> ~ A
Co so d lieu
TS. H6 Manh Tai
Khoa CNTT2

Hoc vién Céng nghé Bwu chinh Vién thong
2018

Thiét ké khai niém - Conceptual De5|gr’l*

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

. When done, the database schema is normalized

Recall: there are several normal forms...

4

Boyce-Codd Normal Form (BCNF) %

* Main idea is that we define “good” and “bad” FDs as follows:

* X 2> Aisa“good FD” if X is a (super)key

* |n other words, if A is the set of all attributes

e X 2 Ais a “bad FD” otherwise

* We will try to eliminate the “bad” FDs!

Boyce-Codd Normal Form (BCNF)

 Why does this definition of “good” and “bad” FDs make sense?

* If X is not a (super)key, it functionally determines some of the
attributes; therefore, those other attributes can be duplicated

e Recall: this means there is redundancy

* And redundancy like this can lead to data anomalies!

EmpID | Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 0876 Salesrep
E1111 Smith 0876 Salesrep
E9999 Mary 1234 Lawyer

Boyce-Codd Normal Form (BCNF)

BCNF is a simple condition for removing anomalies from reIatior}gjzk&

A relation R is in BCNF if:

if {A,, ..., A} = Bis a non-trivial FD in R

then {A,, ..., A} is a superkey for R

a

" j.;_tEquiva/ent/y: V sets of attributes X, either (X* = X) or (X* = all attributes)
, ,‘F‘f"\}.

In other words: there are no “bad” FDs

Example

Name |[SSN PhoneNumber | City {SSN} = {Name,City}
Fred |123-45-6789 |206-555-1234 |Seattle
Fred 123-45-6789 |206-555-6543 | Seattle This FD is bad

Joe 087-65-4321 |908-555-2121 |Westfield because it is not a
Joe 987-65-4321 |908-555-1234 | Westfield superkey

| What is the key?
— Not in BCNF {SSN, PhoneNumber}

E

Example %
Name | SSN City {SSN} = {Name,City}
Fred |123-45-6789 |Seattle
Joe |987-65-4321 |Madison This FD is now
good because it is
SSN PhoneNumber the key
123-45-6789 206-555-1234
“123'45'6789 206-555-6543 Let’s check anomalies:
908-555-2121 e Redundancy ?
908-555-1234 ° Update ?
e Delete ?

Now in BCNF!

BCNF Decomposition Algorithm

BCNFDecomp(R):

BCNF Decomposition Algorithm

BCNFDecomp(R): . 8 -
Find a set of attributes X s.t.: X* # X and X* # Find a set of éttributes X |
lall attributes] which has non-trivial

“bad” FDs, i.e. is not a
superkey, using closures

11

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
lall attributes]

If no “bad” FDs found, in
BCNF!

if (not found) then Return R

12

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # Xand X* #
lall attributes]

Let Y be the attributes that
X functionally determines
(+ that are not in X)

if (not found) then Return R

letY = X*-X, Z=(X*C

And let Z be the
complement, the other
attributes that it doesn’t

13

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
lall attributes]

if (not found) then Return R

letY=X*-X, Z=(X*)C
decompose R into R, (XU Y) and R,(X U 2)

Split into one relation (table)
with X plus the attributes
that X determines (Y)...

14

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
lall attributes]

if (not found) then Return R

letY=X*-X, Z=(X*)C
decompose R into R, (XU Y) and R,(X U 2)

And one relation with X plus
the attributes it does not
determine (2)

15

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
lall attributes]

if (not found) then Return R

letY=X*-X, Z=(X*C
“% decompose R into R{(XUY)and Ry(XU Z)

Proceed recursively until no
more “bad” FDs!

Return BCNFDecomp(R,), BCNFDecomp(R,)

2 16

Example

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
[all attributes]

if (not found) then Return R

letY=X"-X, Z=(X*)C
decompose R into R(X U Y) and R,(X L Z)

n BCNFDecomp(R;), BCNFDecomp(R,)

R(A,B,C,D,E)

A} 2 {B,C}
1C} 2 D}

Retur

s x

* ». .;.‘\‘

Example R(A,B,C,D,E)

(A} > (B.C}
C(ABLQD {C} > (D}
{A}+ = {A’B’C'D} a {AIBICIDIE} ! -

R,(A,B,C,D)
{C}*={C,D} # {A,B,C,D}

18

2. Decompositions

1. We saw that redundancies in the data (“bad FDs”) can lead.te da'ta v
anomalies kg

2. We developed mechanisms to detect and remove redundancies by
decomposing tables into BCNF

1. BCNF decomposition is standard practice- very powerful & widely used!

, 2. ;However sometimes decompositions can lead to more subtle
. wanted effects...

When does this happen?

20

Decompositions in General

21

Theory of Decomposition

Name Price | Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera
/ \
Price Name Category
19.99 Gizmo Gadget
24.99 OneClick Camera
Gizmo Camera

Sometimes a
decomposition is
“correct”

l.e. it is a Lossless
decomposition

22

Lossy Decomposition

Name Price | Category However
sometimes it isn’t

Gizmo 19.99 Gadget e
OneClick 24.99 Camera
Gizmo 19.99 Camera

— N\

What’s wrong
here?

Name Category Price | Category
Gadget 19.99 Gadget
Camera 24.99 Camera

Camera 19.99 Camera

23

Lossless Decompositions

Lossless Decompositions

If {A, .., A}=2>{B, ..., B} Note: don’t need
« = Then the decomposition is lossless A, ..., A}=2{C, .., Cot

BCNF decomposition is always lossless. Why? ‘

26

A problem with BCNF

Problem: To enforce a FD, must reconstruct
original relation—on each insert!

Note: This is historically
inaccurate, but it makes
it easier to explain

A Problem with BCNF

Unit | Company

Product

/

Unit Company

N\

{Unit} - {Company}
{Company,Product} = {Unit}

Unit

Product

: {Unlt} - {Company}

T

We do a BCNF decomposition

on a “bad” FD:
{Unit}* = {Unit, Company}

We lose the FD {Company,Product} = {Unit}!!

28

So Why is that a Problem?

Unit Company Unit Product
Galaga99 |UW Galaga99 Databases
Bingo Uw Bingo Databases
{Unit} > {Company} /
.
Unit Company Product

~ | Galaga99 Uw Databases

|Bi uw Databases

Violates the FD {Company,Product} = {Unit}!!

b
il\
\\
L »
X
" |

No problem so far.
All local FD's are %
satisfied.

Let’s put all the
data back into a
single table again:

29

The Problem

e We started with a table R and FDs F

* We decomposed R into BCNF tables R;, R, Y
with their own FDs F;, F,, ...

* We insert some tuples into each of the relations—which satisfy their
local FDs but when reconstruct it violates some FD across tables!

g - Practical Problem: To enforce FD, must reconstruct
e R—on each insert!

30

Possible Solutions a
* Various ways to handle so that decompositions are all lossless / n
FDs lost =

e For example 3NF- stop short of full BCNF decompositions. See Bonus A‘E)civity!a.%' 2

e Usually a tradeoff between redundancy / data anomalies and FD
preservation...

BCNF still most common- with additional steps to
keep track of lost FDs...

31

