống như giải mã địa chỉ cho

mạch nhớ. Thông thường các cổng có địa chỉ 8 bít tại A0-A7, trong một số hệ vi xử lý

khác các cổng có 16 bít tại A0 - A15. Tuỳ theo độ dài của toán hạng trong lệnh là 8 hay

16 bít ta có 1 cổng 8 bít có địa chỉ liên nhau để tạo nên từ với độ dài tương ứng.

Các mạch giải mã đơn giản có thể tạo được từ mạch lô-gíc đơn giản như sau:

Trong trường hợp cần nhiều xung chọn ở đầu ra cho các cổng vào/ra có địa chỉ liên

tiếp, ta có thể dùng các mạch giải mã có sẵn kiểu 74LS138. Như trên hình dưới đây trình

bày 2 mạch tương tự nhau dùng 74LS138 để giải mã địa chỉ cho 8 cổng vào và 8 cổng ra.

Hình 4-15. Giải mã thiết bị dùng cổng lô-gíc

Hình 4-14. Không gian nhớ của thiết bị vào/ra và bộ nhớ chính

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

96

Trên cơ sở mạch này ta cũng có thể phối hợp với cả hai tín hiệu đọc và ghi để tạo ra tín

hiệu chọn cho việc đọc/ghi từng cổng vào/ra ra cụ thể.

3.2.2 Các mạch cổng đơn giản

Trong thực tế có rất nhiều vi mạch tổ hợp cỡ vừa có thể được dùng làm cổng phối

ghép với bộ vi xử lý để vào/ra dữ liệu. Các mạch này thường được cấu tạo từ các mạch

chốt 8 bít có đầu ra 3 trạng thái (74LS373: kích theo mức; 74LS374: kích theo sườn), các

mạch khuếch đại đệm 2 chiều 8 bít đầu ra 3 trạng thái (74LS245). Chúng được dùng

trong các phối ghép đơn giản để làm cho CPU và thiết bị ngoại vi hoạt động tương thích

với nhau, ví dụ như để đệm buýt hoặc các mạch cổng để tạo ra các tín hiệu móc nối. . .

Dưới đây là một số ví dụ

Hình 4-17. Ghép nối với bàn phím

Hình 4-16. Giải mã địa chỉ cổng dùng 74LS138

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

97

Hình 4-17 biểu diễn ghép nối giữa 8086 với bàn phím 16 số dạng tiếp điểm. Vi

mạch 74LS374 được dùng để điều khiển các tín hiệu hàng và 74LS244 dùng để điều

khiển các tín hiệu cột của bàn phím. Nguyên tắc hoạt động của một phím như sau. Nếu

tín hiệu X ở mức cao (lô-gíc 1) thì đi-ốt sẽ khóa lại, vậy nên tiếp điểm Y có đóng xuống

hay không thì tại đầu O ta luôn thu được điện áp 5V (không có dòng điện). Nếu tín hiệu

X ở mức thấp (lô-gíc 0), thì đi-ốt mở và khi tiếp điểm Y đóng xuống tại đầu O ta thu

được điện áp 0V. Bằng cách quét tuần tự các hàng và đọc trên các cột ta sẽ xác định được

phím bấm. Giả sử tín hiệu địa chỉ giải mã vi mạch đệm cổng 374 là 0AH còn 244 là

0BH, đoạn mã sau đây cho phép xác định phím C có được bấm hay không:

 Hang EQU 0AH

 Cot EQU 0BH

 MOV AL,11111110b ; Chỉ có D0=0

 OUT Hang, AL

 Ktra: IN AL, Cot ; Đọc tín hiệu cột

 AND AL,00001000b ; Giữ lại bít D3 ứng với phím C

 JNZ Ktra ; Không bấm

 ... ; Phím C được bấm

Hình 4-18 biểu diễn một mạch hiển thị số sử dụng vi mạch 7447 và. LED bảy

đoạn. 7447 cho phép điều khiển các LED bảy đoạn bằng cách giải mã số BCD tại đầu

vào (A-D) và sinh ra các tín hiệu kích hoạt các thanh led của LED bảy đoạn (a-g). Để tiết

kiệm chi phí, 7447 được dùng chung cho cả 7 LED bảy đoạn. Việc kích hoạt LED bảy

đoạn được điều khiển thông qua cổng A và các transitor Q1-Q7, dữ liệu số cần hiển thị

được gửi qua cổng B. Đoạn mã sau đây dùng để kiểm tra hệ thống LED bằng cách hiển

thị trên cả 7 LED số 8. Chú ý rằng để bật 1 LEDi ta cần đưa tín hiệu dữ liệu Di=0 trên

cổng 0AH tới transitor Qi tương ứng.

 DK_LED EQU 0AH ; Cổng điều khiển LED

 DL_LED EQU 0BH ; Cổng dữ liệu hiển thị

 MOV AL,FFH ; Tắt tất cả các LED

 OUT DK_LED, AL

 MOV CX,64 ; Trễ bằng 64 lệnh NOP

 Tre: NOP

 LOOP Tre

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

98

 MOV AL,8 ; Đưa số 8 ra 7447

 OUT DL_LED,AL

 XOR AL,AL ; Đặt AL=0

 OUT DK_LED,AL ; Bật tất cả các LED

4. GIỚI THIỆU MỘT SỐ VI MẠCH HỖ TRỢ VÀO RA

Để thực hiện trao đổi dữ liệu vào/ra, vi xử lý có thể sử dụng một số vi mạch chuyên

dụng cho phép trao đổi dữ liệu kiểu song song như Intel 8255A hỗ trợ 3 cổng dữ liệu 8

bít hay trao đổi dữ liệu nối tiếp như Intel 8251 hay 8250.

4.1 Ghép nối song song dùng 8255A

4.1.1 Giới thiệu

Vi mạch 8255A là thiết bị giao tiếp ngoại vi lập trình được (Programmable

Peripheral Interface-PPI) dùng cho hệ thống máy tính Intel. Thiết bị có thể được lập

trình mà không cần thiết bị logic ngoài để giao tiếp với thiết bị ngoại vi.

Hình 4-18. Ghép nối hiển thị số

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

99

Các tín hiệu của 8255A có ý nghĩa như sau :

CS: Chọn chíp (mức thấp) PA7-PA0: Cổng A

RD: Đọc (mức thấp) PB7-PB0: Cổng B

WR: Ghi (mức thấp) PC7-PC0: Cổng C

A0A1: Chọn cổng D7-D0: Dữ liệu

Vi mạch 8255A cung cấp 3 cổng vào/ra A, B, và C có độ rộng 8 bít, chia làm 2

nhóm A, B. Các cổng này có thể được lập trình để làm việc trong ba chế độ:

a) Chế độ 0: Vào/ra cơ sở:

Chế độ này cung cấp thao tác vào/ra đơn giản cho từng cổng, trên các cổng

không có tín hiệu kết nối. Các cổng A, B và C có thể được chia thành 2 cổng 8

bít (A,B) và 2 cổng 4 bít (C thấp PC0-PC3, C cao PC4-PC7). Bất kỳ cổng nào có

thể dùng làm cổng vào/ra.

Hình 4-19. Sơ đồ khối 8255A

Lô-gíc
điều
khiển

ghi/đọc

Điều
khiển

nhóm A

Nhóm A
Cổng A

(8)

Điều
khiển

nhóm B

Đệm

dữ liệu

Nhóm A
Cổng C

(4)

Nhóm B
Cổng C

(4)

Nhóm B
Cổng B

(8)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

100

b) Chế độ 1: Vào/ra thăm dò

Chế độ này chỉ được cung cấp trên hai cổng A,B, mỗi cổng có kênh dữ liệu là

8 bít và 4 tín hiệu điều khiển lấy từ cổng C. Dữ liệu trên kênh có thể là vào hay ra.

Các nhóm tín hiệu điều khiển vào/ra như sau:

Đầu vào Đầu ra

STB: Kiểm tra đầu vào (mức thấp)

IBF: Dữ liệu sẵn sàng (mức cao)

INTR: Báo ngắt CPU (mức cao)

OBF: Dữ liệu ra sẵn sàng (mức thấp)

ACK: Nhận xong dữ liệu (mức thấp)

INTR: Báo ngắt CPU (mức cao)

Các tín hiệu điều khiển của hai cổng A và B lấy từ cổng C như sau:

Hình 4-21. Ghép nối các tín hiệu điều khiển ở chế độ 1

Hình 4-20. Các chế độ 0

Buýt địa chỉ

Buýt điều khiển

Buýt dữ liệu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

101

Các tín hiệu điều khiển ra này biến đổi như hình vẽ dưới đây

Với cổng A các tín hiệu điều khiển hoạt động như sau:

 OBFA (Đệm ra của PA đầy). Tín hiệu báo cho thiết bị ngoại vi biết CPU

đã ghi dữ liệu vào cổng để chuẩn bị đưa ra. Tín hiệu này thường được nối

với STB của thiết bị nhận.

 ACKA (Trả lời đã nhận được dữ liệu). Đây là tín hiệu của thiết bị ngoại vi

cho biết là nó đã nhận được dữ liệu từ PA của 8255A.

 INTRA (Yêu cầu ngắt từ PA). Đây là kết quả thu được từ quan hệ giữa các

tín hiệu khác của 8255A trong quá trình đối thoại với thiết bị ngoại vi, nó

được dùng để phản ảnh yêu cầu ngắt của PA tới CPU.

 INTEA là tín hiệu của một mạch lật bên trong 8255A để cho phép/cấm yêu

cầu ngắt INTRA của PA. INTEA được lập/xoá thông qua bit PC6 của PC.

Các tín hiệu điều khiển vào thay đổi như hình vẽ dưới đây

Hình 4-23. Biểu đồ thời gian tín hiệu vào

Hình 4-22. Biểu đồ thời gian tín hiệu ra

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

102

 STB (Cho phép chốt dữ liệu): Khi dữ liệu đã sẵn sàng để được đọc

vào bằng PA, thiết bị ngoại vi phải dùng STB để báo cho 8255A biết

để chốt dữ liệu.

 IBF (Đệm vào đầy): Sau khi 8255A chốt được dữ liệu do thiết bị

ngoại vi đưa đến nó đưa ra tín hiệu IBF để báo cho thiết bị ngoại vi

biết là đã chốt xong.

 INTR : Tín hiệu để báo cho CPU biết là đã có dữ liệu sẵn sàng để

đọc từ PA. Đây là kết quả thu được từ quan hệ giữa các tín hiệu khác

của 8255A trong quá trình đối thoại với thiết bị ngoại vi

c) Chế độ 2: Vào/ra hai chiều

Chế độ này chỉ áp dụng được cho cổng A và tất cả các tín hiệu của cổng C

được dùng làm tín hiệu kết nối như trong Hình 4-24. Các tín hiệu kết nối biến đổi

tuỳ thuộc theo dữ liệu được gửi ra hay đọc về từ cổng A.

4.1.2 Lập trình 8255A

Các thanh ghi của 8255A được xác định qua tính hiệu địa chỉ A0A1 như sau

A1 A0 Thanh ghi

x x Không sử dụng

0 0 Cổng A (PA)

0 1 Cổng B (PB)

1 0 Cổng C (PC)

1 1 Điều khiển
Ý nghĩa các bít của thanh ghi điều khiển chế độ hoạt động như trong Hình 4-25.

Chú ý khi này bít có nghĩa lớn nhất của thanh ghi điều khiển nhận giá trị 1. Thanh ghi

Hình 4-24. Các tín hiệu kết nối hai chiều và biểu đồ thời gian

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

103

này cũng được dùng để xác lập trạng thái của các tín hiệu điều khiển trên cổng C khi

8255A hoạt động ở chế độ 1 hoặc 2.

Hình 4-26. Đặt xoá các tín hiệu điều khiển trên cổng C

Hình 4-25. Thanh ghi điều khiển chế độ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

104

4.2 Truyền thông nối tiếp

Việc truyền thông tin giữa các bộ phận nằm gần nhau trong hệ thống vi xử lý có thể

thực hiện thông qua buýt song song mở rộng hoặc qua các mạch phối ghép song song

trong đó các byte hoặc được truyền đi trên một tập các đường dẫn bằng mạch in hoặc dây

cáp trong trường hợp cần phải truyền thông tin giữa các thiết bị ở cách xa nhau, ta không

thể dùng cả tập các đường dây như trên mà phải có cách truyền khác để đảm bảo chất

lượng tín hiệu cũng như tiết kiệm được số đường dây dẫn cần thiết. Từ yêu cầu trên ra

đời phương pháp truyền thông tin nối tiếp, tín hiệu được truyền đi liên tiếp từng bít trên

một đường dây (như đường điện thoại chẳng hạn). Ở đầu thu tín hiệu nối tiếp sẽ được

biến đổi ngược lại để tái tạo hiệu dạng song song thích hợp cho việc xử lý tiếp theo.

Trong thực tế có 2 phương pháp truyền thông tin kiểu nối tiếp: đồng bộ và không đồng

bộ.

Trong phương pháp truyền đồng bộ, dữ liệu được truyền theo từng khối với một tốc

độ xác định. Khối dữ liệu trước khi được truyền đi sẽ được bổ sung thêm các phần tử đặc

biệt ở đẩu và ở cuối tạo thành khung. Các phần tử này dùng để đánh dấu điểm bắt đầu

của khối dữ liệu hay các thông tin giúp phát hiện lỗi trong quá trình truyền. Hình 4-27

biểu diễn cấu trúc khung dữ liệu để truyền đồng bộ. Đây thực chất là cách điều khiển

hướng ký tự vì các ký tự đặc biệt được dùng để đánh dấu các phần khác nhau trong

khung.

Trong cách truyền thông dị bộ, dữ liệu được truyền đi theo từng ký tự riêng biệt.

Độ dài ký tự có thể thay đổi từ 5 đến 8 bít. Ký tự cần truyền đi được gắn thêm 1 bít đánh

dấu ở đầu để báo bắt đầu kí tự (Start bit) và một hoặc hai bít báo kết thúc kí tự (Stop bit),

và một bít kiểm tra tính toàn vẹn dữ liệu (Parity bit). Vì mỗi kí tự được nhận dạng riêng

biệt nên nó có thể được truyền đi vào bất kì lúc nào. Giữa các kí tự truyền đi có thể có

các khoảng cách về thời gian. Dạng thức của dữ liệu truyền đi theo phương pháp dị bộ

được thể hiện trên hình dưới đây.

Hình 4-27. Cấu trúc khung đồng bộ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

105

Tốc độ truyền dữ liệu theo phương pháp nối tiếp được đo bằng bít/chu kỳ. Ngoài ra

người ta cũng hay dùng đơn vị baud. Đó là giá trị nghịch đạo của thời gian giữa các lần

thay đổi mức tín hiệu, với dữ liệu chỉ có hai mức (0 và 1) và mỗi thay đổi mức tín hiệu

chỉ mã hoá một bít thì tốc độ baud bằng tốc độ bít/s. Trong các phương pháp mã hóa

khác, người ta có thể mã hóa nhiều hơn một bít thông tin trên một trạng thái tín hiệu. Các

giá trị tốc độ truyền thường gặp trong thực tế là 2400, 4800, 9600. . .

