
Cơ sở dữ liệu
TS. Hồ Mạnh Tài

Khoa CNTT2

1

Học viện Công nghệ Bưu chính Viễn thông

2018

Chương 5: Chuẩn hóa cơ sở dữ liệu

2

1. Boyce-Codd Normal Form

3

Thiết kế khái niệm - Conceptual Design

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema is normalized

4

Recall: there are several normal forms…

Boyce-Codd Normal Form (BCNF)

5

• Main idea is that we define “good” and “bad” FDs as follows:

• X  A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

• X  A is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!

Boyce-Codd Normal Form (BCNF)

6

• Why does this definition of “good” and “bad” FDs make sense?

• If X is not a (super)key, it functionally determines some of the
attributes; therefore, those other attributes can be duplicated

• Recall: this means there is redundancy

• And redundancy like this can lead to data anomalies!

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

7

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {A1, ..., An}  B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

Equivalently: ∀ sets of attributes X, either (X+ = X) or (X+ = all attributes)

Boyce-Codd Normal Form (BCNF)

8

Example

What is the key?
{SSN, PhoneNumber}

Name SSN PhoneNumber City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield

Joe 987-65-4321 908-555-1234 Westfield

{SSN}  {Name,City}

⟹ Not in BCNF

This FD is bad
because it is not a
superkey

9

Example

Name SSN City

Fred 123-45-6789 Seattle

Joe 987-65-4321 Madison

SSN PhoneNumber

123-45-6789 206-555-1234

123-45-6789 206-555-6543

987-65-4321 908-555-2121

987-65-4321 908-555-1234

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

{SSN}  {Name,City}

Now in BCNF!

This FD is now
good because it is
the key

10

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find X s.t.: X+ ≠ X and X+ ≠ [all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

11

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Find a set of attributes X
which has non-trivial
“bad” FDs, i.e. is not a
superkey, using closures

12

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

If no “bad” FDs found, in
BCNF!

13

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Let Y be the attributes that
X functionally determines
(+ that are not in X)

And let Z be the
complement, the other
attributes that it doesn’t

14

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

Split into one relation (table)
with X plus the attributes
that X determines (Y)…

15

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

And one relation with X plus
the attributes it does not
determine (Z)

16

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Proceed recursively until no
more “bad” FDs!

R(A,B,C,D,E)BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X  Y) and R2(X  Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Example

{A}  {B,C}

{C}  {D}

18

Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A}  {B,C}

{C}  {D}

2. Decompositions

19

Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to data
anomalies

2. We developed mechanisms to detect and remove redundancies by
decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & widely used!

3. However, sometimes decompositions can lead to more subtle
unwanted effects…

20

When does this happen?

21

Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp

22

Theory of Decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Price

Gizmo 19.99

OneClick 24.99

Gizmo 19.99

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

I.e. it is a Lossless
decomposition

Sometimes a
decomposition is
“correct”

23

Lossy Decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

What’s wrong
here?

However
sometimes it isn’t

Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lossless Decompositions

26

BCNF decomposition is always lossless. Why?

Note: don’t need
{A1, ..., An}  {C1, ..., Cp}

If {A1, ..., An}  {B1, ..., Bm}
Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

A problem with BCNF

Note: This is historically
inaccurate, but it makes
it easier to explain

Problem: To enforce a FD, must reconstruct
original relation—on each insert!

28

A Problem with BCNF

{Unit}  {Company}

{Company,Product}  {Unit}

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product}  {Unit}!!

Unit Company Product

… … …

Unit Company

… …

Unit Product

… …

{Unit}  {Company}

29

So Why is that a Problem?

No problem so far.
All local FD’s are
satisfied.

Unit Company

Galaga99 UW

Bingo UW

Unit Product

Galaga99 Databases

Bingo Databases

Unit Company Product

Galaga99 UW Databases

Bingo UW Databases

Let’s put all the
data back into a
single table again:

{Unit}  {Company}

Violates the FD {Company,Product}  {Unit}!!

30

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy their
local FDs but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct
R—on each insert!

31

Possible Solutions

• Various ways to handle so that decompositions are all lossless / no
FDs lost

• For example 3NF- stop short of full BCNF decompositions. See Bonus Activity!

• Usually a tradeoff between redundancy / data anomalies and FD
preservation…

BCNF still most common- with additional steps to
keep track of lost FDs…