Để tạo điều kiện dễ dàng cho việc phối ghép đường truyền nối tiếp với hệ vi xử lý

và để giảm tối đa các mạch phụ thêm ở ngoài. Người ta đã chế tạo ra các vi mạch tổ hợp

cỡ lớn lập trình có khả năng hoàn thành các công việc cần thiết trong khi phối ghép đó là

các mạch thu phát dị bộ vạn năng (Universal Asynchronous Receiver - Transmitter

UART) và mạch thu phát đồng bộ - dị bộ vạn năng (Universal Synchronous -

Asynchronous Receiver - Transmitter USART).

Với các mạch phối ghép như trên, việc truyền tin dị bộ chẳng hạn sẽ được thực

hiện nhờ một cặp USART ở đầu phát và ở đầu thu.

4.2.1 Mạch USART 8251A

4.2.1.a Sơ đồ khối và tín hiệu

Trong phần này ta sẽ giới thiệu mạch 8251A, đó là mạch USART có thể dùng cho

hai kiểu truyền thông tin nối tiếp đồng bộ. Sơ đồ khối của mạch 8251A của Intel được

biểu diễn trên hình dưới đây.

Hình 4-28. Cấu trúc dữ liệu truyền dị bộ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

106

Các tín hiệu của mạch 8251A hầu hết là giống tín hiệu của 8086. Chân chọn vỏ của

8251A phải được nối với đầu ra của một mạch giải mã địa chỉ để đặt mạch 8251A vào

một địa chỉ cơ bản nào đó.

+ CLK [I]: Chân nối đến xung đồng hồ của hệ thống.

+ TxRDY [0]: Tín hiệu báo đệm giữ rỗng (sẵn sàng nhận ký tự mới từ CPU)

+ RxRDY [0]: Tín hiệu báo đệm thu đầy (có ký hiệu nằm chờ CPU đọc vào)

+ TxEMPTY [0]: Tín hiệu báo cả đệm thu và đệm phát đều rỗng.

+ C/D [I]: CPU thao tác với thanh ghi lệnh/thanh ghi dữ liệu của 8251A, khi

C/D=1 thì thanh ghi lệnh được chọn làm việc. Chân này thường được nối với A0 của

buýt địa chỉ để cùng với các tín hiệu WR và RD chọn ra 4 thanh ghi bên trong 8251A.

+ RxC [I] và TxC [I]: Xung đồng hồ cung cấp cho các thanh ghi dịch của phần thu

và phần phát. Thường 2 thanh này nối chung để phần thu và phần phát làm việc với cùng

tầng số nhịp. Tần số của các khung đồng hồ đưa đến chân RxC và TxC được chọn sao

cho là bội số (cụ thể là gấp 1, 16 hoặc 64) của tốc độ thu hay tốc độ phát theo yêu cầu.

Hình 4-29. Sơ đồ khối 8251A

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

107

+ là hai cặp tín hiệu yêu cầu thiết bị modem sẵn sàng và trả lời

của modem với tín hiệu yêu cầu.

+ là cặp tín hiệu yêu cầu modem sẵn sàng phát và đáp ứng của

modem với tín hiệu yêu cầu.

+ SYNDET/BRKDET [O]: khi 8251A làm việc ở chế độ không đồng bộ, nếu RxD

= 0 kéo dài hơn thời gian của 2 ký tự thì chân này có mức cao để báo là việc truyền hoặc

đường truyền bị gián đoạn. Khi 8251A làm việc ở chế độ đồng bộ, nếu phần thu tìm thấy

ký tự đồng bộ rong bản tin thu được thì chân này có mức cao.

Đệm ở phần phát của mạch 8251A là loại đệm kép, bao gồm đệm giữ và đệm phát.

Trong khi 1 ký tự đang được chuyển đi ở đệm phát thì một ký tự khác có thể đưa từ CPU

sang đệm giữ. Các tín hiệu TxRDY và TxEMPTY sẽ cho biết trạng thái của các đệm này

khi mạch 8251A hoạt động.

Khi đệm ở phần thu đầy thì sẽ có tin shiệu RxRDY = 1. Nếu cho đến khi phần thu

nhận được ký tự mới mà CPU không kịp thời đọc được ký tự cũ sẽ bị mất do bị đè bởi ký

tự mới nhận được. Hiện tượng này gọi là thu đè.

4.2.1.b Các thanh ghi bên trong của 8251A

Như đã nói ở trên chân C/D (giải sử nó được nối vào A0 của buýt địa chỉ) cùng các

tín hiệu WR và RD sẽ chọn ra 4 thanh ghi bên trong của mạch USART, thanh ghi đệm

dữ liệu thu, thanh ghi đệm dữ liệu phát, thanh ghi trạng thái và thanh ghi điều khiển

(Bảng 4-7).

Bảng 4-7. Các thanh ghi bên trong của 8251A

A0 RD WR Chọn ra

0 0 1 Thanh ghi đệm dữ liệu thu

0 1 0 Thanh ghi đệm dữ liệu phát

1 0 1 Thanh ghi trạng thái

1 1 0 Thanh ghi điều khiển

 Thanh ghi chế độ:

DSR DTR

RTS CTS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

108

Trong từ chế độ, đối với ký tự cần truyền ta có thể chọn số bít (kiểu mã) của ký tự,

số bít stop và tốc độ truyền. Nếu có sẵn tầng số xung đồng hồ cho phần thu hoặc phần

phát (giả sử là Fdk) và ta muốn truyền (thu/phát) dữ liệu vưói tốc độ X baud, ta phải chọn

hệ số nhân tốc độ truyền K sao cho thỏa mãn biểu thức.

 Fdk = X. K, trong đó X là các tốc độ truyền tiêu chuẩn.

Ví dụ: nếu ta có tần số xung đồng hồ phát là 19. 200Hz và ta muốn truyền dữ liệu

với tốc độ 1. 200 baud thì ta phải ghi từ chế độ có 2 bít cuối là 10 để chọn được hệ số

nhân tốc độ truyền là 16, vì 1200 x 16 = 19. 200. Với việc dùng tần số đồng hồ cho phần

thu/ phát cao hơn so với tốc độ truyền ta sẽ giảm được lỗi khi truyền thông tin.

Hình dưới đây giới thiệu các giá trị của thanh ghi lệnh khi hoạt động ở chế độ

truyền đồng bộ. Ở chế độ này ta không phải quan tâm tới tốc độ phát, thay vào đó ta cần

xác định số lượng ký tự đồng bộ và độ dài của các ký tự truyền đi.

Hình 4-30. Thanh ghi chế độ (dị bộ)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

109

Thanh ghi lệnh:

Cấu trúc thanh ghi lệnh như sau:

Thanh ghi trạng thái

Giá trị trên các bít thanh ghi này cho ta biết tình trạng hoạt động của 8251A

Hình 4-32. Cấu trúc thanh ghi lệnh

Hình 4-31. Thanh ghi chế độ (đồng bộ)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

110

4.2.1.c Lập trình 8251A

Để lập trình cho 8251A trước tiên ta cần xác lập chế độ hoạt động bằng cách tính

giá trị của thanh ghi chế độ và gửi ra cổng điều khiển. Để gửi hoặc nhận dữ liệu ta cần

liên tục kiểm tra trạng thái của 8251A theo lưu đồ đọc/ghi đơn giản sau:

Hình 4-34. Lưu đồ đọc/ghi đơn giản

Hình 4-33. Cấu trúc thanh ghi trạng thái

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 4. PHỐI GHÉP VI XỬ LÍ VỚI BỘ NHỚ VÀ CÁC THIẾT BỊ VÀO/RA

111

Hình 4-35 giới thiệu mạch giải mã địa chỉ cho 8251A và ghép nối tín hiệu nối tiếp

theo chuẩn RS232. Vi mạch 8251A hoạt động ở 2 cổng 78H và 79H (0111 100x). Lưu đồ

đọc có thể được triển khai như sau:

 DK EQU 79H ; Thanh ghi điều khiển

 TThai EQU 79H : Thanh ghi trạng thái

 DL EQU 78H ;Thanh ghi dữ liệu

 khoitao: MOV AL, 11001111b ; Xác lập chế độ 8251A dị bộ 2 bít stop,

 OUT DK,AL ; 8 bít dữ liệu không chẵn lẻ, tốc độ x64

 Ktra: IN AL, TThai ; Kiểm tra trạng thái

 AND AL,02H ; Bít 2 thanh ghi trạng thái RxRDY

 JNZ Ktra

 DocDL: IN AL, DL

 ; Xử lý dữ liệu

Hình 4-35. Ghép nối 8251A

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

112

Chương 5. TỔNG QUAN VỀ CÁC PHƯƠNG PHÁP VÀO RA

DỮ LIỆU

1. GIỚI THIỆU

Kỹ thuật trao đổi dữ liệu giữa máy vi tính và các thiết bị ngoại vi được gọi là vào/ra

hay I/O (Input/Output). Thiết bị liên lạc với máy vi tính qua các giao tiếp vào/ra. Người

dùng có thể nhập chương trình và dữ liệu bằng các dùng bàn phím và chạy các chương

trình để lấy kết quả. Như vậy, các thiết bị vào/ra kết nối tới máy vi tính cung cấp cách

thức liên lạc tiện lợi với thế giới bên ngoài. Các thiết bị vào/ra phổ biến gồm có bàn

phím, màn hình, máy in và ổ đĩa cứng.

Đặc tính của các thiết bị vào/ra thường khác với đặc tính của máy vi tính. Chẳng

hạn như tốc độ của các thiết bị thường chậm hơn máy vi tính, độ dài từ (word) và định

dạng dữ liệu cũng khác nhau giữa thiết bị và máy tính. Để hai bên có thể liên lạc được

với nhau cần có các mạch giao tiếp giữa thiết bị vào/ra và máy tính. Giao tiếp cung cấp

trao đổi dữ liệu vào/ra qua buýt vào/ra. Buýt này thông thường chuyển tải 3 loại tín hiệu:

địa chỉ thiết bị, dữ liệu và lệnh.

Có ba phương pháp trao đổi dữ liệu giữa máy vi tính và các thiết bị vào/ra: vào/ra

lập trình (programmed I/O) hay thăm dò, vào/ra bằng ngắt và truy nhập trực tiếp bộ nhớ

(Direct Memory Access DMA). Dùng vào/ra thăm dò, vi xử lý chạy một chương trình

thực hiện toàn bộ các trao đổi dữ liệu giữa vi xử lý và các thiết bị bên ngoài. Đặc tính chủ

yếu của phương pháp này là thiết bị thực hiện các chức năng được chỉ định bởi chương

trình bên trong bộ nhớ của vi xử lý. Nói cách khác, vi xử lý điều khiển hoàn toàn các trao

đổi dữ liệu.

Với vào/ra bằng ngắt, thiết bị có thể bắt vi xử lý dừng việc thực hiện chương trình

hiện thời để thiết bị có thết chạy chương trình khác gọi là chương trình phục vụ ngắt.

Chương trình này đáp ứng yêu cầu của thiết bị. Sau khi kết thúc chương trình này, câu

lệnh trở về từ ngắt để trả lại quyền điều khiển cho chương trình bị ngắt.

Truy nhập bộ nhớ trực tiếp là kỹ thuật vào/ra mà trong đó dữ liệu có thể được trao

đổi giữa bộ nhớ của máy tính với thiết bị như ổ cứng mà không cần sự can thiệp của vi

xử lý. Thông thường, phương pháp này cần sử dụng vi mạch đặc biệt gọi là vi mạch

DMA.

Trong máy tính sử dụng hệ điều hành, người dùng thường làm việc với thiết bị

vào/ra ảo. Người dùng không phải quan tâm tới các đặc tính của thiết bị. Thay vào đó,

người dùng thực hiện trao đổi dữ liệu thông qua các dịch vụ vảo/ra do hệ điều hành cung

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

113

cấp. Về căn bản, hệ điều hành đóng vai trò giao tiếp giữa chương trình người dùng và

phần cứng thiết bị. Hệ điều hành hỗ trợ tạo nhiều các thiết bị lô-gíc hay thiết bị vào/ra ảo

và cho phép người dùng liên lạc trực tiếp với các thiết bị này. Chương trình người dùng

hoàn toàn không biết được việc ánh xạ giữa thiết bị ảo và thiết bị vật lý. Như vậy, khi

thiết bị ảo gán cho thiết bị vật lý khác thì không phải thay đổi chương trình người dùng.

2. VÀO/RA BẰNG PHƯƠNG PHÁP THĂM DÒ

Vấn đề điều khiển vào/ra dữ liệu sẽ trở nên đơn giản nếu thiết bị ngoại nếu lúc nào

cũng sẵn sàng để làm việc với CPU. Ví dụ, bộ phận do nhiệt độ số (như là một thiết bị

vào) lắp sẵn trong một hệ thống điều khiển lúc nào cũng có thể cung cấp số đo về nhiệt

độ của đối tượng cần điều chỉnh, còn một bộ đèn LED 7 nét (như là một thiết bị ra) dùng

để chỉ thị một giá trị nào đó của một đại lượng vật lý nhất định trong hệ thống nói trên thì

lúc nào cũng có thể biểu hiện thông tin đó. Như vậy khi CPU muốn có thông tin về nhiệt

độ của hệ thống thì nó chỉ việc đọc cổng phối ghép với bộ đo nhiệt độ, và nếu CPU muốn

biểu diễn thông tin vừa đọc được trên đèn LED thì nó chỉ việc đưa tín hiệu điều khiển tới

đó mà không cần phải kiểm tra xem các thiết bị này có đang sẵn sàng làm việc hay

không.

Tuy nhiên trong thực tế không phải lúc nào CPU cũng làm việc với các đối tượng

"liên tục sẵn sàng" như trên. Thông thường khi CPU muốn làm việc với một đối tượng

nào đó, trước tiên nó phải kiểm tra xem thiết bị đó có đang ở trạng thái sẵn sàng làm việc

hay không; nếu có thì nó mới thực hiện vào việc trao đổi dữ liệu. Như vậy, nếu làm việc

theo phương thức thăm dò thì thông thường CPU chia sẻ thời gian hoạt động cho việc

trao đổi dữ liệu và việc kiểm tra trạng thái sẵn sàng của thiết bị ngoại vi thông qua các tín

hiệu móc nối (handshake signal).

Hình 5-1. Vào/ra lập trình với nhiều thiết bị

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

114

Các mạch kết nối trong Hình 4-17 và Hình 4-18 là các ví dụ tiêu biểu cho phương

pháp vào/ra lập trình. Với bàn phím, CPU liên tục kiểm tra trạng thái các phím và nếu có

phím được bấm CPU sẽ đọc thông tin trên cổng vào để xác định phím nào được bấm.

Với bộ hiển thị LED, CPU liên tục đưa dữ liệu ra các cổng ra để thiết bị có thể hiển thị

các thông tin.

Khi số lượng các thiết bị vào/ra tăng lên thì thời gian dành cho việc xác định trạng

thái của thiết bị vào/ra cũng tăng lên nhanh chóng như trong Hình 5-1. CPU kiểm tra lần

lượt các thiết bị để phát hiện trạng thái sẵn sàng trao đổi dữ liệu của từng thiết bị và thực

hiện các lệnh trao đổi dữ liệu. Các thiết bị được kiểm tra thăm dò theo trật tự ngẫu nhiên

hoặc theo mức độ ưu tiên của các thiết bị. Cách thức này dù đơn giản song có nhược

điểm là thời gian quét trạng thái của các thiết bị chiếm tỷ trọng rất đáng kể trong suốt quá

trình vào/ra nhất là khi các thiết bị chưa có dữ liệu để trao đổi.

3. VÀO/RA BẰNG NGẮT

3.1 Giới thiệu

Nhược điểm của vào/ra thăm dò là máy tính cần kiểm tra bít trạng thái bằng cách

chờ. Với các thiết bị chậm, việc chờ làm giảm khả năng xử lý dữ liệu khác của máy tính.

Kỹ thuật ngắt cho phép giải quyết vấn đề này.

Với vào/ra bằng ngắt, thiết bị khởi xướng việc trao đổi vào/ra. Thiết bị được nối

với chân tín hiệu ngắt (INT) trên vi mạch của vi xử lý. Khi thiết bị cần trao đổi dữ liệu,

thiết bị sinh ra tín hiệu ngắt. Máy tính sẽ hoàn thành câu lệnh hiện thời và lưu nội dung

của bộ đếm chương trình và các thanh ghi trạng thái. Sau đó, máy tính tự động nạp địa

chỉ của chương trình phục vụ ngắt vào thanh ghi đếm chương trình. Chương trình này

thường do người dùng viết và máy tính thực hiện chương trình này để trao đổi dữ liệu với

thiết bị. Câu lệnh cuối của chương trình này khôi phục thanh ghi đếm chương trình bị

dừng và thanh ghi trạng thái của vi xử lý.

Vi xử lý thường cung cấp một hay nhiều tín hiệu ngắt trên vi mạch. Như vậy, để xử

lý các yêu cầu ngắt từ nhiều thiết bị cần có cơ chế đặc biệt. Thường có các cách sau:

thăm dò và quay vòng. Thăm dò sử dụng phần mềm chung cho tất cả các thiết bị vì vậy

làm giảm tốc độ đáp ứng ngắt. Khi có tín hiệu ngắt phần mềm thăm dò kiểm tra trạng

thái của các thiết bị theo thứ tự ưu tiên bắt đầu với thiết bị được ưu tiên cao nhất. Khi xác

định được thiết bị yêu cầu trao đổi dữ liệu, phần mềm thăm dò chuyển quyền điều khiển

cho phần mềm phục vụ ngắt.

3.2 Bộ xử lý ngắt ưu tiên 8259

Trong trường hợp có nhiều yêu cầu ngắt che được từ bên ngoài phải phục vụ máy

tính thường dùng vi mạch có sẵn 8259A để giải quyết vấn đề ưu tiên. Vi mạch 8259A

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

115

được gọi là mạch điều khiển ngắt lập trình được (Programmable Interrupt Controller,

PIC). Đó là một vi mạch cỡ lớn có thể xử lý trước được 8 yêu cầu ngắt với các mức ưu

tiên khác nhau để tạo ra một yêu cầu ngắt đưa đến đầu vào INTR (yêu cầu ngắt che được

của CPU 8086. Nếu nối tầng 1 mạch 8259A chủ với 8 mạch 8259A thợ ta có thể nâng

tổng số các yêu cầu ngắt với các mức ưu tiên khác nhau lên thành 64.

3.2.1 Các khối chức năng chính của 8259A

Sơ đồ khối của 8259A được trình bày trong hình vẽ dưới đây

 Thanh ghi IRR: ghi nhớ các yêu cầu ngắt có tại đầu vào IRi.

 Thanh ghi ISR: ghi nhớ các yêu cầu ngắt đang được phục vụ trong số các

yêu cầu ngắt IRi.

 Thanh ghi IMR: ghi nhớ mặt nạ ngắt đối với các yêu cầu ngắt IRi.

 Logic điều khiển: khối này có nhiệm vụ gửi yêu cầu ngắt tới INTR của

8086 khi có tín hiệu tại các chân IRi và nhận trả lời chấp nhận yêu cầu

ngắt INTA từ CPU để rồi điều khiển việc đưa ra kiểu ngắt trên buýt dữ

liệu.

 Đệm buýt dữ liệu: dùng để phối ghép 8259A với buýt dữ liệu của CPU

 Logic điều khiển ghi/đọc: dùng cho việc ghi các từ điều khiển và đọc các

từ trạng thái của 8259A.

Hình 5-2. Sơ đồ khối 8259

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

116

 Khối đệm nối tầng và so sánh: ghi nhớ và so sánh số hiệu của các mạch

8259A có mặt trong hệ vi xử lý.

3.2.2 Các tín hiệu của 8259A

Một số tín hiệu trong mạch 8259 có tên giống như các tín hiệu tiêu chuẩn của hệ vi

xử lý 8086. Ngoài ra, còn có một số tín hiệu đặc biệt khác của 8259A gồm:

+ CAS0-CAS2 [I, O]: là các đầu vào đối với các mạch 8259A thợ hoặc các đầu ra

của mạch 8259A chủ dùng khi cần nối tầng để tăng thêm các yêu cầu ngắt cần xử lý.

+ EN/SP [I, O]: khi 8259A làm việc ở chế độ không có đệm buýt dữ liệu thì đây là

tín hiệu vào dùng lập trình để biến mạch 8259A thành mạch thợ (0SP ) hoặc chủ

(1SP ); khi 8259A làm việc trong hệ vi xử lý ở chế độ có đệm buýt dữ liệu thì chân này

là tín hiệu ra EN dùng mở đệm buýt dữ liệu để 8086 và 8259A thông vào buýt dữ liệu

hệ thống. Lúc này việc định nghĩa mạch 8259A là chủ hoặc thợ phải thực hiện thông qua

từ điều khiển đầu ICW4.

+ INT [O]: tín hiệu yêu cầu ngắt đến chân INTR của CPU 8086.

+ INTA [I]: nối với tín hiệu báo chấp nhận ngắt INTA của CPU.

Hình vẽ dưới đây thể hiện ghép nối 8259A với hệ thống buýt của 8086. Nếu hệ vi

xử lý 8086 làm việc ở chế độ MAX thường ta phải dùng mạch điều khiển buýt 8288 và

các đệm buýt để cung cấp các tín hiệu thích hợp cho buýt hệ thống. Mạch 8259A phải

làm việc ở chế độ có đệm để nối được với buýt hệ thống này.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

117

3.2.3 Lập trình cho PIC 8259A

Để mạch PIC 8259A có thể hoạt động được theo yêu cầu, sau khi bật nguồn cấp

điện PIC cần phải được lập trình bằng cách ghi vào các thanh ghi (tương đương với các

cổng) bên trong các từ điều khiển khởi đầu (ICW) và tiếp sau đó là các từ điều khiển

hoạt động (OCW).

Các từ điều khiển khởi đầu dùng để tạo nên các kiểu làm việc cơ bản cho PIC, còn

các từ điều khiển hoạt động sẽ quyết định cách thức làm việc cụ thể của PIC. Từ điều

khiển hoạt động sẽ được ghi khi ta muốn thay đổi hoạt động của PIC.

3.2.3.a Các từ điều khiển khởi đầu ICW

PIC 8259A có tất cả 4 từ điều khiển khởi đầu là ICW1 - ICW4. Trong khi lập

trình cho PIC không phải lúc nào ta cũng cần dùng cả 4 từ điều khiển. Hình dưới đây thể

hiện thứ tự ghi và điều kiện để ghi các điều khiển ICW vào 8259A.

Hình 5-3. Ghép nối 8259 với buýt 8086/8088

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

118

Để xác định các thanh ghi bên trong ta cần sử dụng tín hiệu địa chỉ A0 và thứ tự ghi

để ghi dữ liệu cho các từ điều khiển. Ví dụ A0 = 0 là dấu hiệu để nhận biết rằng ICW1

được đưa vào thanh ghi có địa chỉ chẵn trong PIC, còn khi A0 = 1 thì các từ điều khiển

khởi đầu ICW2, ICW3, ICW4 sẽ được đưa vào các thanh ghi có địa chỉ lẻ trong mạch

PIC.

o ICW1

Bít D0 của ICW1 quyết định 8259A sẽ được nối với họ vi xử lý nào. Để làm việc

với hệ 16-32bít (họ x86) thì ICW nhất thiết phải có ICW4 = 0 (và như vậy các bít của

ICW4 sẽ bị xóa về 0). Các bít còn lại của ICW1 định nghĩa cách thức tác động của xung

yêu cầu ngắt (tác động theo sườn hay theo mức) tại các chân yêu cầu ngắt IR của mạch

8259A và việc bố trí các mạch 8259A khác trong hệ làm việc đơn lẻ hay theo chế độ nối

tầng.

Hình 5-4. Trình tự sử dụng các thanh ghi khởi đầu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

119

o ICW2

Từ điều khiển khởi đầu này cho phép chọn kiểu ngắt (số hiệu ngắt) ứng với các

bít T3-T7 cho các đầu vào yêu cầu ngắt. Các bít T0-T2 được 8259A tự động gán giá trị

tùy theo đầu vào yêu cầu ngắt cụ thể IRi. Ví dụ nếu ta muốn các đầu vào của mạch

8259A có kiểu ngắt là 40-47H ta chỉ cần ghi 40H vào các bít T3-T7. Nếu làm như vậy thì

IR0 sẽ có kiểu ngắt là 40H, IR1 sẽ có kiểu ngắt là 41H. . .

o ICW3

Từ điều khiển khởi đầu này chỉ dùng đến khi bít SNGL thuộc từ điều khiển khởi

đầu ICW1 có giá trị 0, nghĩa là trong hệ có các mạch 8259A làm việc ở chế độ nối tầng.

Chính vì vậy tồn tại 2 loại ICW3: 1 cho mạch 8259A chủ và 1 cho mạch 8259A thợ.

Hình 5-6. Dạng thức của ICW2

Hình 5-5. Dạng thức của ICW1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

120

ICW3 cho mạch chủ: dùng để chỉ ra đầu vào yêu cầu ngắt IRi nào của nó có tín

hiệu INT của mạch thợ nối vào.

 ICW3 cho mạch thợ: dùng làm phương tiện để các mạch này được nhận biết. Vì

vậy từ điều khiển khởi đâùu này phải chứa mã số i ứng với đầu vào Iri của mạch chủ mà

mạch thợ đã cho nối vào. Mạch thợ sẽ so sánh mã số này với mã số nhận được ở CAS2-

CAS0. Nếu bằng nhau thì số hiệu ngắt sẽ được đưa ra buýt khi có INTA.

o ICW4

Từ điều khiển khởi đầu này chỉ dùng đến khi trong từ điều khiển ICW1 có IC4 = 1

(cần thêm ICW4). Bít PM cho ta khả năng chọn loại vi xử lý để làm việc với 8259A.

Bít PM = 1 cho phép các bộ vi xử lý từ 8086/88 hoặc cao hơn làm việc vưói 8259A.

Hình 5-8. Dạng thức của ICW4

Hình 5-7. Dạng thức của ICW3 cho mạch chủ và thợ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

121

Bít SFNM = 1 cho phép chọn chế độ ưu tiên cố định đặc biệt. Trong chế độ này

yêu cầu ngắt với mức ưu tiên cao nhất hiện thời từ một mạch thợ làm việc theo kiểu nối

tầng sẽ được mạch chủ nhận biết ngay cả khi mạch chủ còn đang phải phục vụ một yêu

cầu ngắt ở mạch thợ khác nhưng với mức ưu tiên thấp hơn. Sau khi các yêu cầu ngắt

được phục vụ xong thì chương trình phục vụ ngắt phải có lệnh kết thúc yêu cầu ngắt

(EOI) đặt trước lệnh trở về (IRET) đưa đến cho mạch 8259A chủ.

Khi bít SFNM = 0 thì chế độ ưu tiên cố định được chọn (IR0: mức ưu tiên cao nhất.

IR7: mức ưu tiên thấp nhất) thực ra đối vưói mạch 8259A không dùng đến ICW1 thì chế

độ này đã được chọn như là ngầm định. Trong chế độ ưu tiên cố định tại một thời điểm

chỉ có một yêu cầu ngắt i được phục vụ (bít IRi = 1) lúc này tất cả các yêu cầu khác với

mức ưu tiên cao hơn có thể ngắt yêu cầu khác với mức ưu tiên thấp hơn.

Bít BUF cho phép định nghĩa mạch 8259A để làm việc với CPU trong trường hợp

có đệm hoặc không có đệm nối với buýt hệ thống. Khi làm việc ở chế độ có đệm (BUF =

1). Bít M/S = 1/0 cho phép ta chọn mạch 8259A để làm việc ở chế độ chủ/ thợ. SP/EN

trở thành đầu ra cho phép mở đệm để PIC và CPU thông với buýt hệ thống.

Bít AEOI = 1 cho phép chọn cách kết thúc yêu cầu ngắt tự động. Khi AEOI = 1 thì

8259A tự động xóa ISRi = 0 khi xung INTA cuối cùng chuyển lên mức cao mà không

làm thay đổi thứ tự ưu tiên. Ngược lại. Khi ta chọn cách kết thúc yêu cầu ngắt thường

(AEOI = 0) thì chương trình phục vụ ngắt phải có thêm lệnh EOI đặt trước lệnh IRET để

kết thúc cho 8259A.

3.2.3.b Các từ điều khiển hoạt động OCW

Các từ điều khiển hoạt động OCW sẽ quyết định mạch 8259A sẽ hoạt động như thế

nào sau khi được khởi đầu bằng các từ điều khiển ICW. Tất cả các từ điều khiển này sẽ

được ghi vào các thanh ghi trong PIC khi A0 = 0, trừ OCW1 được ghi khi A0 = 1.

o OCW1

OCW1 dùng để ghi giá trị của các bít mặt nạ vào thanh ghi mặt nạ ngắt IMR. Khi

một bít mặt nạ nào đó của được lập thì yêu cầu ngắt tương ứng với mặt nạ đó sẽ không

được 8259A nhận biết nữa (bị che). Từ điều khiển này phải được đưa đến 8259A ngay

sau khi ghi các ICW vào 8259A. Tình trạng mặt nạ ngắt hiện tại có thể được xác định

bằng cách đọc IMR (xem trong thời điểm hiện tại yêu cầu ngắt nào bị che)

Hình 5-9. OCW1 Trạng thái yêu cầu ngắt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

122

o OCW2

 Các bít R. SL và EOI phối hợp vói nhau cho phép chọn ra các cách thức kết thúc

yêu cầu ngắt khác nhau. Một vài cách thức yêu cầu ngắt còn tác động tới các yêu cầu

ngắt được chỉ đích danh với mức ưu tiên được giải mã hóa của 3 bít L2, L1, L0. Dưới đây

là các chế độ làm việc của 8259A.

 Chế độ ưu tiên cố định:

Đây là chế độ làm việc ngầm định của 8259A sau khi được nạp các từ điều

khiển khởi đầu. Trong chế độ này, các đầu vào IR7-IR0 được gán cho các mức

ưu tiên cố định: IR0 được gán cho mức ưu tiên cao nhất còn IR7 mức ưu tiên

thấp nhất. Mức ưu tiên này được giữ không thay đổi cho đến khi ghi mạch

8259A bị lập trình khác đi do OCW2.

Trong chế độ ưu tiên cố định tại một thời điểm chỉ có một yêu cầu ngắt i được

phục vụ (bít ISRi = 1) lúc này tất cả các yêu cầu khác với mức ưu tiên thấp hơn

đều bị cấm.

 Chế độ quay mức ưu tiên (ưu tiên luân phiên) tự động:

Ở chế độ này sau khi một yêu cầu ngắt được phục vụ xong, 8259A sẽ xoá bít

tương ứng của nó trong thanh ghi ISR và gán cho đầu vào của nó mức ưu tiên

thấp nhất để tạo điều kiện cho các yêu cầu ngắt khác có cơ hội được phục vụ.

 Chế độ quay (đổi) mức ưu tiên chỉ đích danh:

Hình 5-10. Trạng thái ngắt và chế độ quay mức ưu tiên

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

123

Ở chế độ này cần chỉ rõ (đích danh) đầu vào IRi nào, với i=L2L1L0, được gán

mức ưu tiên thấp nhất, đầu vào IRi+1 sẽ đuợc tự động gán mức ưu tiên cao

nhất.

Trở lại các vấn đề liên quan đến OCW, việc phối hợp các bít R, SL và EOI phối

với nhau để tạo ra các lệnh quy định các cách thức kết thúc yêu cầu ngắt cho các chế độ

làm việc khác nhau đã nói đến ở phần trên như sau:

1. Kết thúc yêu cầu ngắt thường: chương trình còn phục vụ ngắt phải có lệnh

EOI đặt trước lệnh trở về IRET cho 8259A. Vi mạch này sẽ xác định yêu cầu

ngắt IRi vừa được phục vụ và xoá bít ISRi tương ứng của nó để tạo điều kiện

cho chính yêu cầu ngắt này hoặc các ngắt khác có mức ưu tiên thấp hơn có thể

được tác động.

2. Kết thúc yêu cầu ngắt thường: chương trình con phục vụ ngắt phải có lệnh

EOI chỉ đích danh đặt trước lệnh trở về IRET cho 8259A. 8259A xoá đích

danh bít ISRi, với i=L2L1L0 để tạo điều kiện cho chính yêu cầu ngắt này hoặc

các ngắt khác có mức ưu tiên thấp hơn có thể được tác động.

3. Quay (đổi) mức ưu tiên khi kết thúc yêu cầu ngắt thường: chương trình con

phục vụ ngắt phải có lệnh EOI đặt trước lệnh trở về IRET cho 8259A. 8259A

sẽ xác định yêu cầu ngắt thứ i vừa được phục vụ. Xóa bít ISRi tương ứng và

gán luôn mức ưu tiên thấp nhất cho đầu vào IR, này còn đầu vào IRi+1 sẽ được

gán mức ưu tiên cao nhất.

Có thể theo dõi cách thức hoạt động của mạch 8259A trong chế độ quay (đổi)

mức ưu tiên khi kết thúc yêu cầu ngắt thường thông qua ví dụ minh họa trình

bày trên Hình 5-10.

Hình 5-11. OCW2 xác định xử lý các yêu cầu ngắt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

124

4. Quay (đổi) mức ưu tiên trong chế độ kết thúc yêu cầu ngắt tự động: chỉ cần

một lần đưa lệnh chọn chế độ đổi mức ưu tiên khi kết thúc yêu cầu ngắt tự

động. Có thể chọn chế độ này bằng lệnh lập “chế độ quay khi có EOI tự

động”. Từ đó trở đi 8259A sẽ đổi mức ưu tiên mỗi khi kết thúc ngắt tự động

theo cách tương tự như ở mục 3. Muốn bỏ chế độ này ta có thể dùng lệnh xóa

“chế độ quay khi có EOI tự động”.

5. Quay (đổi) mức ưu tiên khi kết thúc yêu cầu ngắt đích danh: chương trình còn

phục vụ ngắt phải có lệnh EOI đích danh cho 8259A đặt trước lệnh trở về

IRET. Mạch 8259A sẽ xóa bít ISRi của yêu cầu ngắt tương ứng và gán luôn

mức ưu tiên thấp nhất cho đầu vào IRi, với i = L2 L1 L0.

6. Lập mức ưu tiên: chế độ này cho phép thay đổi mức ưu tiên cố định hoặc mức

ưu tiên gán trước đó bằng cách gán mức ưu tiên thấp nhất cho yêu cầu ngắt

IRi chỉ đích danh với tổ hợp i = L2 L1 L0. Yêu cầu ngắt IRi+1 sẽ được gán mức

ưu tiên cao nhất.

o OCW3

 Từ điều khiển hoạt động sau khi được ghi vào 8259A cho phép:

 Chọn các ra thanh ghi để đọc

 Thăm dò trạng thái yêu cầu ngắt bằng cách trạng thái của đầu vào yêu cầu

ngắt Iri với mức ưu tiên cao nấht cùng mã của đầu vào đó và.

 Thao tác với mặt nạ đặc biệt.

 Các thanh ghi IRR và ISR có thể đọc được sau khi nạp vào 8259A từ điều khiển

OCW3 với bít RR = 1: bít RIS = 0 sẽ cho phép đọc IRR. Bít RIS = 1 sẽ cho phép đọc

ISR. Dạng thức của các thanh ghi này biểu diễn trên hình dưới đây.

Hình 5-12. OCW3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

125

 Bằng việc đưa vào 8259A từ điều khiển OCW3 với bít P = 1 ta có thể đọc được

trên buýt dữ liệu ở lần đọc tiếp ngay sau đó từ thăm dò, trong đó có các thông tin về yêu

cầu ngắt với mức ưu tiên cao nhất đang hoạt động và mã tương ứng với yêu cầu ngắt ấy

theo dạng thức được biểu diễn trên dưới đây.

D7 D6 D5 D4 D3 D2 D1 D0

1: có ngắt X x X x Số hiệu yêu cầu ngắt

Có thể gọi đây là chế độ thăm dò yêu cầu ngắt và chế độ này thường được ứng

dụng trong trường hợp có nhiều chương phục vụ ngắt giống nhau cho một yêu cầu ngắt

và việc chọn chương trình nào để sử dụng là trách nhiệm của người lập trình.

 Tóm lại, muốn dùng chế độ thăm dò của 8259A để xác định yêu cầu ngắt hiện tại

ta cần làm các thao tác lần lượt như sau:

- Cấm các yêu cầu ngắt bằng lệnh CLI

- Ghi từ lệnh OCW3 với bít P = 1

- Đọc từ thăm dò trạng thái yêu cầu ngắt trên buýt dữ liệu.

 Bít ESMM = 1 cho phép 8259A thao tác với chế độ mặt nạ đặc biệt. Bít SMM = 1

cho phép lập chế độ mặt nạ đặc biệt. Chế độ mặt nạ đặc biệt được dùng để thay đổi thứ tự

ưu tiên ngay bên trong chương trình con phục vụ ngắt. Ví dụ trong trường hợp có một

yếu cầu ngắt cấm (bị che bởi chương trình phục vụ ngắt với từ lệnh OCW1 mà ta lại

muốn cho phép các yêu cầu ngắt với mức ưu tiên thấp hơn so với yêu cầu ngắt bị cấm đó

Hình 5-13. Thanh ghi IRR và ISR

Hình 5-14. Dạng thức từ thăm dò trạng thái

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

126

được tác động thì ta sẽ dùng chế độ mặt nạ đặc biệt. Một khi đã được lập, chế độ mặt nạ

đặc biệt sẽ tồn tại cho tới khi bị xóa bằng cách ghi vào 8259A một từ lệnh OCW3 khác

vứoi bít SMM = 0. Mặt nạ đặc biệt không ảnh hưởng tới các yêu cầu ngắt vưói mức ưu

tiên cao hơn)

3.2.3.c Hoạt động của 8086 với 8259A

 Cuối cùng để có cái nhìn một cách có hệ thống về hoạt động của hệ vi xử lý với

CPU 8086 và PIC 8259A khi có yêu cầu ngắt, ta tóm lượt hoạt động của chúng như sau:

1. Khi có yêu cầu ngắt từ thiết bị ngoại vi tác động vào một trong các chân IR của

PIC. 8259A sẽ đưa INT = 1 đến chân INTR của 8086.

2. 8086 đưa ra xung INTA đầu đến 8259A

3. 8259A dùng xung INTA đầu như là thông báo để nó hoàn tất các xử lý nội bộ cần

thiết, kể cả xử lý ưu tiên nếu như có nhiều yêu cầu ngắt cùng xảy ra.

4. 8086 đưa ra xung INTA thứ hai đến 8259A

5. Xung INTA thứ hai khiến 8259A đưa ra buýt dữ liệu 1 byte chứa thông tin về số

hiệu ngắt của yêu cầu ngắt vừa được nhận biết.

6. 8086 dùng số hiệu ngắt để tính ra địa chỉ ngắt của vectơ ngắt tương ứng.

7. 8086 cất FR, xóa các cờ IF và TF và cất địa chỉ trở về CS:IP vào ngăn xếp.

8. 8086 lấy địa chỉ CS:IP của chương trình phục vụ ngắt từ bảng vectơ ngắt và thực

hiện chương trình đó.

4. VÀO/RA BẰNG TRUY NHẬP TRỰC TIẾP BỘ NHỚ

4.1 Khái niệm về phương pháp truy nhập trực tiếp vào bộ nhớ

Trong các cách điều khiển việc trao đổi dữ liệu giữa thiết bị ngoại vi và hệ vi xử lý

bằng cách thăm dò trạng thái sẵn sàng của thiết bị ngoại vi hay bằng cách ngắt bộ vi xử

lý đã trình bày ở các chương trước, dữ liệu thường được chuyển từ bộ nhớ qua bộ vi xử

lý để rồi từ đó ghi vào thiết bị ngoại vi hoặc ngược lại, từ thiết bị ngoại vi nó được đọc

vào bộ vi xử lý để rồi từ đó được chuyển đến bộ nhớ. Vì thế tốc độ trao đổi dữ liệu phụ

thuộc rất nhiều vào tốc độ thực hiện của các lệnh MOV, IN và OUT của bộ vi xử lý và do

đó việc trao đổi dữ liệu không thể tiến hành nhanh đươc.

Trong thực tế có những khi ta cần trao đổi dữ liệu thật nhanh với thiết bị ngoại vi:

như khi cần đưa dữ liệu hiện thị ra màn hình hoặc trao đổi dữ liệu với bộ điều khiển đĩa.

Trong các trường hợp đó ta cần có khả năng ghi /đọc dữ liệu trực tiếp với bộ nhớ thì mới

đáp ứng được yêu cầu về tốc độ trao đổi dữ liệu. Để làm được điều này các hệ vi xử lý

nói chung đều phải dùng thêm mạch chuyên dụng để điều khiển việc truy nhập trực tiếp

vào bộ nhớ DMAC (Direct Memory Access Controller)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

127

Ví dụ dưới đây minh họa điều này. Trong khi một mạch DMAC như 8237A của

Inter có thể điều khiển việc chuyển một byte trong một mảng dữ liệu từ bộ nhớ ra thiết bị

ngoại vi chỉ hết 4 chu kỳ đồng hồ thì bộ vi xử lý 8086 phải làm hết cỡ 4 chu kỳ:

 ; số chu kỳ đồng hồ

LAP: MOV AL, (SI) ;10

 OUT PORT, AL ;10

 INC SI ; 2

 LOOP LAP ; 17

 ; CỘNG:39 chu kỳ

Để hỗ trợ cho việc trao đổi dữ liệu với thiết bị ngoại vi bằng cách truy nhập trực

tiếp vào bộ nhớ. CPU thường có tín hiệu yêu cầu treo HOLD để mỗi khi thiết bị cần dùng

buýt cho việc trao đổi dữ liệu với bộ nhớ thì thông qua chân này mà báo cho CPU biết.

Đến lượt CPU, khi nhận được yêu cầu treo thì nó tự treo lên (tự tách ra khỏi hệ thống

bằng cách đưa các bít vào trạng thái trở kháng cao) và đưa xung HLDA ra ngoài để thông

báo CPU cho phép sử dụng buýt.

Sơ đồ khối của một hệ vi xử lý có khả năng trao đổi dữ liệu theo kiểu DMA được

thể hiện trên hình dưới đây.

Ta nhận thấy trong hệ thống này, khi CPU tự tách ra khỏi hệ thống bằng cách tự

treo (ứng với vị trí hiện thời của các công tắc chuyển mạch), DMAC phải chịu trách

nhiệm điều khiển toàn bộ hoạt động trao đổi dữ liệu của hệ thống. Như vậy, DMAC phải

có khả năng tạo ra được các tín hiệu điều khiển cần thiết giống như các tín hiệu của CPU

và bản thân nó phải là một thiết bị lập trình được. Quá trình hoạt động của hệ thống trên

có thể được tóm tắt như sau:

Hình 5-15. Hệ vi xử lý với DMAC

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

128

Khi thiết bị ngoại vi có yêu cầu trao đổi dữ liệu kiểu DMA với bộ nhớ, nó đưa yêu

cầu DREQ=1 đến DMAC, DMAC sẽ đưa yêu cầu treo HRQ=1 đến chân HOLD của

CPU. Nhận được yêu cầu treo, CPU sẽ treo các buýt của mình và trả lời chấp nhận treo

qua tín hiệu HLDA=1 đến chân HACK của DMAC, DMAC sẽ thông báo cho thiết bị

ngoại vi thông qua tín hiệu DACK=1 là nó cho phép thiết bị ngoại vi trao đổi dữ liệu kiểu

DMA. khi quá trình DMA kết thúc thì DMAC đưa ra tín hiệu HRQ=0.

4.2 Các phương pháp trao đổi dữ liệu

Trong thực tế tồn tại 3 kiểu trao đổi dữ liệu bằng cách truy nhập trực tiếp vào bộ

nhớ như sau:

 Treo CPU một khoảng thời gian để trao đổi cả mảng dữ liệu.

 Treo CPU để trao đổi từng byte.

 Tận dụng thời gian không dùng buýt để trao đổi dữ liệu.

4.2.1 Trao đổi cả một mảng dữ liệu

Trong chế độ này CPU bị treo trong suốt quá trình trao đổi mảng dữ liệu. Chế độ

này được dùng khi ta có nhu cầu trao đổi dữ liệu với ổ đĩa hoặc đưa dữ liệu ra hiển thị.

Các bước để chuyển một mảng dữ liệu từ bộ nhớ ra thiết bị ngoại vi:

1. CPU phải ghi từ điều khiển và từ chế độ làm việc vào DMAC để quy định cách

thức làm việc, địa chỉ đầu của mảng nhớ, độ dài của mảng nhớ, . . .

2. Khi thiết bị ngoại vi có yêu cầu trao đổi dữ liệu, nó đưa DREQ =1 đến DMAC.

3. DMAC đưa ra tín hiệu HRQ đến chân HOLD của CPU để yêu cầu treo CPU. Tín

hiệu HOLD phải ở mức cao cho đến hết quá trình trao đổi dữ liệu.

4. Nhận được yêu cầu treo, CPU kết thúc chu kỳ buýt hiện tại, sau đó nó treo các

buýt của mình và đưa ra tín hiệu HLDA báo cho DMAC được toàn quyền sử

dụng buýt.

5. DMAC đưa ra xung DACK để báo cho thiết bị ngoại vi biết là có thể bắt đầu trao

đổi dữ liệu.

6. DMAC bắt đầu chuyển dữ liệu từ bộ nhớ ra thiết bị ngoại vi bằng cách đưa địa

chỉ của byte đầu ra buýt địa chỉ và đưa ra tín hiệu MEMR=O để đọc một byte từ

bộ nhớ ra buýt dữ liệu. tiếp đó DMAC đưa ra tín hiệu IOW =0 để ghi đưa dữ liệu

ra thiết bị ngoại vi. DMAC sau đó giảm bộ đếm số byte còn phải chuyển, cập

nhật địa chỉ của byte cần đọc tiếp, và lặp lại cá c động tác trên cho tới khi hết số

đếm (TC).

7. Quá trình DMA kết thúc, DMAC cho ra tín hiệu HRQ=0 để báo cho CPU biết để

CPU dành lại quyền điều khiển hệ thống.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

129

4.2.2 Treo CPU để trao đổi từng byte.

Trong cách trao đổi dữ liệu này CPU không bị treo lâu dài trong một lần nhưng

thỉnh thoảng lại bị treo trong khoảng thời gian rất ngắn đủ để trao đổi 1 byte dữ liệu

(CPU bị lấy mất một số chu kỳ đồng hồ). Do bị lấy đi một số chu kỳ đồng hồ như vậy lên

tốc độ thực hiện một công việc nào đó của CPU chỉ bị suy giảm chứ không dừng lại.

Cách hoạt động cũng tương tự như phần trước, chỉ có điều mỗi lần DMAC yêu cầu treo

CPU thi chỉ có một byte được trao đổi.

4.2.3 Tận dụng thời gian CPU không dùng buýt để trao đổi dữ liệu.

Trong cách trao đổi dữ liệu này, ta phải có các logic phụ bên ngoài cần thiết để

phát hiện ra các chu kỳ xử lý nội bộ của CPU (không dùng đến buýt ngoài) và tận dụng

các chu kỳ đó vào việc trao đổi dữ liệu giữa thiết bị ngoại vi với bộ nhớ. Trong cách làm

này thì DMAC và CPU luân phiên nhau sử dụng buýt và việc truy nhập trực tiếp bộ nhớ

kiểu này không ảnh hưởng gì tới hoạt động bình thường của CPU.

4.3 Bộ điều khiển truy nhập trực tiếp vào bộ nhớ Intel 8237A

4.3.1 Giới thiệu

DMAC 8237A có thể thực hiện truyền dữ liệu theo 3 kiểu: kiểu đọc (từ bộ nhớ ra

thiết bị ngoại vi), kiểu ghi (từ thiết bị ngoại vi đến bộ nhớ) và kiểu kiểm tra. Trong chế

độ truyền kiểu đọc thì dữ liệu được đọc từ bộ nhớ rồi đưa ra thiết bị ngoại vi. Trong chế

độ truyền kiểu ghi thì dữ liệu được đọc từ thiết bị ngoại vi rồi đưa vào bộ nhớ. Khi

8237A làm việc ở chế độ kiểm tra thì tuy địa chỉ được đưa đến bộ nhớ nhưng DMAC

không tạo ra các xung điều khiển để tiến hành các thao tác ghi/đọc bộ nhớ hay thiết bị

ngoại vi.

Ngoài ra mạch 8237A còn hỗ trợ việc trao đổi dữ liệu giữa các vùng khác nhau của

bộ nhớ và cũng chỉ riêng trong chế độ làm việc này, dữ liệu cần trao đổi mới phải di qua

DMAC nhưng với tốc độ cao hơn khi đi qua CPU nhưng với tốc độ cao hơn khi đi qua

CPU (trong trường hợp này ta có thể đọc được dữ liệu đó trong thanh ghi tạm).

Sơ đồ khối cấu trúc bên trong của mạch 8237A -5 được thể hiện trên hình dưới

đây.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

130

Mạch DMAC 8237A chứa 4 kênh trao đổi dữ liệu DMA với mức ưu tiên lập trình

được. DMAC 8237A có tốc độ truyền 1 MB/s cho mỗi kênh, một kênh có thể truyền môt

mảng có độ dài 64KB.

4.3.2 Các tín hiệu của 8237A -5

 CLK[I]:tín hiệu đồng hồ của mạch. để mạch có thể làm việc tốt với hệ 8086 thì

tín hiệu CLK của hệ thống thường được đảo trước khi đưa vào CLK của 8237A.

 CS [I]: tín hiệu chọn vỏ 8237A chân này thường được nối với đầu ra của bộ giải

mã địa chỉ. bộ giải mã địa chỉ này không cần dùng đến đầu vào IO/M vì bản thân

DMAC đã được cung cấp các xung điều khiển mới của hên thống.

 RESET[I]: tín hiệu nối với tín hiệu khởi động của hệ thống. Khi mạch 8237A

được khởi động riêng thanh ghi mặt nạ được lập còn các bộ phận sau bị xóa:

o Thanhghi lệnh

o Thanh ghi trạng thái

o Thanh ghi yêu cầu DMA

o Thanh ghi tạm thời

o Mạch lật byte đầu /byte cuối (First/Last)

 READY[I]:tín hiệu sẵn sàng, nối với READY của hệ thống để gây ra các chu kỳ

đợi đối với các thiết bị ngoại vi và các bộ nhớ chậm.

Hình 5-16. Sơ đồ khối 8237A

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

131

 HLDA [I]:tín hiệu báo chấp nhân yêu cầu treo từ CPU

 DREQ0-DREQ3[I]:các tín hiệu yêu cầu treo từ thiết bị ngoại vi. Cực tính của các tín

hiệu này có thể lập trình được. Sau khi khởi động các tín hiệunày được định nghĩa

là các tín hiệu kích hoạt mức cao.

 DB0-DB7[I, O]:tín hiệu hai chiều nối đến buýt địa chỉ và buýt dữ lliệu của hệ thống

các tín hiệu này được dùng khi lập trình cho DMAC và khi DMAC hoạt động các

chân này chứa 8 bít địa chỉ cao A8-A15 của mảng nhớ dữ liệu cần chuyển. Trong chế

độ chuyển dữ liệu giữa các vùng của bộ nhớ tại các chân này có các dữ liệu được

chuyển.

 IOR[I, O]VÀ IOW[I, O]: là các chân tín hiệu hai chiều dùng trong khi lập trình cho

DMAC và trong các chu kỳ đọc và ghi.

 EOP[I, O]: là tín hiệu hai chiều dùng để yêu cầu DMAC kết thúc quá trình DMA.

Khi là đầu ra nó được dùng để báo cho bên ngoài biết một kênh nào đó đã chuyển

xong số byte theo yêu cầu, luc này nó thường dùng như một yêu cầu ngắt để CPU

xử lý việc kết thúc quá trình DMA.

 A0-A3[I, O]:là các tín hiệu hai chiều dùng để chọn các thanh ghi trong 8237A khi

lập trình và khi đọc (đầu vào), hoặc để chuyển 4 bít địa chỉ thấp nhất của địa chỉ

mảng nhớ cần chuyển (đầu ra).

 A4-A7[O]:các chân để chứa 4 bít địa chỉ phần cao trong byte địa chỉ thấp của địa chỉ

mảng nhớ cần chuyển.

 HRQ[O]:tín hiệu yêu cầu treo đến CPU. Tín hiệu này thường được đồng bộ với tín

hiệu CLK của hệ thống rồi được đưa đến chân HOLD của 8086.

 DACK0-DACK3[0]: là các tín hiệu trả lời các yêu cầu DMA cho các kênh. Các tín

hiệu này có thể được lập trình để hoạt động theo mức thấp hoặc mức cao. Sau khi

khởi động, các tín hiệu này được định nghĩa là các xung tích cực thấp.

 AEN[0]: tín hiệu cho phép mạch nối vào DB0-DB7 chốt lấy địa chỉ của vùng nhớ

cần trao đổi theo kiểu DMA. Tín hiệu này cũng cho phép cấm các mạch đệm buýt

địa chỉ và dữ liệu hoặc mạch tạo tín hiệu điều khiển của CPU nối vào các buýt

tương ứng khi DMAC hoạt động.

 ADSTB[0]: xung cho phép chốt các bít địa chỉ phần cao A8-A15 có mặt trên DB0-

DB7.

 MEMR[0] và MEMW[0]: là các chân tín hiệu do DMAC tạo ra và dùng khi đọc/ghi

bộ nhớ trong khi hoạt động.

Hình vẽ dưới đây minh họa cách ghép nối các tín hiệu của 8237A với buýt hệ

thống.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

132

4.3.3 Các thanh ghi bên trong của DMAC 8237A

Các thanh ghi bên trong DMAC 8237A được CPU 8086 chọn để làm việc nhờ các

bít địa chỉ thấp A0-A3. Bảng dưới đây chỉ ra cách thức chọn ra các thanh ghi đó.

Bảng 5-1. Địa chỉ các thanh ghi 8237A

Hình 5-17. Ghép nối 8237 với buýt hệ vi xử lý

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

133

Các bảng dưới đây cho biết các thanh ghi trên theo các quan điểm ứng dụng

khác nhau để dễ tra cứu địa chỉ cho chúng khi lập trình với DMAC 8237A.

4.3.3.a Thanh ghi địa chỉ hiện thời:

Đây là thanh ghi 16 bít dùng để chứa địa chỉ của vùng nhớ phải chuyển. Mỗi kênh

có riêng thanh ghi này để chứa địa chỉ. Khi 1 byte được truyền đi. Các thanh ghi này tự

động tăng hay giảm tuỳ theo trước nó được lập trình như thế nào.

Bảng 5-3. Các thanh ghi điều khiển và trạng thái

Bảng 5-2. Địa chỉ các thanh ghi trong dùng cho các kênh

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

134

4.3.3.b Thanh ghi số đếm hiện thời:

Thanh ghi 16 bít này dùng để chứa số byte mà kênh phải truyền(nhiều nhất là

16KB). Mỗi kênh có thanh ghi số byte của mình. Các thanh ghi này được ghi bằng số

đếm nhỏ nhất hơn 1 so với số byte thực chuyển.

4.3.3.c Thanh ghi địa chỉ cơ sở và thanh ghi số đếm cơ sở:

Các thanh ghi này được dùng để chứa địa chỉ và số đếm cho mỗi kênh khi chế độ

tự động khởi đầu được sử dụng.

Trong chế độ này một quá trình DMA kết thúc thì các thanh ghi địa chỉ hiện thời và

số đếm hiện thời được nạp lại giá trị cũ lấy từ thanh ghi địa chỉ cơ sở và thanh ghi số đếm

cơ sở. Khi các thanh ghi địa chỉ hiện thời và số đếm hiện thời được lập trình thì các thanh

ghi địa chỉ cơ sở và thanh ghi số đếm cơ sở cũng được lập trình bất kể chế độ tự khởi đầu

có được sử dụng hay không.

4.3.3.d Thanh ghi lệnh:

Thanh ghi này dùng để lập trình cho DMAC. Nó bị xoá khi khởi động hoặc khi ta

sử dụng lệnh xoá toàn bộ các thanh ghi. Dạng thức của thanh ghi lệnh như sau.

Các bít của thanh ghi này quyết định các phương thức làm việc khác nhau của

8237A. Ta sẽ giải thích sau đây ý nghĩa của các bít.

Bít D0 cho phép DMAC dùng kênh 0 và kênh 1 để chuyển dữ liệu giữa 2 vùng

nhớ. Địa chỉ của byte dữ liệu ở vùng đích được chứa trong thanh ghi địa chỉ của kênh 1.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

135

Số byte chuyển được để trong thanh ghi đếm của kênh 1. Byte cần chuyển lúc đầu được

đọc từ vùng gốc vào thanh ghi tạm để rồi từ đó nó được gửi đến vùng đích trong bước

tiếp theo (hoạt động như lệnh MOVSB nhưng với tốc độ cao).

Bít D1=1 dùng để cho phép kênh 0 giữ nguyên địa chỉ trong chế độ truyền giữ liệu

giữa 2 vùng nhớ. Điều này khiến cho toàn bộ các ô nhớ vùng đích được nạp cùng một

byte dữ liệu.

Bít D2 cho phép DMAC hoạt động hay không.

Bít D3 quyết định byte cần chuyển được truyền với 4 hay 2 chu kì đồng hồ.

Bít D4 cho phép chọn chế độ ưu tiên cố định (kênh 0 có mức ưu tiên cao nhất.

Kênh 3 có mức ưu tiên thấp nhất) hoặc chế độ ưu tiên luân phiên (kênh 0 lúc đầu có mức

ưu tiên cao nhất. Sau khi kênh này được chọn để chuyển dữ liệu thì nó được nhận mức

ưu tiên thấp nhất. Kênh 1 lại trở thành kênh có mức ưu tiên cao nhất)

Bít D5 cho phép chọn thời gian ghibình thường hay kéo dài cho tiết bị ngoại vi

chậm.

Các bít D6 và D7 cho phép chọn cực tính tích cực của các xung DRQ0-DRQ4 và

DACK0- DACK4.

4.3.3.e Thanh ghi chế độ:

Dùng đặt chế độ làm việc cho các kênh của DMAC. Mỗi kênh của DMAC có một

thanh ghi chế độ riêng. Dạng thức của thanh ghi chế độ được biểu diễn như sau:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

136

Trong chế độ DMA theo yêu cầu. DMAC tiến hành chuyển dữ liệu cho đến khi có tín

hiệu EOP từ bên ngoài hoặc cho đến khi không còn yêu cầu DMA nữa (DREQ trở nên

không tích cực)

Trong chế độ DMA chuyển từng byte, chừng nào vẫn còn yêu cầu DMA (DREQ

vẫn là tích cực) thì DMAC đưa ra HRQ=0 trong thời gian 1 chu kì buýt sau mỗi lần

chuyển sang 1 byte. Sau đó nó lại đưa ra HRQ=1. Cứ như vậy DMAC và CPU luân phiên

nhau sử dụng buýt cho đến khi đếm hết (TC).

Trong chế độ DMA chuyển cả mảng, cả một mảng gồm một số byte bằng nội dung

bộ đếm được chuyển liền một lúc. Chân yêu cầu chuyển dữ liệu DREQ không cần phải

giữ được ở mức tích cực suốt trong quá trình chuyển. Chế độ nối tầng được dùng khi có

nhiều bộ DMAC được dùng trong hệ thống để mở rộng số kênh có thể yêu cầu DMA.

4.3.3.f Thanh ghi yêu cầu:

Thanh ghi này dùng để yêu cầu DMA có thể được thiết lập/ xoá theo ý muốn bằng

chương trình. Điều này rất có lợi khi ta muốn chuyển dữ liệu giữa các vùng khác nhau

của bộ nhớ lúc này các kênh liên quan phải được lập trình ở chế độ chuyển cả mảng.

Dạng thức của thanh ghi yêu cầu như sau:

4.3.3.g Thanh ghi mặt nạ riêng cho từng kênh:

Bằng thanh ghi này ta có thể lập trình để cấm (cho Bít mặt nạ tương ứng = 1) thay

cho phép hoạt động (cho Bít mặt nạ tương ứng = 0) đối với từng kênh một.

4.3.3.h Thanh ghi mặt nạ tổng hợp:

Với thanh ghi này ta có thể lập trình để cấm (Bít mặt nạ tương ứng = 1) thay cho

phép hoạt động (Bít mặt nạ tương ứng = 0) đối với từng kênh chỉ bằng một lệnh.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

137

4.3.3.i Thanh ghi trạng thái:

Thanh ghi này cho phép xác định trạng thái của các kênh trong DMAC. Kênh nào

đã truyền xong (đạt số đếm TC), kênh nào đang có yêu cầu DMA để trao đổi dữ liệu. Khi

một kênh nào đó đạt TC. Kênh đó sẽ tự động bị cấm. Cấu trúc thanh ghi trạng thái như

sau:

D7 D6 D5 D4 D3 D2 D1 D0

D7=1: Kênh 0 có yêu cầu D0=1: Kênh 0 đạt số đếm

D6=1: Kênh 1 có yêu cầu D1=1: Kênh 1 đạt số đếm

D5=1: Kênh 2 có yêu cầu D2=1: Kênh 2 đạt số đếm

D4=1: Kênh 3 có yêu cầu D3=1: Kênh 3 đạt số đếm

4.3.4 Các lệnh đặc biệt cho DMAC 8237A

Có 3 lệnh đặc biệt để điều khiển hoạt động của DMAC 8237A. Các lệnh này chỉ

thực hiện bằng các lệnh OUT với các địa chỉ cổng xác định thì theo thanh ghi mà không

cần đến giá trị cụ thể của thanh ghi AL.

1. Lệnh xóa mạch lật byte đầu/byte cuối (First/Lát, F/L): F/L là một mạch lật bên

trong DMAC bít để chỉ ra byte nào trong các thanh ghi 16bít (thanh ghi địa chỉ

hoặc thanh ghi số đếm được chọn làm việc. Nếu F/L=1 thi số đó là MSB, còn nếu

F/L=O) thì số đó là LSB. Mạch lật F/L tự động thay đổi trạng thái khi ta ghi /đọc

các thanh ghi đó. khi khởi động xong thì F/L=O

2. Lệnh xoá toàn bộ các thanh ghi: lệnh này có tác động như thao tác khởi động. Tất

cả các thanh ghi đều bị xoá riêng thanh ghi mặt nạ tổng hợp thì được lập để cấm

các yêu cầu trao đổi dữ liệu.

3. Lệnh xoá thanh ghi mặt nạ tổng hợp: Lệnh này cho phép các kênh của DMAC bắt

đầu yêu cầu trao đổi dữ liệu.

4.3.5 Lập trình cho các thanh ghi địa chỉ và thanh ghi số đếm:

Việc lập trình cho các thanh ghi địa chỉ và thanh ghi số đếm được thực hiẹn riêng cho

mỗi kênh. cần phải định trước giá trị logic của F/L để thao tác chính xác được với LSB

và MSB của các thanh ghi trên. ngoài ra còn phải cấm các yêu cầu DMA của các kênh

trong khi lập trình cho chúng. Có thể tuân theo các bước sau đây để lập trình cho DMAC

8237A:

+ xoá mặt lật F/L

+ cấm các yêu cầu của các kênh

+ ghi LSB rồi MSB của thanh ghi địa chỉ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

138

+ ghi LSB rồi MSB của thanh ghi số đếm

Dưới đây là một đoạn mã cho 8237A có địa chỉ cơ sở 70H và được ghép với vi xử

lý như trong Hình 5-18.

 ChotB EQU 010H ; Địa chỉ mạch chốt B

 FL EQU 07CH ; Địa chỉ mạch lật

 C0 EQU 070H ; Địa chỉ kênh 0

 C1 EQU 072H ; Địa chỉ kênh 1

 Dem_C1 EQU 073H ; Địa chỉ kênh 0

 CheDo EQU 07BH ; Địa chỉ thanh ghi chế độ

 Lenh EQU 078H ; Địa chỉ thanh ghi lệnh

 MatNa EQU 07FH ; Địa chỉ thanh ghi mặt nạ

 YeuCau EQU 079H ; Địa chỉ thanh ghi yêu cầu

 TThai EQU 078H ; Địa chỉ thanh ghi trạng thái

 SoByte DW 0100H ; Số byte cần chuyển

 A16_19 DB 01H ; 4 bít địa chỉ cao

 Nguon DW 00000H ; Địa chỉ nguồn

 Dich DW 04000H ; Địa chỉ đích

 MOV AL,A16_19

 OUT ChotB, AL ; Gửi địa chỉ cao ra mạch chốt

 OUT FL, AL ; Xóa mạch lật

 MOV AX, Nguon ;Địa chỉ nguồn ra kênh 0

 OUT C0,AL

 MOV AL, AH

 OUT C0, AL

 MOV AX, Dich ; Địa chỉ đích ra kênh 1

 OUT C1, AL

 MOV AL, AH

 OUT C1, AL

 DEC SoByte

 MOV AX, SoByte

 OUT Dem_C1, AL ; số byte cần chuyển vào bộ đếm kênh 1

 MOV AL, AH

 OUT Dem_C1, AL

 MOV AL, 088H ; Chế độ kênh 0

 OUT CheDo, AL

 MOV AL, 085H ; Chế độ kênh 1

 OUT CheDo, AL

 MOV AL,1 ; Chuyển mảng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

139

 OUT Lenh, AL

 MOV AL, 0CH ; Bỏ mặt nạ kênh 0,1

 OUT MatNa, AL

 MOV AL,4 ; Kênh 0 yêu cầu DMA

 OUT YeuCau, AL

 LAP: IN AL,TThai

 TEST AL,2 ; Kiểm tra bộ đếm kênh 1 xong?

 JZ LAP

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

140

Hình 5-18. Ghép nối 8237A với vi xử lý ở chế độ MIN

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

141

Chương 6. CÁC BỘ VI ĐIỀU KHIỂN

1. GIỚI THIỆU VỀ VI ĐIỀU KHIỂN VÀ CÁC HỆ NHÚNG

1.1 Giới thiệu

Hệ vi điều khiển là một máy tính trong đó các vi mạch cần thiết được bố trí trên

một vi mạch duy nhất. Tất cả các máy tính điều có một số điểm chung như sau:

 Đơn vị xử lý trung tâm (CPU) thực hiện các chương trình

 Bộ nhớ truy nhập ngẫu nhiên RAM chứa dữ liệu thay đổi

 Bộ nhớ chỉ đọc ROM chức các chương trình

 Các thiết bị vào/ra để liên lạc với thế giới bên ngoài như bàn phím, màn hình …

Hệ vi điều khiển có thể được mô tả bằng các đặc trưng khác. Nếu một máy tính có

các đặc điểm chung như thế thì chúng có thể coi như là hệ vi điều khiển. Hệ vi điều khiển

có thể:

 được nhúng bên trong các thiết bị khác (thường là các sản phẩm tiêu dùng) để

kiểm soát các chức năng hay hoạt động của sản phẩm. Hệ vi điều khiển cũng

được coi như bộ điều khiển nhúng;

 chỉ dùng cho một nhiệm vụ và chạy một chương trình xác định. Chương trình

này thường được lưu trong ROM và không thay đổi;

 là thiết bị tiêu thụ điện thấp. Bộ vi điều khiển sử dụng pin có thể tiêu thụ chỉ 50

mA.

Bộ vi điều khiển có thể nhận đầu vào từ thiết bị và điều khiển thiết bị này bằng

cách gửi các tín hiệu tới các bộ phận khác nhau trong thiết bị được điều khiển. Bộ vi điều

khiển thường nhỏ và chi phí thấp. Bộ xử lý được dùng trong một bộ vi điều khiển có thể

thay đổi rất nhiều. Trong nhiều sản phẩm như lò vi sóng, yêu cầu về CPU khá thấp và

sức ép về giá thành lại lớn nên các nhà sản xuất lựa chọn các vi mạch vi điều khiển

chuyên dụng. Đó là các thiết bị CPU nhúng, giá rẻ, tiêu thụ điện thấp. Các vi mạch

Motorola 6811 và Intel 8051 là các ví dụ tiêu biểu. Các vi mạch vi điều khiển cấp thấp

thường có sẵn 1KB ROM và 20 B RAM trên vi mạch cùng với 8 tín hiệu vào/ra.

1.2 Các kiểu vi điều khiển

Họ vi điều khiển chủ yếu là 8 bít do kích cỡ từ này rất phổ biến với phần lớn các

công việc mà các thiết bị này cần phải thực hiện. Độ dài từ 8 bít được coi là đủ cho hầu

hết các ứng dụng và có lợi thế giao tiếp với các vi mạch nhớ cũng như lô-gíc hiện có.

Cấu trúc dữ liệu ASCII nối tiếp cũng được bố trí theo byte nên việc truyền thông với các

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

142

thiết bị vi điều khiển dễ dàng tương thích và thuận tiện. Do các dạng ứng dụng với vi

điều khiển có thể thay đổi rất lớn, hầu hết các nhà sản xuất cung cấp họ các thiết bị vi

điều khiển mà khả năng mỗi thành viên phù hợp với yêu cầu chế tạo. Điều này tránh tình

trạng thiết bị vi điều khiển quá phức tạp và tốn kém để đáp ứng tất cả các dạng ứng dụng,

đồng thời, hạn chế việc một số phần của vi điều khiển hoàn toàn không được sử dụng khi

chạy ứng dụng. Họ vi điều khiển sẽ có tập lệnh con chung, tuy nhiên các thành viên trong

họ có thể khác nhau về số lượng, kiểu, bộ nhớ, các cổng... Như vậy nhà sản xuất có thể

chế tạo các thiết bị với chi phí hiệu quả phù hợp với các yêu cầu sản xuất cụ thể.

Việc mở rộng bộ nhớ có thể sử dụng các vi mạch ROM/RAM bên ngoài vi điều

khiển. Mộ số vi điều khiển không tích hợp sẵn ROM cũng như EPROM hay EEROM.

Một số chức năng bổ sung khác có thể được tích hợp vào vi mạch của bộ vi điều khiển

như chuyển đổi tương tự số (Analogue-to-Digital Converter ADC). Một số vi điều khiển

khác có số lượng tín hiệu ít hơn để giảm thiểu chi phí. Bảng dưới đây liệt kê đặc tính của

một số vi điều khiển.

Bảng 6-1. Đặc tính một số vi điều khiển

Mô-đen Tín hiệu:

Vào/ra

RAM

(byte)

ROM

(Byte)

Độ

rộng

từ (bít)

Tính năng khác

Intel 8051 40:32 64 1K 8 Bộ nhớ mở rộng 8K

Motorola

68HC11

52:40 256 8K 8 Cổng nối tiếp ; chuyển đổi tương

tự số

Zilog Z8820 44:40 272 8K 8 Bộ nhớ mở rộng 128K ; cổng nối

tiếp

Intel 8096 68:40 232 8K 16 Bộ nhớ mở rộng 64K ; chuyển

đổi tương tự số ;cổng nối tiếp;

điều biến xung

2. HỌ VI ĐIỀU KHIỂN Intel 8051

Vi điều khiển 8051 lần đầu tiên được Intel giới thiệu vào năm 1981. Đây là bộ vi

điều khiển 8 bít với 128 byte RAM và 4KB ROM, một cổng nối tiếp và 4 cổng 8 bít trên

một vi mạch đơn lẻ. Dòng vi điều khiển này trở nên phổ biến sau khi Intel cho phép các

nhà sản xuất khác được chế tạo vi điều khiển tương thích với 8051. Đến nay vi điều

khiển 8051 thực ra bao gồm họ vi điều khiển ký hiệu từ 8031 tới 8751 được sản xuất

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

143

bằng công nghệ NMOS và CMOS với nhiều kiểu đóng gói khác nhau. Phiên bản nâng

cao của 8051 là 8052 cũng có các biến thể khác nhau. Các biến thể này nhằm đắp ứng

các yêu cầu ứng dụng khác nhau của các nhà phát triển.

Bảng 6-2. Thông số của một số vi điều khiển họ 8051

Tính năng 8051 8052 8031

ROM 4K 8K -

RAM (Byte) 128 256 128

Bộ định thời 2 3 2

Tín hiệu vào/ra 32 32 32

Cổng nối tiếp 1 1 1

Nguốn ngắt 6 8 6

2.1 Sơ đồ khối

Hình 6-1. Sơ đồ khối 8051

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

144

Hình 6-1 cho thấy khối chức năng đặc trưng cho vi điều khiển đó là: ROM và

RAM, các cổng vào/ra, bộ định thời và kênh thông tin nối tiếp. Hình 6-2 cho biết sơ đồ

tín hiệu của 8051, ý nghĩa các tín hiệu được giải thích trong Bảng 6-3.

Hình 6-2. Sơ đồ chân tín hiệu 8051

 8051 hỗ trợ 4 cổng vào/ra trong một số biến thể các cổng này đều có thể hoạt động

ở cả hai chế độ vào và ra. Cổng truyền thông nối tiếp thường xử lý dữ liệu 8 bít cho phép

gửi và nhận song song. Cổng nối tiếp có 4 chế độ hoạt động. Chế độ 0, chân TxD sử

dụng như tín hiệu xung nhịp cố định ở mức 1/12 xung nhịp của vi điều khiển còn chân

RxD dùng để thu và phát. Chế độ 1 là chế độ giao tiếp UART với 1 bít stop. Chế độ 2

giống chế độ 1 nhưng thêm bít chẵn lẻ. Chế độ 3 giống chế độ 2 nhưng cho phép lập

trình tốc độ tín hiệu.

Bộ nhớ ROM trong vi mạch có thể là loại EPROM lập trình bằng điện. Bộ nhớ

ngoài có thể truy nhập thông qua tín hiệu truy nhập EA=0. Việc truy nhập ROM ngoài

được thực hiện thông qua tín hiệu PSEN ở mức thấp để kích hoạt vi mạch nhớ ROM.

Bảng 6-3. Ý nghĩa tín hiệu 8051

Tín hiệu Ý nghĩa

P0. 0-P0. 7 Tín hiệu dữ liệu cổng P0

P1. 0-P1. 7 Tín hiệu dữ liệu cổng P1

P2. 0-P2. 7 Tín hiệu dữ liệu cổng P2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

145

P3. 0-P3. 7 Tín hiệu dữ liệu cổng P3

A8-A15 Tín hiệu địa chỉ

Xtal1-2 Tín hiệu xung nhịp

RxD Tín hiệu thu truyền thông nối tiếp

TxD Tín hiệu phát truyền thông nối tiếp

INT0-1 Tín hiệu ngắt 0-1 (mức thấp)

RD Đọc dữ liệu bộ nhớ ngoài

WR Tín hiệu ghi dữ liệu bộ nhớ ngoài

EA Tín hiệu truy nhập bộ nhớ chương trình ngoài

EA=0 dùng ROM ngoài

EA=1 dùng ROM trong

ALE Tín hiệu chốt địa chỉ trên P0

ALE=1 Trên nhóm cổng P0 là tín hiệu địa chỉ

ALE=0 Trên nhóm cổng P0 là tín hiệu dữ liệu

PSEN Tín hiệu cho phép lưu chương trình dùng đọc bộ nhớ chương trình

bên ngoài

RST Khởi động lại

Các tín hiệu ngắt của 8051 có thể chia thành 2 loại bên trong và bên ngoài khởi

xướng. Khi ngắt diễn ra, chương trình đang chạy sẽ bị dừng và chương trình phục vụ

ngắt được kích hoạt. Khi kết thúc, vi điều khiển sẽ quay trở lại chương trình bị dừng như

chưa có gì xảy ra. Ngắt xảy ra đồng thời được xử lý theo độ ưu tiên.

Bộ định thời hay bộ đếm là chuỗi mạch lật thay đổi trạng thái theo từng tín hiệu

vào/ra. Hai bộ đếm T0, T1 có thể được lập trình chia 256, 8192 hay 65536 và sinh ra các

tín hiệu ngắt khi kết thúc. Tín hiệu này có thể được phát hiện thông qua phần mềm.

2.2 Các thanh ghi

Thanh ghi đếm chương trình (PC) và con trỏ dữ liệu (DPTR) là các thanh ghi 16 bít

cho phép xác định vị trí 1 ô nhớ. Bộ nhớ chương trình nằm trong dải 0000-FFFFh trong

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

146

đó 0000-0FFFh là không gian nhớ chương trình bên trong vi điều khiển. Con trỏ dữ liệu

chia thành hai phần thấp (8 bít) và cao (8 bít)

Thanh ghi A và B là các thanh ghi dùng chung dùng cho các thao tác tính toán của

đơn vị xử lý của 8051. Thanh ghi A là thanh ghi tích lũy (accumulator) dùng trong các

thao tác số học và lô-gíc. Thanh ghi này cũng dùng để trao đổi dữ liệu với bộ nhớ ngoài.

Thanh ghi B thường dùng kèm với thanh ghi A trong các thao tác nhân chia. Ngoài ra,

8051 còn 32 thanh ghi khác nằm trong bộ nhớ RAM trong chia thành bốn băng, B0-B3,

gồm 8 thanh ghi R0-R7.

Cờ là các thanh ghi 1 bít cho biết trạng thái của một số lệnh và được gộp vào thanh

ghi từ trạng thái chương trình (Program Status Word PSW). 8051 có các cờ nhớ C, phụ

AC, tràn OV và chẵn lẻ P. Các cờ người dùng F0 và GF0-1. Các cờ người dùng có thể

tùy biến theo yêu cầu người viết chương trình như lưu các sự kiện.

Con trỏ ngăn xếp SP là thanh ghi 8 bít lưu vị trí đỉnh ngăn xếp trong bộ nhớ RAM

trong của 8051.

Các thanh ghi chức năng đặc biệt nằm trong bộ nhớ RAM trong từ địa chỉ 00-7Fh.

Các thanh ghi này có thể được đặt tên riêng trong một mã lệnh và tham chiếu qua địa chỉ.

Ví dụ thanh ghi A còn được tham chiếu qua địa chỉ 0E0h.

2.3 Tập lệnh

8051 hỗ trợ các chế độ địa chỉ sau:

1. Chế độ địa chỉ trực tiếp: dữ liệu dành cho lệnh là một phần trong mã lệnh.

Từ gợi nhớ cho chế độ này là dấu #. Ví dụ MOV A, #100.

2. Chế độ địa chỉ thanh ghi: thanh ghi lưu giá trị dữ liệu.

3. Chế độ địa chỉ trực tiếp: địa chỉ ô nhớ là một phần của câu lệnh

4. Chế độ địa chỉ gián tiếp: giá trị thanh ghi cho biết địa chỉ của dữ liệu. Từ

gợi nhớ là @. Ví dụ MOV A, @R0 ; Nạp dữ liệu tại ô nhớ có giá trị R0 vào

thanh ghi A.

Tập lệnh 8051 hỗ trợ các thao tác di chuyển dữ liệu, các thao tác lô-gíc, các

phép toán số học và các câu lệnh nhảy và gọi hàm.

Ví dụ 6-1

Đoạn chương trình 8051

Nhan: INC 3Ch ; Tăng giá trị ô nhớ 3Ch lên 1

 MOV A, #2Ah ; A=2Ah

 XRL A, 3Ch ; XOR A với giá trị tại ô nhớ 3Ch

 JNZ Nhan ; Nhảy tới Nhan nếu kết quả XOR khác 0

 NOP ;không làm gì cả

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

147

3. GIỚI THIỆU MỘT SỐ ỨNG DỤNG TIÊU BIỂU CỦA VI ĐIỀU KHIỂN

Việc chuyển đối tín hiệu tương tự sang số và ngược lại thường gặp khi ta muốn kết

nối máy tính với thế giới tương tự. Trong phần này giới thiệu sử dụng bộ vi điều khiển

kết nối với bộ chuyển đổi tương tự số (A/D) và ngược lại (D/A). Thông thường các bộ

chuyển đổi cho phép kết nối thông qua kênh dữ liệu 8 bít, ba trạng thái và cho phép điều

khiển thôngqua các tín hiệu đọc/ghi, chọn chíp.

3.1 Chuyển đổi số tương tự (D/A)

Hình 6-3 giới thiệu kết nối giữa vi điều khiển 8051 và bộ chuyển đổi D/A khái

quát. Bộ chuyển đổi D/A có đặc điểm sau:

Vout = -Vref×(byte đầu vào/100H) và Vref = 10V

Thời gian chuyển đổi 5s

Trình tự điều khiển ~CS rồi ~WR.

Cổng 1 được nối với các tín hiệu dữ liệu của bộ chuyển đổi còn cổng 3 dùng để

điều khiển. Trong ví dụ này, thiết bị tạo ra sóng hình sin với chu kỳ 1000Hz và có thể

thay đổi theo chương trình. Vref đặt bằng -10V dạng tín hiệu đầu ra thay đổi từ 0V tới +9,

96V. Chương trình dùng bảng tra cứu để sinh ra biên độ sóng sin. Chu kỳ được thiết lập

căn cứ vào khoảng thời gian truyền dữ liệu cho bộ chuyển đổi. Với S điểm lấy mẫu, chu

kỳ ngắt nhất Tmin= 5×S s tần số tối đa fmax = 200. 000/S.

Với sóng có tần số 1000Hz, cần số lượng mẫu là 200. Tuy nhiên thực tế chạy

chương trình cho thấy thời gian để tạo ra một mẫu cần 6s và thời gian để chuyển sang

mẫu kế tiếp mất hơn 2s. Như vậy thực tế chỉ cho phép số lượng mẫu là 166.

Hình 6-3. Ghép nối bộ chuyển đổi D/A với 8051

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

148

Ví dụ 6-2. Chương trình chuyển đổi D/A

 . org 0000h

daconv: clr p3, 2 ; Chọn chíp

 mov dptr, #bang : lấy địa chỉ cơ sở bảng

repeat: mov r1, #0A6h ; Khởi tạo R1 = 166

next: mov a, r1 ; Lấy địa chỉ offset của bảng

 movc a, @a+dptr ;Lấy giá trị mẫu

 mov p1, a ; Gửi mẫu ra cổng 1

 clr p3, 3

 setb p3, 3

 djnz r1, next

 sjmp repeat

; Bảng chuyển đổi sử dụng hàm cosin để tính giá trị biên bộ của tín hiệu tại đầu ra.

83 giá

;trị đầu thể hiện biên độ từ cực đại tới nhỏ hơn 0, 83 giá trị còn lại từ 0 tới cực đại.

Với 83

; mẫu cho nửa chu kỳ giá trị góc của hàm cosin thay đổi 2, 17 độ cho các mẫu kế

tiếp.

bang: . db 00H ;

 . db ffH ; s1:FF×cos(0)

 . db feH ; s2:7FH+FF×cos(2, 17)

 . db feH ; s3:7FH+FF×cos(2, 17×2)

 . db 81H ; s42:7FH+FF×cos(88, 9)

 . db 00H ; s84:7FH+FF×cos(180)

 . db feH ; s166:7FH+FF×cos(2, 17)

3.2 Chuyến đổi tương tự số (A/D)

Hình 6-4 sử dụng bộ chuyển đổi tương tự số 8 bít có các đặc tính sau:

Tín hiệu lấy mẫu: Vin = Vref-, dữ liệu =00h ; Vin=Vref+, dữ liệu = FFh

Thời gian lấy mẫu: 1 s

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

149

Trình tự điều khiển: CS, WR rồi RD (ở mức tích cực thấp). Trong hình vẽ, cổng 1

của 8051 nối với kênh dữ liệu của bộ chuyển đổi còn cổng 3 nối với các tín hiệu điều

khiển.

Ví dụ 6-3. Chương trình chuyển đổi A/D

Đoạn chương trình sau số hóa các tín hiện Vref với chu kỳ 100s và lưu kết quả

vào trong bộ nhớ RAM 4000H:43E7H.

 . equ begin, 4000H ;Địa chỉ bắt đầu

 . equ delay, 74H ;trễ 87s

 . equ end1, 43H ;Địa chỉ kết thúc byte cao

 . equ end2, e8H ;Địa chỉ kết thúc byte thấp

adconv: mov dptr, #begin

 clr p3, 2 ; Gửi ~CS tới bộ A/D

next: clr p3, 3 ; Tạo xung ~WR tới bộ A/D

 setb p3, 3 ;

 clr p3, 4 ;Tạo xung ~RD

 mov a, p1 ;Đọc dữ liệu từ A/D

 setb p3, 4 ;Kết thúc đọc

 mov @dptr, a ;Lưu vào RAM

 inc dptr ;Tăng con trỏ RAM lên 1

 mov a, dph ;Kiểm tra kết thúc

Hình 6-4. Ghép nối 8051 và chuyển đổi A/D

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 6. CÁC BỘ VI ĐIỀU KHIỂN

150

 cjne a, #end1, wait

 mov a, dpl

 cjne a, #end2, wait

 sjmp done ; Kết thúc khi tới vị trí cuối cùng

wait: mov r1, #delay ;Trễ 87s

here: djnz r1, here

 sjmp next

done: sjmp done

 . end

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

151

Chương 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

1. CÁC VI XỬ LÍ TIÊN TIẾN DỰA TRÊN KIẾN TRÚC INTEL IA-32

1.1 Giới thiệu IA-32

IA-32 là kiến trúc 32 bít do hãng sản xuất Intel phát triển lần đầu tiên được giới

thiệu trên bộ vi xử lý Intel386. Kiến trúc IA-32 hỗ trợ ba chế độ hoạt động: chế độ bảo vệ

(protected mode), chế độ thực (real mode) và chế độ quản lý hệ thống SMM (System

Management Mode). Các chế độ hoạt động quyết định các lệnh và các chức năng mà

chương trình có thể truy nhập:

 Chế độ bảo vệ: là chế độ căn bản của bộ xử lý. Chế độ này cho phép chạy các

phần mềm 8086 trong môi trường đa nhiệm và bảo vệ. Chế độ này còn được gọi

là chế độ 8086 ảo.

 Chế độ địa chỉ thực: Ché độ này cung cấp môi trường lập trình 8086 với một số

tính năng mở rộng như chuyển sang chế độ bảo vệ. Để bộ xử lý hoạt động ở chế

độ này thông thường phải khởi động lại bộ xử lý.

 Chế độ quản lý hệ thống - SMM: Chế độ này cung cấp cho hệ điều hành các cơ

chế trong suốt phục vụ nhiệm vụ cụ thể như quản lý năng lượng hay bảo mật hệ

thống. Chế độ này được kích hoạt thông qua tín hiệu SMM hoặc tín hiệu này nhận

được từ bộ điều khiển ngắt tiên tiến.

Trong chế độ này bộ xử lý chuyển qua lại các không gian địa chỉ riêng biệt trong

khi lưu lại ngữ cảnh căn bản của các chương trình đang chạy. Các đoạn mã SMM

có thể được thực hiện hoàn toàn trong suốt. Ngay khi quay trở lại từ chế độ SMM,

bộ xử lý được khôi phục lại trạng thái giống như trước khi ngắt SMM xảy ra.

Bất kỳ chương trình chạy trên bộ xử lý IA-32 được cung cấp các tài nguyên để thực

hiện lệnh, lưu đoạn mã, dữ liệu và các thông tin trạng thái. Các tài nguyên này tạo lập

nên môi trường thực thi cho chương trìnhh:

 Không gian địa chỉ: bất cứ chương trình nào đều có thể đánh địa chỉ không gian

nhớ tuyến tính tới 232 byte hay 4GB và không gian địa chỉ vật lý có thể lên tới

236 khi sử dụng cách đánh địa chỉ mở rộng.

 Các thanh ghi thực thi căn bản: bao gồm 8 thanh ghi dùng chung, sáu thanh ghi

đoạn, thanh ghi cờ và con trỏ lệnh EIP.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

152

 Các thanh ghi đấu phẩy động x87FPU: bao gồm 8 thanh ghi dữ liệu, thanh ghi

điều khiển, thanh ghi trạng thái, thanh ghi lệnh, thanh ghi con trỏ toán hạng, thẻ

và mã lệnh. Các thanh ghi này cho phép thực hiện các phép toán với độ chính xác

kép mở rộng hay với số nguyên 8 byte.

 Các thanh ghi MMX: bao gồm 8 thanh ghi hỗ trợ cơ chế thực hiện 1 lệnh và nhiều

dữ liệu với các thao tác các số nguyên (1 byte, 2 byte hay 4 byte) được xếp vào

gói 64 bít.

 Các thanh ghi XMM: hỗ trợ các thao tác số nguyên và số thực được xếp vào các

gói 128 bít.

Các vi xử lý thế hệ sau hỗ trợ IA-32 áp dụng các tính năng thực thi lệnh tiên tiến

cho phép thực hiện được nhiều hơn 1 lệnh trong 1 chu trình lệnh như kỹ thuật đường ống,

siêu vô hướng, hay siêu phân luồng. Các thế hệ Pentium đầu tiên sử dụng các vi kiến trúc

siêu vô hướng cho phép thực hiện 3 lệnh trong một chu kỳ xung nhịp với các siêu đường

ống 12 đoạn và cơ chế thực thi vô hướng (out-of-order execution). Vi kiến trúc Netburst

trong Hình 7-1. Vi kiến trúc Netburst tăng cường tính năng kiến trúc Pentium thế hệ đầu

bằng việc tăng cường năng lực của đơn vị xử lý, năng cao hiệu năng của bộ đệm tích

hợp, mở rộng giao tiếp buýt. Các vi xử lý IA-32 thế hệ mới còn hỗ trợ cơ chế đa nhân

(multi-core) bên cạnh kiến trúc siêu phân luồng cho phép chạy nhiều ứng dụng đồng thời.

Việc kết hợp hai kiến trúc làm cho các chương trình ứng dụng có thể sử dụng 4 bộ vi xử

lý lô-gíc trên 2 bô vi xử lý vật lý. Bên cạnh đó, bộ xử lý thế hệ mới hỗ trợ công nghệ ảo

hóa cho phép nhiều hệ điều hành và ứng dụng chạy trên các máy ảo khác nhau cùng chia

sẻ hệ thống phần cứng.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

153

Kiến trúc IA-32 cung cấp các chức năng hỗ trợ hệ điều hành hay các phần mềm hệ

thống. Với các thao tác vào/ra ở chế độ bảo vệ, các thao tác này bị hạn chế thông qua:

 Cờ đặc quyền IOPL (I/O privilege level) và trạng thái của quyền vào/ra

trong phân đoạn trạng thái chương trình TSS (Task state segment)

 Cơ chế bảo vệ đoạn và trang bộ nhớ.

Về mô hình bộ nhớ, các chương trình không truy nhập trực tiếp vào bộ nhớ vật lý.

Thay vào đó, các chương trình có thể sử dụng các mô hình truy nhập:

1. Tuyến tính: Chương trình coi bộ nhớ như một chuỗi liên tiếp các byte.

Đoạn mã, dữ liệu và ngăn xếp đều nằm trong không gian địa chỉ này.

2. Phân đoạn: Bộ nhớ được chia thành các không gian khác nhau được gọi là

đoạn. Thông thường dữ liệu, đoạn mã, ngăn xếp sử dụng các đoạn khác

Hình 7-1. Vi kiến trúc Netburst

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

154

nhau. Bộ xử lý hỗ trợ IA-32 có thể cung cấp 16383 đoạn với các kích cỡ

khác nhau, kích cỡ lớn nhất của 1 đoạn là 4GB.

3. Địa chỉ thực: đây là mô hình bộ nhớ của 8086.

4. Phân trang và bộ nhớ ảo: khi này bộ nhớ chương trình được chia thành các

trang ánh xạ vào bộ nhớ ảo. Sau đó, bộ nhớ ảo được ánh xạ vào bộ nhớ

thực. Nếu hệ điều hành sử dụng phân trang, cơ chế ánh xạ hoàn toàn trong

suốt đối với chương trình ứng dụng

1.2 Các vi xử lý hỗ trợ IA-32

Với ưu thế của công nghệ và thiết kế vi kiến trúc mới, mỗi một thế hệ vi xử lý IA-

32 mới đều vượt ngưỡng tốc độ (tần số hoạt động) và năng lực thực hiện của các vi xử lý

thế hệ trước. Bảng dưới đây liệt kê các vi xử lý IA-32 thế hệ đầu không có bộ đệm tích

hợp trong vi xử lý (GP-thanh ghi dùng chung; FPU-thanh ghi dấu phẩy động).

Bảng 7-1. Vi xử lý hỗ trợ IA-32 thế hệ đầu

Vi xử lý
Năm sản

xuất

Tần số

(MHz)

Số thanh

ghi

Buýt dữ

liệu mở

rộng

Bộ nhớ

tối đa
Bộ đệm

80386DX 1985 20 32GP 32 4GB

Intel

486DX
1989 25

32GP

80 FPU
32 4GB 8KB L1

Pentium 1993 60
32GP

80 FPU
64 4GB 16KB L1

Pentium

Pro
1995 200

32GP

80 FPU
64 64GB

16KB L1

256-

512KB L2

Pentium II 1997 266

32GP

80 FPU

64 MMX

64 64GB

32KB L1

256-

512KB L2

Pentium

III
1999 500

32GP

80 FPU

64 MMX

128 XMM

64 64GB
32KB L1

512KB L2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

155

Bảng 7-2. Vi xử lý IA-32 thế hệ sau

Vi xử lý
Năm

sản xuất

Vi kiến

trúc

Tần số

(GHz)

Số

thanh

ghi

Băng

thông

buýt hệ

thống

Bộ nhớ

tối đa

Bộ

đệm

Pentium

4
2000 Netburst 1, 5

32 GP

80 FPU

64 MMX

128

XMM

3, 2GB/s 64GB

8KB

L1

256KB

L2

Pentium

4
2002

Netburst,

Siêu phân

luồng

3, 06

32 GP

80 FPU

64 MMX

128

XMM

4, 2GB/s 64GB

8KB

L1

256KB

L2

Pentium

M
2003

Pentium

M
1, 6

32 GP

80 FPU

64 MMX

128

XMM

3, 2GB/s 64GB

64KB

L1

1MB

L2

Pentium

4

Extreme

2005

Netburst,

Siêu phân

luồng

3, 73

32 GP

80 FPU

64 MMX

128

XMM

8, 5GB/s 64GB

16KB

L1

2MB

L2

Core

Duo
2006

Pentium

M, Lõi

kép

2, 16

32 GP

80 FPU

64 MMX

128

XMM

5, 3

GB/s
4GB

64KB

L1

2MB

L2

Atom

Z5xx
2008

Atom, Ảo

hóa
1, 86

32 GP

80 FPU

64 MMX

128

XMM

4, 2GB/s 4GB

56KB

L1

512KB

L2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

156

2. CÁC VI XỬ LÍ TIÊN TIẾN DỰA TRÊN KIẾN TRÚC INTEL IA-64

Kiến trúc Intel IA-64 bổ sung không gian địa chỉ chương trình 64 bít hỗ trợ không

gian nhớ vật lý tới 40 bít và chế độ IA-32e so với kiến trúc IA-32 trước đó. Kiến trúc IA-

64 đảm bảo tính tương thích ngược cho phép chạy các chương trình viết cho kiến trúc

IA-32. Các chế độ mới của IA-64 bao gồm:

 Chế độ tương thích: cho phép chạy các ứng dụng 16 và 32 bít mà không phải biên

dịch lại. Chế độ này tương tự như chế độ bảo vệ trong IA-32. Các ứng dụng chỉ truy

nhập được 4GB đầu trong không gian nhớ tuyến tính. Tuy nhiên, ứng dụng có thể sử

dụng không gian nhớ lớn hơn với chế độ mở rộng địa chỉ vật lý.

 Chế độ 64 bít. Cho phép chương trình truy nhập không gian nhớ tuyến tính 64 bít.

Chế độ này mở rộng số lượng các thanh ghi dùng chung và thanh ghi XMM từ 8 lên

16. Các thanh ghi dùng chung có kích cỡ 64 bít.

Chế độ 64 được kích hoạt trên cơ sở đoạn mã. Kích cỡ mặc định cho địa chỉ là 64 bít

còn toán hạng 32 bít. Kích cỡ của toán hạng có thể thay đổi theo từng lệnh sử dụng

tiền tố REX. Điều này giúp cho các câu lệnh cũ có thể chuyển sang chế độ 64 bít

thanh ghi và địa chỉ.

Bảng 7-3. Vi xử lý hỗ trợ IA-64

Vi xử lý

Năm

sản

xuất

Vi kiến trúc

Tần

số

(GHz)

Số thanh

ghi

Băng

thông

buýt hệ

thống

Bộ nhớ

tối đa

Bộ

đệm

Xeon 2004

Netburst,

Siêu phân

luồng, IA-

64

3, 6

32, 64 GP

80 FPU

64 MMX

128

XMM

6, 4GB/s 64GB

16KB

L1

1MB

L2

Xeon 2005

Netburst,

Siêu phân

luồng, IA-

64

3, 03

32, 64 GP

80 FPU

64 MMX

128

XMM

5, 3GB/s 1024GB

16KB

L1

1MB

L2

8MB

L3

Pentium 2005 Netburst, 3, 73 32 GP 8, 5GB/s 64GB 16KB

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

157

4

Extreme

Siêu phân

luồng, IA-

64

80 FPU

64 MMX

128

XMM

L1

2MB

L2

Dual-

Core

Xeon

2005

Netburst,

Siêu phân

luồng, Đa

nhân, IA-64

3

32, 64 GP

80 FPU

64 MMX

128

XMM

6, 4GB/s 64GB

16KB

L1

2MB

L2

(Tổng

4MB)

Pentium

4 672
2005

Netburst,

Siêu phân

luồng, IA-

64, Ảo hóa,

Đa nhân

3, 8

32, 64 GP

80 FPU

64 MMX

128

XMM

6, 4GB/s 64GB

16KB

L1

2MB

L2

Core 2

Extreme

X6800

2006

Netburst,

Siêu phân

luồng, IA-

64, Ảo hóa,

Đa nhân

2, 93

32, 64 GP

80 FPU

64 MMX

128

XMM

8, 5GB/s 64GB

64KB

L1

4MB

L2

Xeon

7140
2006

Netburst,

Siêu phân

luồng, IA-

64, Ảo hóa,

Đa nhân

3, 40

32, 64 GP

80 FPU

64 MMX

128

XMM

12, 8

GB/s
64GB

64KB

L1

1MB

L2

(tổng

2MB)

16MB

L3

Xeon

5472
2007

Netburst,

Siêu phân

luồng, IA-

64, Ảo hóa,

Đa nhân (4

nhân)

3, 00

32, 64 GP

80 FPU

64 MMX

128

XMM

12, 8

GB/s
256GB

64KB

L1

6MB

L2

(Tổng

12MB)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

158

Atom 2008

Atom, IA-

64, Ảo hóa,

Đa nhân (4

nhân)

1, 60

32, 64 GP

80 FPU

64 MMX

128

XMM

12, 8

GB/s
64GB

56KB

L1

512KB

L2

(Tổng

1MB)

Core i7 2008

Netburst,

Siêu phân

luồng, IA-

64, Ảo hóa,

Đa nhân (4

nhân)

3, 20

32, 64 GP

80 FPU

64 MMX

128

XMM

6, 4

GT/s
64GB

64KB

L1

256KB

L2

8MB

L3

3. CÁC VI XỬ LÍ TIÊN TIẾN CỦA SUN MICROSYSTEMS

Sun Microsystems hỗ trợ thiết kế bộ xử lý có thể mở rộng SPARC (Scalable

Processor Architecture). Kiến trúc này chịu ảnh hưởng của máy tính Berkeley RISC I.

Tập lệnh và tổ chức các thanh ghi của bộ xử lý SPARC rất giống với Berkeley RISC.

SPARC cho phép triển khai từ các ứng dụng nhúng cho tới các máy chủ rất lớn, tất cả

đều dùng chung một tập lệnh căn bản. Hiện nay, bộ xử lý SPARC thường được sử dụng

rộng rãi trong môi trường máy chủ, trạm làm việc sử dụng hệ điều hành SUN, Unix và

Linux.

Bộ xử lý SPARC thường có tới 128 thanh ghi dùng chung. Tại bất cứ thời điểm

nào, phần mềm có thể sử dụng tức thì 32 thanh ghi bao gồm 8 thanh ghi toàn cục, 24

thanh ghi ngăn xếp. Các thanh ghi ngăn xếp có thể tạo thành cửa số thanh ghi (register

window) tối đa 32 cửa số cho phép tối ưu các thao tác gọi hàm và trở về. Mỗi cửa số có 8

thanh ghi cục bộ và dùng chung 8 thanh ghi với cửa sổ kề. Các thanh ghi chia sẻ được

dùng để truyền các tham số và giá trị trả về cho các hàm còn thanh ghi cục bộ dùng để

lưu các giá trị cục bộ giữa các lời gọi hàm.

Hầu hết các lệnh xử lý của SPARC chỉ sử dụng các toán hạng thanh ghi. Các lệnh

nạp và lưu chuyên dùng để trao đổi dữ liệu giữa các thanh ghi và bộ nhớ. Ngoài chế dộ

địa chỉ thanh ghi, SPARC chỉ sử dụng chế độ địa chỉ dịch chuyển. Trong chế độ này, địa

chỉ hiệu dụng của toán hạng được dịch chuyển 1 đoạn tương ứng với giá trị của thanh

ghi. Để thực hiện câu lệnh nạp hoặc ghi, quá trình thực hiện lệnh sẽ cần thêm 1 giai đoạn

để tính địa chỉ ô nhớ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

159

Vi xử lý hỗ trợ SPARC 32 bít phiên bản 8 cho phép sử dụng 16 thanh ghi dấu phẩy

động với độ chính xác kép, hoặc 32 thanh ghi với độ chính xác đơn. Các cặp chẵn-lẻ của

các thanh ghi độ chính xác kép có thể kết hợp với nhau để nâng độ chính xác lên gấp đôi

mức 4. SPARC 64 bít phiên bản 9, xuất hiện vào năm 1993, có thêm 16 thanh ghi độ

chính xác kép nhưng các thanh ghi mới này không tách thành các thanh ghi có độ chính

xác đơn được.

Bảng dưới đây liệt kê một số tính năng của các vi xử lý sử dụng SPARC.

Bảng 7-4. Tính năng một số vi xử lý SPARC

Tên
Tần số

MHz

Năm

sản

xuất

Số

luồng

x Số

nhân

Số

chân

tín

hiệu

Đệm

dữ

liệu

L1

(k)

Đệm

lệnh

L1

(k)

Đệm L2

(k)

UltraSPARC IIs

(Blackbird)
250–400 1997 1×1 521 16 16

1024 –

4096

UltraSPARC IIs

(Sapphire-Black)
360–480 1999 1×1 521 16 16

1024–

8192

UltraSPARC IIi

(Sabre)
270–360 1997 1×1 587 16 16

256–

2048

UltraSPARC IIi

(Sapphire-Red)
333–480 1998 1×1 587 16 16 2048

UltraSPARC IIe

(Hummingbird)
400–500 1999 1×1 370 16 16 256

UltraSPARC IIi

(IIe+) (Phantom)
550–650 2000 1×1 370 16 16 512

UltraSPARC III

(Cheetah)
600 2001 1×1 1368 64 32 8192

UltraSPARC

III Cu (Cheetah+)
1002–1200 2001 1×1 1368 64 32 8192

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 CHƯƠNG 7. GIỚI THIỆU MỘT SỐ VI XỬ LÍ TIÊN TIẾN

160

UltraSPARC IIIi

(Jalapeño)
1064–1593 2003 1×1 959 64 32 1024

UltraSPARC IV

(Jaguar)
1050–1350 2004 1×2 1368 64 32 16384

UltraSPARC IV+

(Panther)
1500–2100 2005 1×2 1368 64 64 2048

UltraSPARC T1

(Niagara)
1000–1400 2005 4×8 1933 8 16 3072

UltraSPARC T2

(Niagara 2)
1000–1600 2007 8×8 1831 8 16 4096

UltraSPARC T2

Plus (Victoria

Falls)

1200–1600 2008 8×8 1831 8 16 4096

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 TÀI LIỆU THAM KHẢO

161

TÀI LIỆU THAM KHẢO

1. Crisp J. Introduction to microprocessors and microcontrollers, Newnes 2004

2. David Calcutt, Fred Cowan,Hassan Parchizadeh, 8051 Microcontrollers An

Applications-Based Introduction, Newnes 2004

3. Douglas V. Hall. Microprocessor and Interfacing- programming and hardware,

2
nd

 edition. McGraw Hill. 1997.

4. Hari BalaKrishnan & Samel Madden. The lecture notes on Computer Systems

Engineering, Open Courses Ware. Massachusets Institute of Technology.

5. Hồ Khánh Lâm, Kỹ thuật vi xử lý, NXB Bưu điện 2005

6. Intel Corp. Intel® 64 and IA-32 Architectures Software Developer’s Manual

7. Rafiquzzaman M. Microprocessor theory and applications with 68000/68020 and

Pentium, John Wiley&Sons 2008

8. Văn Thế Minh. Kỹ thuật vi xử lý. NXB Giáo dục 1999.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

